Journal of Mathematical Research with Applications Mar., 2022, Vol. 42, No. 2, pp. 133–144 DOI:10.3770/j.issn:2095-2651.2022.02.004 Http://jmre.dlut.edu.cn

Nilpotent Structure of Generalized Semicommutative Rings

Ping HE, Liang ZHAO*

School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract We study the nilpotent structure of generalized semicommutative rings. The new concept of nilpotent α -semicommutative rings is defined and studied. This class of rings is closely related to many well-known concepts including semicommutative rings, α -semicommutative rings and weak α -rigid rings. An example is given to show that a nilpotent α -semicommutative ring need not be α -semicommutative. Various properties of this class of rings are investigated. Many known results related to various semicommutative properties of rings are generalized and unified.

Keywords nilpotent α -semicommutative rings; α -rigid rings; α -semicommutative rings; polynomial rings

MR(2020) Subject Classification 16U80; 16W20; 16S36

1. Introduction

Throughout this paper, R denotes an associative ring with identity and α denotes a nonzero non-identity endomorphism of R, unless specified otherwise. The set of all nilpotent elements in a ring R is denoted by N(R). We denote by $T_n(R)$, $M_n(R)$ the $n \times n$ upper triangular matrix ring and the $n \times n$ full matrix ring over a ring R, respectively. Recall that a ring Ris reduced if it has no nonzero nilpotent elements. A ring R is called an Armendariz ring if $f(x) = a_0 + a_1x + \cdots + a_mx^m$, $g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x]$ such that f(x)g(x) = 0, then $a_ib_j = 0$ for each i, j. Note that every reduced ring is an Armendariz ring. According to [1], a ring R is α -compatible if for any $a, b \in R$, ab = 0 if and only if $a\alpha(b) = 0$. It is clear that this happens only when the endomorphism α is injective. Krempa [2] introduced the notion of an α -rigid ring. An endomorphism α of a ring R is said to be rigid if $a\alpha(a) = 0$ implies a = 0for $a \in R$, while a ring R is said to be α -rigid if there exists a rigid endomorphism α of R. By [1, Lemma 2.2], R is α -rigid if and only if R is α -compatible and reduced.

There are many generalizations of reduced rings. A ring R is reversible if ab = 0 implies ba = 0 for any $a, b \in R$. A ring R is semicommutative if for any $a, b \in R$, ab = 0 implies aRb = 0. It is well-known that every reduced ring is reversible and every reversible ring is semicommutative. More generally, the semicommutative properties with respect to a ring endomorphism were further investigated in [3]. According to [3], a ring R is α -semicommutative

Received April 4, 2021; Accepted June 27, 2021

Supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20181406) and the National Natural Science Foundation of China (Grant No. 12161049).

^{*} Corresponding author

E-mail address: lzhao@ahut.edu.cn (Liang ZHAO)

if ab = 0 implies $aR\alpha(b) = 0$ for all $a, b \in R$. Note that the concept of α -semicommutative rings not only generalizes that of α -rigid rings, but also extends that of semicommutative rings. Recently, the nilpotent elements of a semicommutative ring was studied [4]. Recall that a ring R is nil-semicommutative if for every $a, b \in R$ with $ab \in N(R)$, then $arb \in N(R)$ for all $r \in R$. Further results on semicommutative rings and related topics can be found in [4–8].

In this paper, we continue to study the properties of generalized semicommutative rings. The nilpotent structure of this class of rings is investigated. The concept of nilpotent α semicommutative rings is defined and studied. We show that a nilpotent α -semicommutative ring need not be α -semicommutative (Example 2.9). This class of rings is closely related to many known concepts, such as semicommutative rings, nil-semicommutative rings and weak α rigid rings. We study various properties of nilpotent α -semicommutative rings. Firstly, we show that nilpotent α -semicommutative rings can be given by various ring extensions. If R is a nilpotent α -semicommutative ring, it is proved that the $n \times n$ upper triangular matrix ring $T_n(R)$ is nilpotent α -semicommutative (Proposition 2.6). If I is a nilpotent α -semicommutative ideal (as a ring without identity), it is proved that R/I is nilpotent α -semicommutative if and only if R is nilpotent α -semicommutative (Proposition 2.13). Secondly, we study the properties of polynomial rings over nilpotent α -semicommutative rings. Let R be an Armendariz ring. It is shown that if R is nilpotent α -semicommutative, then R[x] is nilpotent α -semicommutative (Proposition 3.3). We also investigate the condition under which $R[x;\alpha]$ is nilpotent α -semicommutative. Let R be a nilpotent α -semicommutative ring and α an endomorphism of R. We prove that if R is an α -rigid ring, then $R[x; \alpha]$ is nilpotent α -semicommutative (Proposition 3.8).

2. Nilpotent elements in generalized semicommutative rings

In this section, we introduce and study the concept of nilpotent α -semicommutative rings. Observe that the notion of nilpotent α -semicommutative rings not only generalizes that of weak α -rigid rings (when α is a monomorphism of a ring R), but also extends that of α -semicommutative rings. Some examples to illustrate the concepts and results are also included.

We start with the following definition.

Definition 2.1 Let R be a ring and α an endomorphism of R. We call R a nilpotent α -semicommutative ring if for any $a, b \in R$, $ab \in N(R)$ implies $ar\alpha(b) \in N(R)$ for all $r \in R$.

It is easy to see that any subring S with $\alpha(S) \subseteq S$ of a nilpotent α -semicommutative ring is also nilpotent α -semicommutative. We shall show in Example 2.9 that there exists a nilpotent α -semicommutative ring R such that R is not α -semicommutative.

Note that nilpotent α -semicommutative rings are closely related to α -semicommutative rings, semicommutative rings and α -rigid rings. The following remark reveals the relations between them.

Remark 2.2 Let R be a ring and α an endomorphism of R. Then

(1) If R is reduced, then the class of nilpotent α -semicommutative rings is precisely the class

of α -semicommutative rings.

(2) If R is α -rigid, then the class of nilpotent α -semicommutative rings is just the class of semicommutative rings.

Note that a nilpotent α -semicommutative ring need not be semicommutative (see Example 2.9). The following example shows that there exists a semicommutative ring R such that R is not nilpotent α -semicommutative for some endomorphism α of R.

Example 2.3 Let \mathbb{Z}_2 be the ring of integers modulo 2. Consider the ring $R = \mathbb{Z}_2 \bigoplus \mathbb{Z}_2$ with the usual addition and multiplication. Then R is a semicommutative ring since R is commutative reduced. Let $\alpha : R \to R$ be defined by $\alpha((a,b)) = (b,a)$ for every $(a,b) \in R$. Then for $a = (1,0), b = (0,1) \in R$, we have

$$ab = (1,0)(0,1) = (0,0) \in N(R).$$

However, for $c = (1, 1) \in R$, we have

$$ac\alpha(b) = (1,0)(1,1)(1,0) = (1,0)(1,0) = (1,0) \notin N(R).$$

This implies that R is not nilpotent α -semicommutative. Moreover, for $a = (1,0) = b \in R$, we get $ab = (1,0) \neq 0$. But for any $(c,d) \in R$, we have

$$(1,0)(c,d)(0,1) = (c,0)(0,1) = (0,0) \in N(R).$$

The following proposition gives more examples of nilpotent α -semicommutative rings.

Proposition 2.4 All α -rigid rings are nilpotent α -semicommutative.

Proof Let R be an α -rigid ring and let $a, b \in R$ such that $ab \in N(R)$. In the following, we freely use the fact that every α -rigid ring is reduced and every reduced ring is reversible. Then there exists $n \in \mathbb{N}$ such that $0 = (ab)^n = ababab \cdots abab$. Then $aRbaRbaRb \cdots aRbaRb = 0$. Therefore, we have $aRbaRbaRb \cdots aRbaR\alpha(b) = 0$ since every α -rigid ring is α -compatible. This implies that $(aR\alpha(b))(aRbaRbaRb \cdots aRb) = 0$ since R is reversible. Continuing this process, we can eventually get $(aR\alpha(b))^n = 0$. This means $aR\alpha(b) \in N(R)$, and thus R is a nilpotent α -semicommutative ring. \Box

Proposition 2.5 Let $\{R_i : i \in I\}$ be a family of rings. Then the direct sum $\bigoplus_{i \in I} R_i$ is nilpotent α -semicommutative if and only if each R_i is nilpotent α -semicommutative for all $i \in I$.

Proof It suffices to prove the sufficiency. Let $a = (a_i), b = (b_i) \in \bigoplus_{i \in I} R_i$ such that $ab = (a_ib_i) \in N(\bigoplus_{i \in I} R_i)$. Then $a_ib_i \in N(R_i)$ for each $i \in I$, and thus $a_ir\alpha(b_i) \in N(R_i)$ for $r \in R$ since each R_i is nilpotent α -semicommutative for all $i \in I$. For any $r = (r_i) \in \bigoplus_{i \in I} R_i$, we have $ar\alpha(b) = (a_ir_i\alpha(b_i)) \in \bigoplus_{i \in I} R_i$. Note that there are only finitely $i \in I$ such that $a_ir_i\alpha(b_i) \neq 0$. Thus, $ar\alpha(b) \in N(\bigoplus_{i \in I} R_i)$, proving that $\bigoplus_{i \in I} R_i$ is nilpotent α -semicommutative. \Box

Note that if α is an endomorphism of a ring R, then the endomorphism α can be extended

to the map $\overline{\alpha}$: $T_n(R) \longrightarrow T_n(R)$ as follows

$$\alpha \left(\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \right) = \begin{pmatrix} \alpha(a_{11}) & \alpha(a_{12}) & \cdots & \alpha(a_{1n}) \\ 0 & \alpha(a_{22}) & \cdots & \alpha(a_{2n}) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha(a_{nn}) \end{pmatrix}$$

More generally, the next result gives one way to get more nilpotent α -semicommutative rings from old ones.

Proposition 2.6 A ring R is nilpotent α -semicommutative if and only if $T_n(R)$ is nilpotent $\overline{\alpha}$ -semicommutative.

Proof It suffices to show that $T_n(R)$ is nilpotent $\bar{\alpha}$ -semicommutative when R is a nilpotent α -semicommutative ring. Let $A = (a_{ij})$ and $B = (b_{ij}) \in T_n(R)$ such that $AB \in N(T_n(R))$. Then $a_{ii}b_{ii} \in N(R)$ for all a_{ii} and b_{ii} , where $1 \leq i \leq n$. Then we have $a_{ii}R\alpha(b_{ii}) \subseteq N(R)$ by the assumption. This implies that $A(T_n(R))\bar{\alpha}(B) \subseteq N(T_n(R))$, and the result follows. \Box

For a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring $T(R, M) = R \bigoplus M$ with the usual addition and the following multiplication:

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2)$$

This is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$ and $m \in M$ and the usual matrix operations are used.

For an endomorphism α of a ring R and the trivial extension T(R, R) of R, the $\overline{\alpha} : T(R, R) \longrightarrow T(R, R)$ defined by

$$\overline{\alpha} \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \alpha(a) & \alpha(b) \\ 0 & \alpha(a) \end{pmatrix}$$

is an endomorphism of T(R, R). Since (R, 0) is isomorphic to R, we can identify the restriction of $\overline{\alpha}$ by T(R, 0) to α .

Corollary 2.7 Let α be an endomorphism of a ring R. Then R is a nilpotent α -semicommutative ring if and only if T(R, R) is a nilpotent $\bar{\alpha}$ -semicommutative ring.

Corollary 2.8 A ring R is a nil-semicommutative ring if and only if T(R, R) is nil-semicommutative.

Now we are in a position to give an example to show that there exists a nilpotent α -semicommutative ring R such that T(R, R) is nilpotent $\bar{\alpha}$ -semicommutative, but T(R, R) is not $\bar{\alpha}$ -semicommutative.

Example 2.9 Let \mathbb{Z} be the ring of integers and let $R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in \mathbb{Z} \right\}$. Then we have the following implications:

(1) R is nilpotent α -semicommutative for some endomorphism α of R. In fact, let $\alpha : R \to R$

136

be an endomorphism defined by

$$\alpha \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}.$$

Now we claim that R is nilpotent α -semicommutative. In fact, for any

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \quad B = \begin{pmatrix} c & d \\ 0 & c \end{pmatrix} \in R,$$

if $AB \in N(R)$, then it is clear $ac \in N(\mathbb{Z})$. Moreover, for any element $\begin{pmatrix} h & k \\ 0 & h \end{pmatrix} \in R$, we have the following implication

$$AR\alpha(B) = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \begin{pmatrix} h & k \\ 0 & h \end{pmatrix} \alpha \left(\begin{pmatrix} c & d \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} ahc & * \\ 0 & ahc \end{pmatrix} \in N(R).$$

Therefore, R is a nilpotent $\alpha\text{-semicommutative ring.}$

(2) By Corollary 2.7, T(R, R) is nilpotent $\bar{\alpha}$ -semicommutative.

(3) T(R,R) is not $\bar{\alpha}$ -semicommutative. In fact, for

$$A = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix}, \quad B = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \in T(R, R),$$

we have AB = 0. However, if we let

$$C = \left(\begin{array}{ccc} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \in T(R, R),$$

then we have

$$0 \neq AC\bar{\alpha}(B) = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \in AT(R, R)\bar{\alpha}(B).$$

This implies that T(R, R) is not $\bar{\alpha}$ -semicommutative. Moreover, it can be easily checked that T(R, R) is not semicommutative.

More generally, let σ be an endomorphism of a ring R. We consider the following subring of the upper triangular matrix ring $T_n(R)$:

$$T(R, n, \sigma) := \left\{ \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ 0 & a_0 & a_1 & \cdots & a_{n-2} \\ 0 & 0 & a_0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & a_1 \\ 0 & 0 & \cdots & 0 & a_0 \end{pmatrix} | a_i \in R \right\}, \text{ with } n \ge 2.$$

We can denote the elements of $T(R, n, \sigma)$ by (a_0, \ldots, a_{n-1}) . Then $T(R, n, \sigma)$ is a ring with addition point-wise and multiplication given by

$$(a_0, \dots, a_{n-1})(b_0, \dots, b_{n-1}) = (a_0b_0, a_0 * b_1 + a_1 * b_0, \dots, a_0 * b_{n-1} + \dots + a_{n-1} * b_0)$$

with $a_i * b_i = a_i \sigma^i(b_j)$ for each i, j. Let α and σ be endomorphisms of a ring R such that $\alpha \sigma = \sigma \alpha$. Then $\overline{\alpha} : T(R, n, \sigma) \to T(R, n, \sigma)$, given by $\overline{\alpha}((a_{ij})) = (\alpha(a_{ij}))$ is an endomorphism of $T(R, n, \sigma)$.

Proposition 2.10 Let α and σ be endomorphisms of a ring R with $\alpha\sigma = \sigma\alpha$. Then R is nilpotent α -semicommutative if and only if $T(R, n, \sigma)$ is nilpotent $\bar{\alpha}$ -semicommutative.

Proof Notice that $N(T(R, n, \sigma)) = (N(R), R, \dots, R)$. So the proof is similar to that of Proposition 2.6. \Box

Based on Proposition 2.6, one may suspect that if R is nilpotent α -semicommutative, then every n by n full matrix ring $M_n(R)$ over R is nilpotent $\bar{\alpha}$ -semicommutative, where $n \geq 2$. However, the following example eliminates the possibility.

Example 2.11 Let R be a nilpotent α -semicommutative ring. Consider $S = M_2(R)$ and an endomorphism α of S defined by

$$\alpha \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}.$$

For

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \in S,$$

we have $AB \in N(S)$. But we have

$$AC\alpha(B) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \notin N(S).$$

Therefore, $M_2(R)$ is not nilpotent α -semicommutative.

According to [9], R is weak α -rigid if $a\alpha(a) \in N(R)$ if and only if $a \in N(R)$. The next proposition gives the relation of a weak α -rigid ring and a nilpotent α -semicommutative ring.

Proposition 2.12 Let R be any ring with an endomorphism α . Then

- (1) If α is a monomorphism, then each nilpotent α -semicommutative ring is weak α -rigid.
- (2) If R is reduced, then each weak α -rigid ring is nilpotent α -semicommutative.

Proof (1) Assume that α is a monomorphism and R is a nilpotent α -semicommutative ring. On one hand, if $a\alpha(a) \in N(R)$ for $a \in R$, then $\alpha(a)a \in N(R)$ and thus $\alpha(a)R\alpha(a) \subseteq N(R)$. Then $\alpha(a^2) \in N(R)$. This implies that there exists $k \in \mathbb{N}$ such that $\alpha(a^{2k}) = 0$. Since α is a monomorphism, we have $a \in N(R)$. On the other hand, if $a \in N(R)$, then $a^2 \in N(R)$ and $aR\alpha(a) \subseteq N(R)$ by the assumption. In particular, we have $a\alpha(a) \in N(R)$.

(2) If R is reduced and $ab \in N(R)$, then $ba \in N(R)$. It follows that ba = 0 since R is reduced.

Nilpotent structure of generalized semicommutative rings

This implies that $ar\alpha(b)\alpha(ar\alpha(b)) = ar\alpha(ba)\alpha(r)\alpha^2(b) = 0 \in N(R)$ for any $r \in R$. Since R is weak α -rigid, we get $ar\alpha(b) \in N(R)$. \Box

Let α be an endomorphism of R. Recall that an ideal I of R is called an α -ideal if $\alpha(I) \subseteq I$. Note that if I is an α -ideal of R, then $\bar{\alpha} : R/I \to R/I$ defined by $\bar{\alpha}(a+I) = \alpha(a) + I$ for $a \in R$ is an endomorphism of the factor ring R/I.

Proposition 2.13 If I is an α -ideal of a ring R such that $I \subseteq N(R)$, then R/I is nilpotent $\overline{\alpha}$ -semicommutative if and only if R is nilpotent α -semicommutative.

Proof Assume that R is nilpotent α -semicommutative. Let $\bar{a} = a + I, \bar{b} = b + I \in R/I$ such that $\bar{a}\bar{b} \in N(R/I)$. Then there exists a positive integer n such that $(ab)^n \in I$. This implies that $ab \in N(R)$ since $I \subseteq N(R)$ by the assumption. Since R is nilpotent α -semicommutative, we get $aR\alpha(b) \subseteq N(R)$, and thus $\bar{a}\bar{R}\bar{\alpha}(\bar{b}) \subseteq N(R/I)$. This shows that R/I is nilpotent $\bar{\alpha}$ -semicommutative.

Conversely, assume that R/I is nilpotent $\bar{\alpha}$ -semicommutative. Let $a, b \in R$ such that $ab \in N(R)$. Then we have $\bar{a}\bar{b} \in N(R/I)$. This implies that $\bar{a}\bar{R}\bar{\alpha}(\bar{b}) \subseteq N(R/I)$ since R/I is a nilpotent $\bar{\alpha}$ -semicommutative ring. Then there exists a positive integer s such that $(aR\alpha(b))^s \subseteq I$. Therefore, we get $(aR\alpha(b))^s \subseteq N(R)$, as desired. \Box

Recall from [10] that a ring R is said to be nil-Armendariz if whenever two polynomials $f(x) = a_0 + a_1x + \cdots + a_nx^n, g(x) = b_0 + b_1x + \cdots + b_mx^m \in R[x]$ satisfy $f(x)g(x) \in N(R)[x]$, then $a_ib_j \in N(R)$ for all i, j. Note that if R is nil-Armendariz, then N(R) is a subring of R by [10, Theorem 3.2].

Proposition 2.14 Let R be a nil-Armendariz ring. If $e^2 = e$ is a central idempotent of R such that $\alpha(e) = e$, then the following statements are equivalent:

- (1) R is a nilpotent α -semicommutative ring.
- (2) eRe is nilpotent α -semicommutative for every $e^2 = e$.
- (3) eR and (1-e)R are nilpotent α -semicommutative for each $e^2 = e \in R$.

Proof (1) \Rightarrow (2) and (1) \Rightarrow (3) are trivial since any subring S with $\alpha(S) \subseteq S$ of a nilpotent α -semicommutative ring is also nilpotent α -semicommutative. It suffices to prove (3) \Rightarrow (1). Let $a, b \in R$ such that $ab \in N(R)$. Then $eaeb \in N(R)$ and $(1 - e)a(1 - e)b \in N(R)$. Since eR and (1 - e)R are nilpotent α -semicommutative, we get

$$ear\alpha(eb) \in N(R), \quad (1-e)ar\alpha[(1-e)b] \in N(R).$$

Since R is a nil-Armendariz ring, N(R) is a subring of R. This implies that

$$ear\alpha(eb) + (1-e)ar\alpha[(1-e)b] = ear\alpha(b) + (1-e)ar\alpha(b) = ar\alpha(b) \in N(R).$$

Therefore, R is nilpotent α -semicommutative. \Box

Let R be a ring and Δ be a multiplicatively closed subset of R consisting of central regular elements. Let $\Delta^{-1}R = \{u^{-1}a | u \in \Delta, a \in R\}$, then $\Delta^{-1}R$ is a ring. Then we have the following result. **Proposition 2.15** Let α be an endomorphism of a ring R. Then R is nilpotent α -semicommutative if and only if $\Delta^{-1}R$ is nilpotent α -semicommutative.

Proof It suffices to prove that if R is nilpotent α -semicommutative, then $\Delta^{-1}R$ is nilpotent α -semicommutative. Let $\delta = u^{-1}a$, $\beta = v^{-1}b$ and $\gamma = w^{-1}c \in \Delta^{-1}R$ with $\delta\beta \in N(\Delta^{-1}R)$. Then $\delta\beta = u^{-1}av^{-1}b = (vu)^{-1}(ab) \in N(R)$. Therefore, $ab \in N(R)$ since Δ is contained in the center of R. Since R is nilpotent α -semicommutative, we have $ac\alpha(b) \in N(R)$. Then we deduce that

 $\delta\gamma\alpha(\beta) = (u^{-1}a)(w^{-1}c)(\alpha(v)^{-1}\alpha(b)) = (wu)^{-1}(ac)(\alpha(v)^{-1}\alpha(b)) = (\alpha(v)(wu))^{-1}(ac\alpha(b)),$

which implies that $\delta \gamma \alpha(\beta) \in N(\Delta^{-1}R)$. \Box

The ring of Laurent polynomials in x, with coefficients in a ring R, consists of all formal sum $\sum_{i=k}^{n} m_i x^i$ with obvious addition and multiplication, where $m_i \in R$ and k, n are integers. We denote it by $R[x; x^{-1}]$. The map $\bar{\alpha} : R[x, x^{-1}] \to R[x, x^{-1}]$ defined by $\bar{\alpha}(\sum_{i=k}^{n} a_i x^i) = \sum_{i=k}^{n} \alpha(a_i) x^i$ extends α and also is an endomorphism of $R[x, x^{-1}]$. Multiplication is subject to $xr = \alpha(r)x$ and $rx^{-1} = x^{-1}\alpha(r)$.

Corollary 2.16 Let α be an endomorphism of a ring R. Then R[x] is nilpotent α -semicommutative if and only if $R[x; x^{-1}]$ is nilpotent α -semicommutative.

Proof It is easy to prove the necessity since R[x] is a subring of $R[x; x^{-1}]$. Let $\Delta = \{1, x, x^2, \ldots\}$. Then Δ is a multiplicatively closed subset of R[x]. Since $R[x; x^{-1}] = \Delta^{-1}R[x]$, we conclude that $R[x; x^{-1}]$ is nilpotent α -semicommutative by Poposition 2.15. \Box

3. Polynomial extensions of nilpotent α -semicommutative rings

In this section, we study various polynomial extensions of nilpotent α -semicommutative rings. The relation between nilpotent α -semicommutative rings and weak α -skew Armendariz is also investigated. First we give the following.

Lemma 3.1 Let R be a nilpotent α -semicommutative ring. If $ab \in N(R)$, then $aR\alpha^m(b) \subseteq N(R)$ and $bR\alpha^n(a) \subseteq N(R)$ for any positive integers m, n.

Proof Let $ab \in N(R)$. On the one hand, since R is nilpotent α -semicommutative, $aR\alpha(b) \subseteq N(R)$. In particular, we have $a\alpha(b) \in N(R)$. By using again the nilpotent α -semicommutative condition, we have $aR\alpha^2(b) \subseteq N(R)$. Continuing this process, we get $aR\alpha^m(b) \subseteq N(R)$ for some positive integer m. On the other hand, since $ab \in N(R)$, we get $ba \in N(R)$. Then $bR\alpha(a) \subseteq N(R)$ since R is nilpotent α -semicommutative. In particular, we have $b\alpha(a) \in N(R)$ and thus $bR\alpha^2(a) \subseteq N(R)$ since R is nilpotent α -semicommutative. Continuing this process, we have $bR\alpha^n(a) \subseteq N(R)$ for some positive integer n. \Box

Let R be a ring and α an endomorphism of R. Recall from [11] that a ring R is α -skew Armendariz if for any $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha]$ with f(x)g(x) = 0, then $a_i \alpha^i(b_j) = 0$ for all i and j. More generally, a ring R is weak α -skew Armendariz [12] if Nilpotent structure of generalized semicommutative rings

 $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x; \alpha]$ satisfy f(x)g(x) = 0, then $a_i \alpha^i(b_j) \in N(R)$ for all $0 \le i \le m$ and $0 \le j \le n$.

Theorem 3.2 Let R be a semicommutative ring. If R is nilpotent α -semicommutative, then R is weak α -skew Armendariz.

Proof Let $f(x) = a_0 + a_1x + \dots + a_mx^m$, $g(x) = b_0 + b_1x + \dots + b_nx^n \in R[x;\alpha]$. Then

$$f(x)g(x) = \sum_{k=0}^{m+n} (\sum_{i+j=k} a_i \alpha^i(b_j)) x^k = 0.$$

Then we have the following equations:

$$\sum_{i+j=k} a_i \alpha^i(b_j) = 0, \quad k = 0, 1, \dots, m+n.$$
 (a)

We will show that $a_i \alpha^i(b_j) \in N(R)$ by induction on i + j.

If i + j = 0, then $0 = a_0 b_0 \in N(R)$. Now suppose that k is a positive integer such that $a_i \alpha^i(b_j) \in N(R)$ when i + j < k. We claim that $a_i \alpha^i(b_j) \in N(R)$ when i + j = k. Since $a_i \alpha^i(b_j) \in N(R)$ when i + j < k, then we have $a_i r \alpha^k(b_0) \in N(R)$ by Lemma 3.1 for any i < k since R is nilpotent α -semicommutative. Multiplying the coefficient of x^k in (\natural) from right side by $\alpha^k(b_0)$, we have

$$a_0b_k\alpha^k(b_0) + a_1\alpha(b_{k-1})\alpha^k(b_0) + a_2\alpha^2(b_{k-2})\alpha^k(b_0) + \dots + a_k\alpha^k(b_0)\alpha^k(b_0) = 0.$$

Then we have

$$a_k \alpha^k(b_0) \alpha^k(b_0) = -(a_0 b_k \alpha^k(b_0) + a_1 \alpha(b_{k-1}) \alpha^k(b_0) + \dots + a_{k-1} \alpha^{k-1}(b_1) \alpha^k(b_0)).$$

Since R is semicommutative, N(R) is an ideal of R. This implies that $a_k \alpha^k(b_0) \alpha^k(b_0) \in N(R)$, and hence $a_k \alpha^k(b_0) \in N(R)$. Multiplying the coefficient of x^{k-1} in (\natural) from the right side by $\alpha^{k-1}(b_0)$, and in a similar way as above, we can get $a_{k-1}\alpha^{k-1}(b_1) \in N(R)$. Continuing this process, we have $a_i\alpha^i(b_j) \in N(R)$ when i+j=k. Therefore, $a_i\alpha^i(b_j) \in N(R)$ for each i, j. This shows that R is a weak α -skew Armendariz ring. \Box

Let α be an endomorphism of a ring R. Then the map $\bar{\alpha} : R[x] \to R[x]$ defined by $\bar{\alpha}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \alpha(a_i) x^i$ is an extension of α to R[x]. It was shown in [5] that the polynomial rings over semicommutative rings need not be semicommutative. However, we have the following.

Proposition 3.3 Let R be an Armendariz ring. If R is nilpotent α -semicommutative, then R[x] is nilpotent α -semicommutative.

Proof Since R is an Armendariz ring, N(R) is a subring (without 1) of R by [10, Corollary 3.3], and R[x] is also Armendariz by [13, Theorem 2]. Hence N(R)[x] = N(R[x]) by [10, Proposition 2.7 and Theorem 5.3]. Let $f(x) = \sum_{i=0}^{m} a_i x^i$, $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ such that $f(x)g(x) \in N(R[x])$, then $a_ib_j \in N(R)$ for all i and j by [13, Proposition 1] since R is Armendariz. Note that for any $h(x) = \sum_{k=0}^{s} c_k x^k \in R[x]$, each coefficient of $f(x)h(x)\alpha(g(x))$ has the form of $\sum a_i c_k \alpha(b_j)$. Since R is nilpotent α -semicommutative, $a_i b_j \in N(R)$ implies $a_i c_k \alpha(b_j) \in N(R)$. This means $\sum a_i c_k \alpha(b_j) \in N(R)$. It follows that $f(x)h(x)\alpha(g(x)) \in N(R)[x] = N(R[x])$. \Box

Note that if a ring R is an α -compatible ring, then for any $a, b \in R$, ab = 0 if and only if $a\alpha^n(b) = 0$. Using this fact, we give the following

Lemma 3.4 Let R be an α -compatible ring. If a_1, a_2, \ldots, a_n are some elements in R, then $a_1a_2 \cdots a_n \in N(R)$ if and only if $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2) \cdots \alpha^{k_n}(a_n) \in N(R)$ for arbitrary positive integers k_1, k_2, \ldots, k_n .

Proof Note that if R is an α -compatible ring, then α is a monomorphism. On the one hand, assume that $(a_1a_2\cdots a_n)^k = (a_1a_2\cdots a_n)\cdots (a_1a_2\cdots a_n) = 0$ for $a_1, a_2, \ldots, a_n \in \mathbb{R}$, then

$$\alpha^{k_1}((a_1a_2\cdots a_n)\cdots(a_1a_2\cdots a_n))=0.$$

This implies that $\alpha^{k_1}(a_1)\alpha^{k_1}((a_2a_3\cdots a_n)\cdots(a_1a_2\cdots a_n)) = 0$. Since R is α -compatible, we get $\alpha^{k_1}(a_1)(a_2a_3\cdots a_n)\cdots(a_1a_2\cdots a_n) = 0$. Since α^k is a momonorphism for any nonnegative integer k by the α -compatible condition, we have

$$\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)(a_3\cdots a_n)\cdots(a_1a_2\cdots a_n)=0.$$

Continuing this process, eventually we can get $(\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots\alpha^{k_n}(a_n))^k = 0$. On the other hand, if $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots\alpha^{k_n}(a_n) \in N(R)$, then it can be proved similarly that $a_1a_2\cdots a_n \in N(R)$. \Box

Corollary 3.5 Let R be an α -compatible ring. If $a_1, a_2, \ldots, a_n \in R$, then $a_1a_2 \cdots a_n = 0$ if and only if $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots\alpha^{k_n}(a_n) = 0$ for arbitrary positive integers k_1, k_2, \ldots, k_n .

We next explore the relation of a nilpotent skew polynomial f(x) in $R[x; \alpha]$ and the nilpotency of its coefficients.

Lemma 3.6 Let R be an α -rigid ring and let $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in R[x; \alpha]$. Then $f(x) \in N(R[x; \alpha])$ if and only if each $a_i \in N(R)$ for all $0 \le i \le n$.

Proof Suppose $f(x) \in N(R[x; \alpha])$, i.e., there exists $k \in \mathbb{N}$ such that $f^k(x) = 0$. Then we have $a_n \alpha^n(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0$. Since every α -rigid ring is an α -compatible ring, by [1, Lemma 2.1] we have

$$\alpha^{n}(a_{n})\alpha^{n}(a_{n})\alpha^{2n}(a_{n})\cdots\alpha^{(k-1)n}(a_{n}) = \alpha^{n}(a_{n}^{2})\alpha^{2n}(a_{n})\cdots\alpha^{(k-1)n}(a_{n}) = 0.$$

Therefore, we get $a_n^2 \alpha^{2n}(a_n) \cdots \alpha^{(k-1)n}(a_n) = 0$ by [1, Lemma 2.1] again. Then

$$\alpha^{2n}(a_n^2)\alpha^{2n}(a_n)\cdots\alpha^{(k-1)n}(a_n)=0,$$

and thus $\alpha^{2n}(a_n^3)\alpha^{3n}(a_n)\cdots\alpha^{(k-1)n}(a_n) = 0$. Continuing this process, we can get $a_n^k = 0$. This implies that $[a_0 + a_1x + \cdots + a_{n-1}x^{n-1}]^k \in N(R)[x;\alpha]$. Since R is reduced (and hence semicommutative), N(R) is an ideal of R. It follows that

$$a_{n-1}\alpha^{n-1}(a_{n-1})\cdots\alpha^{(k-1)(n-1)}(a_{n-1}) \in N(R).$$

Then $a_{n-1} \in N(R)$ by a similar discussion as above. By induction, we can eventually show that all $a_i \in N(R)$ for each $0 \le i \le n$.

Conversely, assume that all the coefficients $a_i \in N(R)$ of f(x) for i = 0, 1, ..., n. Then there exists $m_i \in \mathbb{N}$ such that $a_i^{m_i} = 0$ for each a_i . We claim that $f(x) \in N(R[x; \alpha])$. In fact, let $t = \sum m_i + 1$. Then we have

$$(f(x))^{t} = (a_{0} + a_{1}x + \dots + a_{n}x^{n})^{t}$$

= $\sum [a_{0}^{i_{0}}(a_{1}x)^{i_{1}} \cdots (a_{n}x^{n})^{i_{n}}][a_{0}^{i_{0}}(a_{1}x)^{i_{1}} \cdots (a_{n}x^{n})^{i_{n}}] \cdots [a_{0}^{i_{0}}(a_{1}x)^{i_{1}} \cdots (a_{n}x^{n})^{i_{n}}],$

where $\sum_{h=0}^{n} i_{h_s} = 1$ for each $s \in \{1, 2, \dots, t\}$, and $i_{h_s} = 0$ or $i_{h_s} = 1$ for all s. Note that each coefficient of $f^t(x)$ is a sum of the elements

$$[(\alpha^{v_{0_1}}(a_0))^{i_{0_1}}\cdots(\alpha^{v_{n_1}}(a_n))^{i_{n_1}}]\cdots[(\alpha^{v_{0_t}}(a_0))^{i_{0_t}}\cdots(\alpha^{v_{n_t}}(a_n))^{i_{n_t}}]$$

such that $i_{0_s}+i_{1_s}+\cdots+i_{n_s}=1$, where $s \in \{1, 2, \ldots, t\}$. Clearly, there exists $a_j \in \{a_0, a_1, \ldots, a_n\}$ such that $i_{j_1}+i_{j_2}+\cdots+i_{j_t} \ge m_j$. Since $a_j^{m_j}=0$ by assumption, this implies that $a_j^{i_{j_1}+i_{j_2}+\cdots+i_{j_t}}=0$. By [1, Lemma 2.1], we have

$$((\alpha^{v_{j_1}}(a_j))^{i_{j_1}}((\alpha^{v_{j_2}}(a_j))^{i_{j_2}}\cdots((\alpha^{v_{j_t}}(a_j))^{i_{j_t}})=0.$$

Therefore, each coefficient of $f^t(x)$ is zero. This implies that $f^t(x) = 0$, as desired. \Box

Let α be an endomorphism of a ring R. If N(R) is an ideal of R, then the endomorphism $\bar{\alpha}$ of the ring R/N(R) can be induced by α via $a + N(R) \rightarrow \alpha(a) + N(R)$. Moreover, it is easy to see that the map defined by

$$a_0 + \cdots + a_n x^n \rightarrow (a_0 + N(R)) + \cdots + (a_n + N(R))x^n$$

is a ring homomorphism from $R[x; \alpha]$ to $R/N(R)[x; \overline{\alpha}]$. It is clear that we have the isomorphism $R[x; \alpha]/N(R)[x; \alpha] \cong R/N(R)[x; \overline{\alpha}]$.

Lemma 3.7 Let R be a nilpotent α -semicommutative ring and α an endomorphism of R. If R is α -rigid, then $N(R[x; \alpha]) = N(R)[x; \alpha]$.

Proof Clearly, R is semicommutative since R is nilpotent α -semicommutative and α -rigid. Then N(R) is an ideal of R. Note that R/N(R) is $\bar{\alpha}$ -rigid since R is an α -rigid ring. On the one hand, we claim that $N(R[x;\alpha]) \subseteq N(R)[x;\alpha]$. In fact, let $f(x) = \sum_{i=0}^{n} a_i x^i \in N(R[x;\alpha])$, then there is a positive k such that $f^k(x) = 0$. Then $(\bar{f}(x))^k = \bar{0}$ in $R/N(R)[x;\bar{\alpha}]$. Since every α -rigid ring is α -skew Armendariz, $R/N(R)[x;\alpha]$ is $\bar{\alpha}$ -skew Armendariz. This implies that $\bar{a}_i \bar{\alpha}^i(\bar{a}_i) \cdots \bar{\alpha}^{(k-1)i}(\bar{a}_i) = \bar{0}$ for all integers $i = 1, 2, \ldots, n$. Then $\bar{\alpha}_i^k = \bar{0}$ by Corollary 3.5, and thus $a_i \in N(R)$ for each i. On the other hand, it is clear $N(R)[x;\alpha] \subseteq N(R[x;\alpha])$ by Lemma 3.6. Therefore, we get $N(R[x;\alpha]) = N(R)[x;\alpha]$. \Box

We conclude this section by the following proposition, which gives the condition under which $R[x; \alpha]$ is nilpotent α -semicommutative.

Proposition 3.8 Let R be a nilpotent α -semicommutative ring and α an endomorphism of R. If R is α -rigid, then $R[x; \alpha]$ is nilpotent α -semicommutative. **Proof** Let $f(x) = \sum_{i=0}^{n} a_i x^i$, $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x; \alpha]$ such that $f(x)g(x) \in N(R[x; \alpha])$. Then there is a positive t such that $(f(x)g(x))^t = 0$. Since R is semicommutative, N(R) is an ideal of R. This implies that $R/N(R)[x; \bar{\alpha}]$ is $\bar{\alpha}$ -skew Armendariz by the proof of Lemma 3.7. Therefore, we get $\bar{a}_i \bar{\alpha}^i(\bar{b}_j) \cdots \bar{\alpha}^{ki+(k-1)j}(\bar{b}_j) = \bar{0}$. It follows that $(\bar{a}_i \bar{b}_j)^k = \bar{0}$ by Corollary 3.5. So we have $a_i b_j \in N(R)$. For any $h(x) = \sum_{k=0}^{l} c_k x^k \in R[x; \alpha]$, we have $a_i c_k \alpha(b_j) \in N(R)$. Since each coefficient of $f(x)h(x)\alpha(g(x))$ has the form of $\sum_{p=0}^{n+k+m} a_i \alpha^i(c_k)\alpha^{i+k+1}(b_j)$. Then $\sum_{p=0}^{n+k+m} a_i \alpha^i(c_k)\alpha^{i+k+1}(b_j) \in N(R)$ by Lemma 3.4. Therefore, $f(x)h(x)\alpha(g(x)) \in N(R)[x; \alpha] = N(R[x; \alpha])$ by Lemma 3.7. \Box

Recall that a ring R is weakly semicommutative if for any $a, b \in R$, ab = 0 implies $arb \in N(R)$ for any $r \in R$. In particular, we have the following corollary.

Corollary 3.9 Let R be a semicommutative ring and α be an endomorphism of R. If R is α -compatible, then $R[x; \alpha]$ is weakly semicommutative.

Corollary 3.10 Let R be a semicommutative ring and α an endomorphism of R. If R is α -rigid, then $R[x; \alpha]$ is nil-semicommutative.

Acknowledgements The authors wish to express their sincere thanks to the referees for the valuable comments and suggestions.

References

- E. HASHEMI, A. MOUSSAVI. Polynomial extensions of quasi-baer rings. Acta Math. Hungar, 2005, 107(3): 207–224.
- [2] J. KREMPA. Some examples of reduced rings. Algebra Colloq., 1996, **3**(4): 289–300.
- [3] M. BASER, A. HARMANCI, T. K. KWAK. Generalized semicommutative rings and their extensions. Bull. Korean Math. Soc., 2008, 45(2): 285–297.
- [4] Weixing CHEN. On nil-semicommutative rings. Thai J. Math., 2011, 9(1): 39–47.
- [5] C. HUH, Y. LEE, A. SMOKTUNOWICZ. Armendariz rings and semicommutative rings. Comm. Algebra, 2002, 30(2): 751–761.
- [6] N. K. KIM, Y. LEE. Armendariz rings and reduced rings. J. Algebra, 2000, 223(2): 477–488.
- [7] Liang ZHAO, Jiaqun WEI. Strongly CM-semicommutative rings. Turkish J. Math., 2018, 42(3): 774–785.
- [8] A. BAHLEKEH. Nilpotent elements and extended reversible rings. Southeast Asian Bull. Math., 2014, 38(2): 173–182.
- [9] Lunqun OUYANG. Extensions of generalized α -rigid rings. Int. Electron. J. Algebra, 2008, **3**: 103–116.
- [10] R. ANTOINE. Nilpotent elements and Armendariz rings. J. Algebra, 2008, 319(8): 3128–3140.
- [11] C. Y. HONG, N. K. KIM, T. K. KWAK. On skew Armendariz rings. Comm. Algebra, 2003, **31**(1): 103–122.
- [12] Cuiping ZHANG, Jianlong CHEN. Weak α -skew Armendariz rings. J. Korean Math. Soc., 2010, 47(3): 455–466.
- [13] D. D. ANDERSON, V. CAMILLO. Armendariz rings and Gaussian rings. Comm. Algebra, 1998, 26(7): 2265–2272.