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A Result on K-(2,1)-Total Choosability of Planar Graphs
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Abstract A list assignment of a graph G is a function L : V (G) ∪ E(G) → 2N . A graph G is

L-(2,1)-Total labeling if there exists a function c such that c(x) ∈ L(x) for all x ∈ V (G)∪E(G),

|c(u) − c(v)| ≥ 1 if uv ∈ E(G), |c(e1) − c(e2)| ≥ 1 if the edges e1 and e2 are adjacent, and

|c(u)− c(e)| ≥ 2 if the vertex u is incident to the edge e. A graph G is k-(2,1)-Total choosable if

G is L-(2,1)-Total labeling for every list assignment L provided that |L(x)| = k, x ∈ V (G)∪E(G).

The (2, 1)-Total choice number of G, denoted by CT
2,1(G), is the minimum k such that G is k-

(2,1)-Total choosable. In this paper, we prove that if G is a planar graph with ∆(G) ≥ 11, then

CT
2,1(G) ≤ ∆+ 4.
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1. Introduction

In this paper, G is a finite simple graph. By V (G), E(G), F (G), △(G), δ(G), we denote,

respectively, the vertex set, the edge set, the face set, the maximum degree, and the minimum de-

gree of G. Let d(u) be the degree of a vertex u. If a vertex u is adjacent to a vertex v, then we call

u a neighbor of v. A face f ∈ F (G) is called a (d(v1), d(v2), . . . , d(vk))-face if v1, v2, . . . , vk are all

the boundary vertices arranged clockwise on f . Furthermore, we denote (d(v1), d(v2), . . . , d(vk))-

face and (d(v1′), d(v2), . . . , d(vk))-face by (d(v1)(d(v1′)), d(v2), . . . , d(vk))-face. For example, we

denote (2, 3, 8, 6)-face and (4, 3, 8, 6)-face by (2(4), 3, 8, 6)-face. u is called a k-vertex, a k+-

vertex, or a k−-vertex, if d(u) = k, d(u) ≥ k, or d(u) ≤ k, respectively. Similarly, a k-face, a

k+-face, and a k−-face are also defined. Pk is called a path with V (Pk) = {v1, v2, . . . , vk} and

E(Pk) = {vivi+1|i = 1, 2, . . . , k − 1}. Undefined notations are referred to [1].

The (p, 1)-Total labeling problem of a graph G, which originated from the channel assignment

problem, was proposed by Havet and Yu [2]. A graph G is said to be k-(p, 1)-Total labeling if

and only if there is a function c from V (G)
∪
E(G) to {0, 1, 2, . . . , k} such that |c(u)− c(v)| ≥ 1

if uv ∈ E(G), |c(e1)− c(e2)| ≥ 1 if the edges e1 and e2 are adjacent, and |c(u)− c(e)| ≥ p if the

vertex u is incident to the edge e. The (p, 1)-Total labeling number of G, denoted dy λT
p (G),

is the minimum k such that G is k-(p, 1)-Total labeling. Readers can refer to [3–7] for further

research.
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Here we consider the (p, 1)-Total labeling problem of the list version. Suppose that a list

assignment of a graph G is a function L from V (G)
∪
E(G) to a subset of 2N . We say G

is L-(p, 1)-Total labeling if there exists a (p, 1)-Total labeling c such that c(x) ∈ L(x) for all

x ∈ V (G)
∪
E(G). If L is any list assignment of G such that |L(x)| = k for all x ∈ V (G)

∪
E(G),

then the function c is called a k-(p, 1)-Total choosable function of G with respect to L. The (p, 1)-

Total choice number of G, denoted by CT
p,1(G), is the minimum k such that G has a k-(p, 1)-Total

choosable function c.

Clearly, L-(p, 1)-Total labeling problem of graph is the list total coloring problem of graph

where p = 1. It is known that there is a List Total Coloring Conjecture χ′′
l (G) = χ′′(G),

we may conjecture CT
p,1(G) = λT

p (G) + 1. Unfortunately, we found some graphs satisfying

CT
p,1(G) > λT

p (G) + 1 in [8]. So, Yu [8] proposed the following “Week List (p, 1)-Total Labeling

Conjecture”.

Conjecture 1.1 ([8]) If G is a simple graph with maximum degree ∆, then CT
p,1(G) ≤ ∆+ 2p.

It is true that the conjecture is true for trees and paths. Yu [8] proved the following results:

(1) If G is a star graph K1,n, where n ≥ 3 and p ≥ 2, then CT
p,1(G) ≤ ∆+ 2p− 1.

(2) If G is an outerplanar graph with ∆(G) ≥ p + 3, then CT
p,1(G) ≤ ∆ + 2p − 1. Yu and

Zhang [9] showed that if G is a graph embedded in surface with Euler characteristic ε and ∆(G)

large enough, then CT
p,1(G) ≤ ∆+ 2p.

Especially, for the (1, 1)-Total choice number of a planar graph, Hou et al. [10] proved that

CT
1,1(G) ≤ ∆ + 2 where ∆(G) ≥ 9. Borodin et al. [11] proved that CT

1,1(G) ≤ ∆ + 1 where

∆(G) ≥ 12. Dong et al. [12] showed that if G is a planar graph without non-induced 7-cycles

∆(G) ≥ 9, then CT
1,1(G) ≤ ∆+2 where ∆(G) ≥ 7. In [13–15], Borodin et al. gave some sufficient

conditions (in terms of ∆ and g) to show that the (1, 1)-Total choice number of a planar graph

is equal to ∆ + 1. These results mean that when p = 1, Conjecture 1.1 holds for planar graphs

with ∆(G) ≥ 9.

For the (1, 1)-Total choice number of a 1-planar graph, Zhang et al. [16] showed that each

1-planar graph with maximum degree ∆ is (∆ + 2)-total-choosable if ∆ ≥ 16, and is (∆ + 1)-

total-choosable if ∆ ≥ 21. The result means that when p = 1, Conjecture 1.1 holds for 1-planar

graphs with ∆(G) ≥ 16.

For the (2, 1)-Total choice number of a planar graph, Song and Sun [17] proved that

(1) If G is a planar graph with ∆(G) ≥ 7 and 3-cycle is not adjacent to k-cycle, k ∈ {3, 4},
then CT

2,1(G) ≤ ∆+ 4.

(2) If G is a planar graph with ∆(G) ≥ 8 and i-cycle is not adjacent to j-cycle, where

i, j ∈ {3, 4, 5}, then CT
2,1(G) ≤ ∆ + 3. We mainly studies the upper bound of CT

p,1(G) when

p = 2.

In this paper, we prove the following theorem.

Theorem 1.2 If G is a planar graph with ∆(G) ≥ 11, then CT
2,1(G) ≤ ∆+ 4.

Theorem 1.2 implies that Conjecture 1.1 holds for planar graphs with ∆(G) ≥ 11 when p = 2.
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2. Preliminaries

Suppose that L is a list assignment of G and a = min∪x∈V (G)∪E(G)
L(x) > 1. Let L1 =

{L1(x)|x ∈ V (G)∪E(G)}, where L1(x) = {b− (a− 1)|b ∈ L(x)} for all x ∈ V (G)∪E(G). Then

the function f is a k-(2, 1)-Total choosable of G with respect to L if and only if the function f is

also a k-(2, 1)-Total choosable of G with respect to L1. We know min∪x∈V (G)∪E(G)
L1(x) = 1 and

|L1(x)| = |L(x)| for all x ∈ V (G)∪E(G). So, suppose that the list assignment L : V (G)∪E(G) →
2N satisfies that min∪x∈V (G)∪E(G)

L(x) = 1 in this section.

Zhu et al. [18] gave two usable lemmas for the list L(2, 1)-labeling of planar graphs. According

to their method, we got two similar lemmas which are very useful in the proofs of our theorems.

For convenience, we do not distinguish between the concepts of “labeling” and “coloring” in the

following sections.

Lemma 2.1 Let L be a list assignment of P2 = v1v2. If L satisfies |L(v1)| = 3, |L(v1v2)| = 3,

and |L(v2)| = 4, then P2 is (2, 1)-Total choosable with respect to L.

Proof Case 1. If 1 ∈ L(v1v2), then we define a function f such that f(v1v2) = 1, f(v1) ∈
L(v1) \ {1, 2} and f(v2) ∈ L(v2) \ {1, 2, f(v1)}. So the function f is a (2,1)-Total choosable

function of P2 with respect to L.

Case 2. If 1 /∈ L(v1v2) and 1 ∈ L(v1), then we define a function f such that f(v1) = 1.

Let L1(v1v2) = L(v1v2) \ {2}, L1(v2) = L(v2) \ {1} and m = min{L1(v1v2)
∪

L1(v2)}. Then

|L1(v1v2)| ≥ 2 and |L1(v2)| ≥ 3. When m = 2, let f(v2) = 2 and f(v1v2) ∈ L1(v1v2) \ {3}.
When m ̸= 2 and m ∈ L1(v1v2), let f(v1v2) = m and f(v2) ∈ L1(v2)\{m,m+1}. When m ̸= 2,

m /∈ L1(v1v2) and m ∈ L1(v2), let f(v2) = m and f(v1v2) ∈ L1(v1v2) \ {m+ 1}. So we can get

a (2, 1)-Total choosable function f of P2 with respect to L.

Case 3. If 1 /∈ L(v1v2), 1 /∈ L(v1) and 1 ∈ L(v2), then we define a function f such that

f(v2) = 1. Let L1(v1v2) = L(v1v2) \ {2}, L1(v1) = L(v1) and m = min{L1(v1v2)
∪
L1(v2)}.

Then |L1(v1v2)| ≥ 2 and |L1(v1)| = 3. When m = 2, let f(v1) = 2 and f(v1v2) ∈ L1(v1v2) \ {3}.
When m ̸= 2 and m ∈ L1(v1v2), let f(v1v2) = m and f(v1) ∈ L1(v1)\{m,m+1}. When m ̸= 2,

m /∈ L1(v1v2) and m ∈ L1(v1), let f(v1) = m and f(v1v2) ∈ L1(v1v2) \ {m + 1}. So we always

get a function P2 is a (2,1)-Total choosable function of G with respect to L. 2
Lemma 2.2 Let L be a list assignment of star graph K1,3, where E(K1,3) = {vv1, vv2, vv3}.
If |L(v)| = 4, |L(vv1)| = 5, |L(vv2)| = 4, |L(vv3)| = 3 and the color in set L(x), where x ∈
{v, vv1, vv2, vv3}, is the available color when vi has been colored for 1 ≤ i ≤ 3, then K1,3 is

(2, 1)-Total choosable with respect to L.

Proof Case 1. If 1 ∈ L(v), then we define a function f such that f(v) = 1. Let L1(vvi) =

L(vvi) \ {1, 2} for i = 1, 2, 3. Then |L1(vv1)| ≥ 3, |L1(vv2)| ≥ 2, |L1(vv3)| ≥ 1. We can greedily

color vv3, vv2 and vv1. So we get a (2, 1)-Total choosable function f of K1,3 with respect to L.

Case 2. If 1 /∈ L(v1) and 1 ∈ L(vv3). Let L1(vv1) = L(vv1) \ {1}, L1(v) = L(v) \ {2},
L1(vv2) = L(vv2) \ {1}. Then |L1(vv1)| ≥ 4, |L1(v)| ≥ 3, |L1(vv2)| ≥ 3. By Lemma 2.1, there is
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a (2, 1)-Total choosable function g of K1,3 − {vv3} with respect to L1. Now we can extend g to

K1,3 by letting f(vv3) = 1.

Case 3. If 1 /∈ L(v1) ∪ L(vv3) and 1 ∈ L(vv2). Let L1(vv1) = L(vv1) \ {1}, L1(v) =

L(v) \ {2}, L1(vv3) = L(vv3). Then |L1(vv1)| ≥ 4, |L1(v)| ≥ 3, |L1(vv3)| ≥ 3. By Lemma 2.1,

there is a (2, 1)-Total choosable function g of K1,3 − {vv2} with respect to L1. Now we can

extend g to K1,3 by letting f(vv2) = 1.

Case 4. If 1 /∈ L(v1) ∪ L(vv3) ∪ L(vv2) and 1 ∈ L(vv1). Let L1(vv2) = L(vv2), L1(v) =

L(v) \ {2}, L1(vv3) = L(vv3). Then |L1(vv2)| ≥ 4, |L1(v)| ≥ 3, |L1(vv3)| ≥ 3. By Lemma 2.1,

there is a (2, 1)-Total choosable function g of K1,3 − {vv1} with respect to L1. Now we can

extend g to K1,3 by letting f(vv1) = 1. 2
3. Proof of Theorem 1.2

We prove Theorem 1.2 by contradiction. Suppose that there is a graph G with minimal

number of |V (G)| + |E(G)| contradicting Theorem 1.2. That is, G is not ∆+4-(2, 1)-Total

choosable, but each proper subgraph of G is. By the minimality of G, G is connected.

3.1. Structural properties

In this part, we will give some properties of G as follows. For convenience, let Θ(x) ∈ L(x),

where x ∈ V (G) ∪ E(G), be a partially (2, 1)-Total choosable function of graph G, and the

function satisfies the definition of L-(2, 1)-Total labeling in the following sections. We denote

the set of available colors of x for x ∈ V (G) ∪ E(G) under the partially (2, 1)-Total choosable

function Θ(x) by AΘ(x).

Property 3.1.1 The minimum degree of G is at least 3.

Proof Suppose that δ(G) ≤ 2. Obviously, δ(G) ≥ 2. And if there is a 2-vertex v, then

d(v1) = d(v2) = ∆, where v1 and v2 are the neighbors of v. Then ∆(G − vv1) = ∆(G). Thus,

the graph G − vv1 satisfies the condition of the Theorem 1.2. By the minimality of G, the

graph G − vv1 has a ∆+4-(2, 1)-Total choosable function Θ. We first erase the color of the

vertex v. Since |AΘ(vv1)| ≥ ∆ + 4 − (d(v) − 1 + d(v1) − 1 + 3) ≥ ∆ + 4 − (∆ + 3) ≥ 1 and

|AΘ(v)| ≥ ∆+ 4− (d(v) + 3(d(v)− 1)) = ∆+ 4− (2 + 3) ≥ 10, we can recolor the edge vv1 and

the vertex v in sequence. Therefore, G is ∆+4-(2, 1)-Total choosable, a contradiction. 2
Property 3.1.2 Every 3-vertex in G is adjacent to 11+-vertex.

Proof Suppose that a 3-vertex u is adjacent to a 10−-vertex v. By the minimality of G, the

graph G − uv has a ∆+4-(2, 1)-Total choosable function Θ. We first erase the color of the

vertex u. Since |AΘ(uv)| ≥ ∆ + 4 − (d(u) − 1 + d(v) − 1 + 3) = ∆ + 4 − (2 + 9 + 3) ≥ 1 and

|AΘ(u)| ≥ ∆+ 4 − (d(u) + 3(d(u) − 1)) = ∆ + 3 − (3 + 3 × 2) ≥ 6, we can recolor the edge uv

and the vertex v in sequence. Therefore, G is ∆+4-(2, 1)-Total choosable, a contradiction. 2
Property 3.1.3 Every 4-vertex in G is adjacent to 8+-vertex.
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Proof Suppose that a 4-vertex u is adjacent to a 7−-vertex v. By the minimality of G, the

graph G − uv has a ∆+4-(2, 1)-Total choosable function Θ. We first erase the color of the

vertex u since |AΘ(uv)| ≥ ∆ + 4 − (d(u) − 1 + d(v) − 1 + 3) = ∆ + 4 − (3 + 6 + 3) ≥ 3 and

|AΘ(u)| ≥ ∆+ 4− (d(u) + 3(d(u)− 1)) = ∆+ 3− (4 + 3× 3) ≥ 2. Let Θ(uv) = α ∈ AΘ(uv). If

AΘ(u) ̸= {α−1, α, α+1}, then let Θ(u) ∈ AΘ(u)\{α−1, α, α+1}. If AΘ(u) = {α−1, α, α+1},
then let Θ(u) = β ∈ AΘ(u) \ {α} and Θ(uv) ∈ AΘ(uv) \ {β − 1, β, β + 1}. We can recolor the

vertex v and the edge vv1, easily. Then, G is ∆+4-(2, 1)-Total choosable, a contradiction. 2
Property 3.1.4 If a 5-vertex v in G is adjacent to a 5-vertex, then v is adjacent to four 7+-

vertices.

Proof Suppose that d(v) = 5, d(v1) = 5, and d(v2) ≤ 6 for vv1, vv2 ∈ E(G). By the minimality

of G, the graph G−{vv1, vv2} has a ∆+4-(2, 1)-Total chooosable function Θ. We first erase the

color of the vertex v. Since |AΘ(vv1)| ≥ ∆+4−(3+4+3) = 5, and |AΘ(v)| ≥ ∆+4−(5+3×3) = 1,

and |AΘ(vv2)| ≥ ∆ + 4 − (3 + 5 + 3) = 4, we can recolor the vertex v and the edge vv2, vv1 in

sequence. Therefore, G is ∆+4-(2, 1)-Total choosable, a contradiction. 2
Property 3.1.5 If a 5-vertex v in G is adjacent to a 5-vertex and a 7-vertex, then v is adjacent

to three 9+-vertices.

Proof Suppose that d(v) = 5, d(v1) = 5, d(v2) = 7, and d(v3) ≤ 8 for vv1, vv2, vv3 ∈ E(G). By

the minimality of G, the graph G − {vv1, vv2, vv3} has a ∆+4-(2, 1)-Total chooosable function

Θ. We first erase the color of the vertex v. Since |AΘ(v)| ≥ ∆+4− (5+ 3× 2) = 4, |AΘ(vv1)| ≥
∆+4−(4+2+3) = 6, |AΘ(vv2)| ≥ ∆+4−(6+2+3) = 4, and |AΘ(vv3)| ≥ ∆+4−(7+2+3) = 3,

we can recolor the vertex v and the edges vvi, where i = 1, 2, 3, at the same time by Lemma 2.2.

Therefore, G is ∆+4-(2, 1)-Total choosable, a contradiction. 2
Property 3.1.6 If a 5-vertex v in G is adjacent to two 6-vertices, then v is adjacent to three

9+-vertices.

Proof It is similar to the proof of Property 3.1.5. 2
Property 3.1.7 If a 5-vertex v in G is adjacent to a 6-vertex and a 7-vertex, then v is adjacent

to three 9+-vertices.

Proof It is similar to the proof of Property 3.1.5. 2
3.2. Discharging

According to Euler’s formula |V (G)|−|E(G)|+|F (G)| = 2 and
∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) =

2|E|, we get ∑
v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) = −8.

Then, we define an initial charge ω on V (G) ∪ E(G) by setting ω(x) = d(x) − 4 for every

x ∈ V (G)∪F (G). So, we have
∑

x∈V (G)∪F (G) ω(x) = −8. Our aim is to obtain a new nonnegative



126 Yan SONG and Lei SUN

charge ω′(x) for all x ∈ V (G)∪E(G) by designing discharging rules and redistributing the charges,

then we can get a contradiction:

0 ≤
∑

x∈V (G)
∪

F (G)

ω′(x) =
∑

x∈V (G)
∪

F (G)

ω(x) = −8 < 0.

This contradiction proves the non-existence of G and completes the proof. So, we design dis-

charging rules as follows.

(R1) Every 11+-vertex sends 2
3 to each of its incident (3, 11+, 11+) -faces, 1

3 to each of its

incident (11+, 11+, 11+) -faces, 1
3 to each of its incident 4+-faces, and 1

2 to other 3 -faces.

(R2) If 6 ≤ d(v) ≤ 10, then v sends d(v)−4
d(v) to each of its incident faces.

(R3) Every 5-vertex sends 1
3 to each of its incident (5, 5(6), 6(7))-faces, 1

4 to each of its

incident (5, 5(6), 8+)-faces, and 1
7 to each of its incident (5, 7, 7+)-faces.

(R4) Every 3+-face redistributes its remaining charge after applying the previous rules

equitably to each of its incident 3-vertices.

(R5) Let v be a 3-vertex. If v is incident with a cutedge, then it receives 1
2 from each of its

neighbors on cutedges and 1
12 from each of its neighbors on 3+-face.

Claim 3.2.1 Every 3+-face sends at least 1
3 to each of its incident 3-vertices.

Proof Let f be any 3+-face. Suppose that f is incident with t 3-vertices, where t ≥ 1. Since 3-

vertices are not adjacent by Property 3.1.2, then t ≤ ⌊d(f)
2 ⌋. Thus, the number of 11+-vertices on

the f is at least t. By (R1), (R4), f sends to each of its incident 3-vertices at least
d(f)−4+ t

3

t ≥ 1
3 ,

where d(f) ≥ 4. Suppose that f = v1v2v3 is a 3-face with d(v1) ≤ d(v2) ≤ d(v3). Let d(v1) = 3,

then v2, v3 are 11+-vertices by Property 3.1.2. So f sends to each of its incident 3-vertices at

least d(f)− 4 + 2
3 × 2 = 1

3 by (R1) and (R4). 2
Checking ω′(x) ≥ 0 for x ∈ V (G) ∪ F (G).

We first check all the vertices in V (G).

(1) d(v) = 3.

If v is only incident with a cutedge, then by R5 and Claim 3.2.1, we have ω′(v) ≥ −1 + 1
3 +

1
2 + 1

12 × 2 = 0. If v is incident with two cutedges, then the other edge is also a cutedge. By

(R5), we have ω′(v) ≥ −1 + 1
2 × 3 = 1

2 > 0. Suppose that v is a 3-vertex with three incident

faces fi, i ∈ {1, 2, 3}, in a cyclic order. By Claim 3.2.1, fi, where i ∈ {1, 2, 3}, sends to v at least
1
3 . So, ω

′(v) = −1 + 1
3 × 3 = 0.

(2) d(v) = 4.

Since the discharging rules does not involve 4-vertex, we have ω′(v) = ω(v) = d(v)− 4 = 0.

(3) d(v) = 5.

If v is adjacent with 5-vertex, then v is at most adjacent with a 5-vertex by Property 3.1.4.

If v is adjacent with a 7-vertex, then the other neighbors of v are 9+-vertices by Property 3.1.5.

By (R3), we have ω′(v) ≥ min{1− 1
3 − 1

4 − 1
7 , 1−

1
7 × 2− 1

4 × 2} > 0. If v is not adjacent with

a 7-vertex, then the other neighbors of v are 8+-vertices by Properties 3.1.4 and 3.1.5. By (R3),

we have ω′(v) ≥ 1− 1
4 × 2 = 1

2 > 0.
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If v is adjacent with 6-vertex, then v is at most adjacent with two 6-vertices by Property 3.1.6.

If v is adjacent with two 6-vertices, then the other neighbors of v are 9+-vertices by Property

3.1.6. By (R3), we have ω′(v) ≥ min{1 − 1
3 − 1

4 × 2, 1 − 1
4 × 4} = 0. If v is adjacent with a

6-vertex, then v is at most adjacent with a 7-vertex by Property 3.1.7. Suppose v is adjacent

with a 7-vertex. By (R3), we have ω′(v) ≥ min{1− 1
3 −

1
4 −

1
7 , 1−

1
7 × 2− 1

4 × 2} > 0. Otherwise,

the other neighbors of v are 8+-vertices. By (R3), we have ω′(v) ≥ 1− 1
4 × 2 > 0.

If v is only adjacent with 7+-vertices, then by (R3), we have ω′(v) ≥ 1− 1
7 × 5 = 2

7 > 0.

(4) 6 ≤ d(v) ≤ 10.

By (R3), we have ω′(v) ≥ d(v)− 4− d(v)−4
d(v) × d(v) = 0.

(5) d(v) = 11.

If the 3-vertex in (3, 11+, 11+)-face is incident with a cutedge, then we say the face is a special

3-face. And v is at most incident with five special 3-faces.

Case 1. If v is incident with five special 3-faces, then v is at most incident with six 3-vertices.

By (R1) and (R5), we have ω′(v) ≥ 7− 2
3 × 5− 1

12 × 5− 1
2 > 0.

Case 2. If v is incident with four special 3-faces, then v is at most incident with nine faces.

By (R1) and (R5), we have ω′(v) ≥ 7− 2
3 × 4− 1

12 × 4− 2
3 × 5 = 2

3 > 0.

Case 3. If v is incident with three special 3-faces, then v is at most incident with nine faces.

By (R1) and (R5), we have ω′(v) ≥ 7− 2
3 × 3− 1

12 × 3− 2
3 × 6 > 0.

Case 4. If v is incident with two special 3-faces, then v is at most incident with ten faces.

By (R1) and (R5), we have ω′(v) ≥ 7− 2
3 × 2− 1

12 × 2− 2
3 × 8 = 1

6 > 0.

Case 5. If v is only incident with one special 3-face, then v is at most incident with ten faces.

By (R1) and (R5), we have ω′(v) ≥ 7− 2
3 × 1− 1

12 × 1− 2
3 × 9 = 3

12 > 0.

Case 6. If v is not incident with any special 3-face, then let k be the number of (3, 11+, 11+)-

face. By Property 3.1.2, we have k ≤ 10. Suppose k = 10, then v is not incident with any

cutedge. By (R1), we have ω′(v) ≥ 7 − 2
3 × 10 − 1

3 = 0. Suppose 1 ≤ k ≤ 9, then by (R1) and

(R5), we have ω′(v) ≥ 7 − 2
3 × 9 − 1

2 × 2 = 0. Suppose k = 0, then by (R1) and (R5), we have

ω′(v) ≥ 7− 1
2 × 11 > 0.

(6) d(v) ≥ 12.

Let s be the number of special 3-faces. Then s ≤ ⌊d(v)
2 ⌋.

Case 1. If 1 ≤ s ≤ ⌊d(v)
2 ⌋, then v is at most incident with d(v)−1 faces. By (R1) and (R5), we

have ω′(v) ≥ d(v)−4− 2
3×⌊d(v)

2 ⌋− 1
12×⌊d(v)

2 ⌋− 2
3×(d(v)−1−⌊d(v)

2 ⌋) ≥ d(v)−4− 2
3d(v)−

d(v)
24 + 2

3 =
7d(v)
24 − 10

3 ≥ 1
6 .

Case 2. If s = 0, then let k be the number of special (3, 11+, 11+)-face. Suppose 1 ≤ k ≤ d(v),

then by (R1) and (R5), we have ω′(v) ≥ d(v)− 4− 2
3 × d(v) ≥ 0. Otherwise k = 0, then by (R1)

and (R5), we have ω′(v) ≥ d(v)− 4− 1
2 × d(v) > 0.

Next, we consider the discharge of the faces in G.

(1) d(f) = 3.

If f is incident with a 3-vertex, then it is incident with at least two 11+-vertices by Property

3.1.2. By (R1), we have ω′(f) ≥ d(f)− 4 + 2
3 × 2 > 0.
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If f is incident with a 4-vertex, then it is incident with at least two 8+-vertices by Property

3.1.3. By (R1) and (R3), we have ω′(f) ≥ d(f)− 4 + 1
2 × 2 = 0.

If f is incident with a 5-vertex, then it is incident with at most two 5-vertices by Property

3.1.5. Suppose f is adjacent with two 5-vertices, so f is a (5, 5, 7)-face or (5, 5, 8+)-face. By

(R2) and (R3), we have ω′(f) ≥ min{−1 + 1
3 × 2 + 3

7 ,−1 + 1
4 × 2 + 1

2} = 0. Otherwise, f is

incident with a 5-vertex. Then, f is one of (5, 6, 6)-face, (5, 6, 7)-face, (5, 6, 8+)-face, (5, 7, 7+)-

face, or (5, 8+, 8+)-face by Properties 3.1.6 and 3.1.7. By (R2) and (R3), we have ω′(f) ≥
min{−1 + 1

3 + 1
3 × 2,−1 + 1

3 + 1
3 + 3

7 ,−1 + 1
4 + 1

3 + 1
2 ,−1 + 1

7 + 3
7 × 2,−1 + 1

2 × 2} = 0.

If f is only incident with 6+-vertices, then by (R1)–(R3), we have ω′(f) ≥ −1 + 1
3 × 3 = 0.

(2) d(f) ≥ 4.

By (R1)–(R5), we have ω′(f) = ω(f) = d(f)− 4 = 0.

The proof of Theorem 1.2 is completed. 2
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