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Abstract This paper is concerned with the following fractional Schrödinger-Poisson system:{
(−∆)su+ u+ ϕu = λf(u) in R3,

(−∆)αϕ = u2 in R3,

where s ∈ ( 3
4
, 1), α ∈ (0, 1), λ is a positive parameter, (−∆)s, (−∆)α are fractional Laplacian

operators. Under certain assumptions on f , we obtain the existence of at least one nontrivial

solution of the system by using the methods of perturbation and Moser iterative method.
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1. Introduction

In this paper, we consider the following fractional Schrödinger-Poisson system:{
(−∆)su+ u+ ϕu = λf(u) in R3,

(−∆)αϕ = u2 in R3,
(1.1)

where s ∈ ( 34 , 1), α ∈ (0, 1), λ > 0 is a real parameter. The (−∆)s is the fractional Laplacian

operator

(−∆)su(x) = −C(3, s)

2

∫
R3

u(x+ y) + u(x− y)− 2u(x)

|y|3+2s
dy

for u : R3 → R belonging to the Schwartz space S(R3) of rapidly decaying C∞-functions in R3

where

C(3, s) =
(∫

RN

1− cos(x1)

|x|3+2s

)−1

see for instance [1].

Fractional operators of elliptic type arise in a quite natural way in many different problems,

such as the thin obstacle problem, optimization, finance, phase transitions, stratified materi-

als, anomalous diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame

propagation, conservation laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic
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flows, multiple scattering, minimal surfaces, materials science, water waves and so on. The inves-

tigations of the problems involving these non-local operators are interesting and important both

from pure mathematical research aspects and real-world applications; eg see [1,2] and references

therein.

For a general form of fractional Schrödinger-Poisson system{
(−∆)su+ V (x)u+ ϕu = f(x, u) in RN ,

(−∆)αϕ = u2 in RN ,
(1.2)

many existence and multiplicity results have been obtained by using different variational methods.

If we only consider the first equation in (1.2), it reduces to a fractional Schrödinger equation

when ϕ = 0. Since this kind of problem is displayed on the whole space RN , the main difficulty

for dealing with it by variational methods is the lack of compactness. To overcome this difficulty,

the author in [3] makes the following assumptions:

(V1) V ∈ C(RN ) and inf V (x) > 0;

(V2) For any M > 0, there exists r0 > 0 such that

lim
|y|→∞

meas({x ∈ RN : |x− y| ≤ r0, V (x) ≤ M}) = 0,

where meas denotes the Lebesgue measure on the whole RN . These assumptions have been widely

used in the study of fractional Schrödinger-Poisson system in [4–8] for instance. The nontrivial

radial symmetric solution of the problem (1.2) has also been obtained under suitable assumptions

in the radial symmetric space Hs
r (RN ), where Hs

r (RN ) = {u ∈ Hs(RN ), u(x) = u(|x|)}, because
the embedding of Hs

r (RN ) into the space Lp(RN ) (2 < p < 2∗s = 2N
N−2s ) is compact; see for

instance [9].

Recently, a new approach namely the perturbation method has been proposed in [10, 11] to

deal with quasi-linear elliptic equations. In [12], a perturbation method is used to study the

Schrödinger-Poisson system {
−∆u+ u+ ϕu = f(x, u) in R3,

(−∆)
α
2 ϕ = u2 in R3,

(1.3)

where α ∈ (1, 2]. Under some conditions, the problem (1.3) possesses at least one nontrivial

solution. Then the author in [13] studied the fractional Schrödinger-Poisson system{
(−∆)su+ u+ ϕu = f(x, u) in R3,

(−∆)αϕ = u2 in R3,
(1.4)

where s, α ∈ (0, 1], 2α + 4s > 3. The author proved that problem (1.4) possesses at least one

nontrivial solution under some assumptions on f .

In [14], the authors studied a class of superlinear elliptic problems −∆u = λf(u) under the

Dirichlet boundary condition on a bounded smooth domain in RN where the nonlinearity f(u)

is superlinear in a neighborhood of u = 0. Then the problem has solutions for all λ sufficiently

large by using the Moser iterative method. The Moser iterative method is used to study the

supercritical situation recently; see for instance, [15,16] and [17,18]. Recently, the authors in [19]
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considered the following Schrödinger-Poisson system{
−∆u+ V (x)u+ ϕu = λf(u) in R3,

−∆ϕ = u2 in R3,
(1.5)

and prove that the problem possesses a positive solution for large value of λ without any growth

and Ambrosetti-Rabinowitz condition.

Motivated by the above facts, the main purpose of this paper is to consider the existence

of nontrivial solutions for problem (1.1). Since s ∈ ( 34 , 1), we have 4 < 2∗s. To state our main

results, we assume the following conditions.

(f1) There is a τ ∈ (4, 2∗s) such that lim sup|u|→0
f(u)u
|u|τ < +∞, where 2∗s = 6

3−2s ;

(f2) There is a β ∈ (4, 2∗s) such that lim inf |u|→0
F (u)
|u|β > 0, where F (u) =

∫ u

0
f(t)dt;

(f3) There is a µ ∈ (4, 2∗s) such that uf(u) ≥ µF (u) > 0 for |u| ̸= 0 small.

Theorem 1.1 Assume that assumptions (f1)–(f3) hold. Then problem (1.1) has at least one

non-trivial solution for all λ sufficiently large.

The paper is organized as follows. In Section 2, we present some preliminary results. In

Section 3, we prove Theorem 1.1.

2. Preliminaries and the variational setting

This section is concerned with the variational framework for fractional Schrödinger-Poisson

system. Also, we collect some preliminary results.

As usual, ∥u∥m = (
∫
R3 |u|mdx)

1
m , ∀1 ≤ m < ∞.

For any s ∈ (0, 1), we define Ds,2(R3) as the completion of C∞
c (R3) with respect to

[u]2s =

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy.

Equivalently,

Ds,2(R3) = {u ∈ L2∗s (R3) : [u]s < ∞}.

The fractional space Hs(R3) is defined by

Hs(R3) =
{
u ∈ L2(R3) :

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy < ∞

}
,

equipped with the norm

∥u∥2Hs(R3) = [u]2s + ∥u∥22 =

∫
R3

(|(−∆)
s
2u|2 + |u|2)dx.

We recall the following embeddings of the fractional Sobolev spaces into Lebesgue spaces.

Lemma 2.1 ([1]) Let s ∈ (0, 1). Then there exists a sharp constant S∗ = S(s) > 0 such that

for any u ∈ Ds,2(R3)

∥u∥22∗s ≤ S∗[u]
2
s. (2.1)

Moreover, Hs(R3) is continuously embedded in Lp(R3) for any p ∈ [2, 2∗s] and compactly in

Lp
loc(R3) for any p ∈ [1, 2∗s).
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In the following, we denote by C,Ci the generic constant, which may change from line to

line.

Using Hölder’s inequality, it follows from Lemma 2.1 that for every u ∈ Hs(R3), we have∫
R3

u2vdx ≤
(∫

R3

|u|
12

3+2α

) 3+2α
6

(∫
R3

|v|2
∗
αdx

) 1
2∗α ≤ C∥u∥2Hs∥v∥Dα,2 (2.2)

where we used the embedding Hs(R3) ↪→ L
12

3+2α (R3) and the constant C is not dependent on α.

By Lax-Milgram theorem, there exists a unique ϕα
u ∈ Dα,2(R3) such that∫

R3

v(−∆)αϕα
udx =

∫
R3

(−∆)
α
2 ϕα

u(−∆)
α
2 vdx =

∫
R3

u2vdx, v ∈ Dα,2(R3). (2.3)

Hence, ϕα
u satisfies the Poisson equation

(−∆)αϕα
u = u2.

Moreover, ϕα
u has the following integral expression

ϕα
u = cα

∫
R3

u2(y)

|x− y|3−2α
dy,

which is the Riesz potential [20], where

cα =
Γ( 3−2α

2 )

π
3
2 22αΓ(α)

.

Thus ϕα
u ≥ 0 for a.e. x ∈ R3. From (2.2) and (2.3), we have

∥ϕα
u∥Dα,2 ≤ C∥u∥2 12

3+2α
≤ C∥u∥2Hs . (2.4)

It follows that

∥ϕα
u∥2Dα,2 =

∫
R3

u2ϕα
udx ≤ ∥u∥2 12

3+2α
∥ϕα

u∥2∗α ≤ C∥u∥2 12
3+2α

∥ϕα
u∥Dα,2 . (2.5)

Then

∥ϕα
u∥Dα,2 ≤ C∥u∥2 12

3+2α
. (2.6)

By conditions (f1) and (f2), there exist 0 < δ < 1
2 , C1 > 0 and C2 > 0 such that

F (u) ≥ C1|u|β , F (u) ≤ C2|u|τ (2.7)

and uf(u) ≥ µF (u) > 0 for 0 < |u| ≤ 2δ. For the fixed δ > 0, we consider a cut-off function ρ(t)

satisfying

ρ(t) =

{
1, if |t| ≤ δ

0, if |t| ≥ 2δ,

tρ′(t) ≤ 0, and |tρ′(t)| ≤ 2
δ .

Lemma 2.2 ([14]) Define F̃ (u) = ρ(u)F (u) + (1− ρ(u))F∞(u), where F∞(u) := C2|u|τ . Then

uf̃(u) ≥ θF̃ (u) > 0

for all u ̸= 0, where θ = min{µ, τ}, f̃(u) = F̃ ′(u).
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So we consider the following modified fractional Schrödinger equation

(−∆)su+ u+ ϕα
uu = λf̃(u), x ∈ R3. (2.8)

The energy functional Iλ : Hs(R3) → R corresponding to problem (2.8) is defined by

Iλ(u) =
1

2

∫
R3

(|(−∆)
s
2u|2 + u2)dx+

1

4

∫
R3

ϕα
uu

2dx− λ

∫
R3

F̃ (u)dx. (2.9)

It is easy to see that Iλ is well defined in Hs(R3), Iλ ∈ C1(Hs(R3),R) and

(I
′

λ(u), v) =

∫
R3

(
(−∆)

s
2u(−∆)

s
2 v + uv + ϕα

uuv − λf̃(u)v
)
dx, v ∈ Hs(R3). (2.10)

We choose a potential V (x) satisfying the following condition.

(V) V ∈ C(R3,R) satisfies infx∈R3 V (x) ≥ V0 > 0 and for every M > 0, meas{x ∈ R3 :

V (x) ≤ M} < ∞. Let

E = {u ∈ Hs(R3) :

∫
R3

(|(−∆)
s
2u|2 + V (x)u2)dx < ∞}.

Then E is a Hilbert space with the inner product and norm

(u, v)E =

∫
R3

((−∆)
s
2u(−∆)

s
2 v + V (x)uv)dx, ∥u∥E = (u, u)

1
2

E .

It is known that E is compactly embedded in Lp(R3) for 2 ≤ p < 2∗s (see [3]).

For fixed σ ∈ (0, 1], we introduce the following inner product

(u, v)Hs
σ
=

∫
R3

(
(−∆)

s
2u(−∆)

s
2 v + σV (x)uv

)
dx

and the norm ∥u∥Hs
σ
= (u, u)

1
2

Hs
σ
. Let Eσ = (E, ∥.∥Hs

σ
). Define the perturbed functional Iσ,λ :

E → R:
Iσ,λ(u) = Iλ(u) +

σ

2

∫
R3

V (x)u2dx, σ ∈ (0, 1]. (2.11)

3. Proof of Theorem 1.1

Firstly, we will prove that for every fixed λ ≥ 1, the problem (2.8) has at least one nontrivial

solution.

Lemma 3.1 For every fixed λ ≥ 1 and fixed σ ∈ (0, 1], there exist ρλ > 0, δλ > 0 such that

inf
u∈E,∥u∥E=ρλ

Iσ,λ(u) > δλ.

Proof It is clear that F̃ (u) ≤ C2|u|τ .

Iσ,λ(u) =
1

2

∫
R3

(|(−∆)
s
2u|2 + |u|2)dx+

1

4

∫
R3

ϕα
uu

2dx+
σ

2

∫
R3

V (x)u2dx− λ

∫
R3

F̃ (u)dx

≥ σ

2
∥u∥2E +

1

2

∫
R3

u2dx+
1

4

∫
R3

ϕα
uu

2dx− λ

∫
R3

F̃ (u)dx

≥ σ

2
∥u∥2E − λC∥u∥τE = ∥u∥2E(

σ

2
− λC∥u∥τ−2

E ).
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Let ρλ = ( σ
4Cλ )

1
τ−2 . Then for ∥u∥E = ρλ, Iσ,λ(u) ≥ σ

4 ρ
2
λ = δλ > 0. 2

Lemma 3.2 For every fixed λ ≥ 1, there exists e ∈ E with ∥e∥E ≥ ρλ such that Iσ,λ(e) < 0 for

fixed σ ∈ (0, 1].

Proof By Lemma 2.2, there exists a constant C > 0 such that

F̃ (u) ≥ C|u|θ, for |u| large. (3.1)

By (2.4) and (2.5), ∫
R3

ϕα
uu

2dx = ∥ϕα
u∥2Dα,2 ≤ C∥u∥4Hs . (3.2)

Choosing a fixed nontrivial function v ∈ C∞
0 (R3), we have

Iσ,λ(tv) =
t2

2
∥v∥2Hs

σ
+

t2

2
∥v∥22 +

Ct4

4
∥v∥4Hs − λ

∫
R3

F̃ (tv)dx

≤ t2

2
∥v∥2E +

t2

2
∥v∥22 +

Ct4

4
∥v∥4Hs − Ctθ∥v∥θθ → −∞

as t → +∞. Let T > 0 and define a path h : [0, 1] → E by h(t) = tTv. For T > 0 large enough,

independent of σ and λ, we have

∥h(1)∥E ≥ (
1

4C
)

1
τ−2 ≥ ρλ, Iσ,λ(h(1)) < 0.

By taking e = h(1), we complete the proof. 2
Lemma 3.3 For every fixed λ ≥ 1, Iσ,λ satisfies the Palais-Smale condition on E for fixed

σ ∈ (0, 1].

Proof Let {un,λ} be a sequence in E so that Iσ,λ(un,λ) is bounded and I ′σ,λ(un,λ) → 0. Then

Cλ + C∥un,λ∥ ≥Iσ,λ(un,λ)−
1

θ
(I ′σ,λ(un,λ), un,λ)

=(
1

2
− 1

θ
)∥un,λ∥2Hs

σ
+ (

1

2
− 1

θ
)∥un,λ∥22 + (

1

4
− 1

θ
)

∫
R3

ϕα
un,λ

u2
n,λdx+

λ

∫
R3

(
f̃(un,λ)un,λ

θ
− F̃ (un,λ))dx

≥(
1

2
− 1

θ
)σ∥un,λ∥2E .

Thus, {un,λ} is bounded in E. Up to a subsequence, we can assume that un,λ ⇀ uλ in E,

un,λ → uλ in Lp(R3), 2 ≤ p < 2∗s. Observe that

∥un,λ − uλ∥2Hs
σ
=(I ′σ,λ(un,λ)− I ′σ,λ(uλ), un,λ − uλ)− ∥un,λ − uλ∥22−∫

R3

(ϕα
un,λ

un,λ − ϕα
uλ
uλ)(un,λ − uλ)dx+ λ

∫
R3

(f̃(un,λ)− f̃(uλ))(un,λ − uλ)dx

=J1 + J2 + J3 + J4.

It is clear that J1 → 0 and J2 → 0 as n → ∞. By (2.6),∫
R3

ϕα
un,λ

un,λ(un,λ − uλ)dx ≤∥ϕα
un,λ

∥2∗α∥un,λ∥ 12
3+2α

∥un,λ − uλ∥ 12
3+2α
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≤C∥ϕα
un,λ

∥Dα,2∥un,λ∥ 12
3+2α

∥un,λ − uλ∥ 12
3+2α

≤C∥un,λ∥3 12
3+2α

∥un,λ − uλ∥ 12
3+2α

≤C∥un,λ∥3E∥un,λ − uλ∥ 12
3+2α

→ 0.

Similarly, we have ∫
R3

ϕα
uλ
uλ(un,λ − uλ)dx → 0,

thus J3 → 0 as n → ∞. Since the cut-off function ρ(t) satisfies |ρ′(t)t| ≤ 2
δ , we have

|f̃(t)| ≤ C|t|τ−1,

hence ∫
R3

f̃(un,λ)(un,λ − uλ)dx ≤ C

∫
R3

|un,λ|τ−1|un,λ − uλ|dx

≤ C∥un,λ∥τ−1
τ ∥un,λ − uλ∥τ

≤ C∥un,λ∥τ−1
E ∥un,λ − uλ∥τ → 0.

Similarly, we have ∫
R3

f̃(uλ)(un,λ − uλ)dx → 0,

thus J4 → 0 as n → ∞. We see that

σ∥un,λ − uλ∥E ≤ ∥un,λ − uλ∥2Hs
σ
→ 0,

therefore, Iσ,λ satisfies the Palais-Smale condition on E for fixed σ ∈ (0, 1]. 2
Lemma 3.4 For every fixed λ ≥ 1, let σn → 0 and {un,λ} ⊂ E be a sequence of critical points

of Iσn,λ satisfying I ′σn,λ
(un,λ) = 0 and Iσn,λ(un,λ) ≤ Cλ for some Cλ independent of n. Then,

up to a subsequence un,λ ⇀ uλ in Hs(R3) as n → ∞ and uλ is a critical point of Iλ.

Proof By I ′σn,λ
(un,λ) = 0 and Iσn,λ(un,λ) ≤ Cλ, we have

Cλ ≥Iσn,λ(un,λ)−
1

θ
(I ′σn,λ(un,λ), un,λ)

=(
1

2
− 1

θ
)∥un,λ∥2Hs

σ
+ (

1

2
− 1

θ
)∥un,λ∥22+

(
1

4
− 1

θ
)

∫
R3

ϕα
un,λ

u2
n,λdx+

∫
R3

(
un,λf̃(un,λ)

θ
− F̃ (un,λ))dx

≥(
1

2
− 1

θ
)∥un,λ∥2Hs ,

then up to a subsequence, we have un,λ ⇀ uλ in Hs(R3). Taking v ∈ C∞
0 (R3), by [21, Lemma

2.3], ϕα
un,λ

⇀ ϕα
uλ

in Dα,2(R3), then we have∫
R3

ϕα
un,λ

uλvdx →
∫
R3

ϕα
uλ
uλvdx.

By Hölder inequality, it follows that∣∣∣ ∫
R3

ϕα
un,λ

(un − u)vdx
∣∣∣ ≤ ∥ϕα

un,λ
∥2∗α∥un − u∥ 12

3+2α (Ω)∥v∥ 12
3+2α (Ω) → 0
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as n → ∞, where Ω is the support of v. Then,∣∣∣ ∫
R3

ϕα
un,λ

un,λvdx−
∫
R3

ϕα
uλ
uλvdx

∣∣∣
≤

∣∣∣ ∫
R3

ϕα
un,λ

(un,λ − uλ)vdx
∣∣∣+ ∣∣∣ ∫

R3

ϕα
un,λ

(un − u)vdx
∣∣∣ → 0

as n → ∞ for all v ∈ C∞
0 (R3).

0 = (I ′σn,λ(un,λ), v) =

∫
R3

(−∆)
s
2un,λ(−∆)

s
2 v + un,λvdx∫

R3

(ϕα
un,λ

un,λv − f̃(un,λ)v)dx+ σn

∫
RN

V (x)un,λvdx.

We have

σn

∫
R3

V (x)un,λvdx ≤ σ
1
2
n

(
σn

∫
R3

V (x)u2
n,λdx

) 1
2
(∫

R3

V (x)v2dx
) 1

2 ≤ Cλσ
1
2
n → 0,

as n → ∞. Thus by density, we see that I ′λ(uλ)v = 0 for all v ∈ Hs(R3), uλ is a critical point of

Iλ. 2
Lemma 3.5 ([22]) Let Br(x) be the open ball in R3 of radius r centred at x. If {un} is bounded

in Hs(R3) and for 2 ≤ q < 2∗s, we have

sup
x∈R3

∫
Br(x)

|un|qdx → 0 as n → ∞,

then un → 0 in Lw(R3) for w ∈ (2, 2∗s).

By Lemma 3.2, we have for fixed v ∈ C∞
0 (R3),

Iσ,λ(tv) ≤
t2

2
∥v∥2E +

t2

2
∥v∥22 +

Ct4

4
∥v∥4Hs − Ctθ∥v∥θθ → −∞

as t → ∞. We denote

cσ,λ = inf
γ∈Γ

max
t∈[0,1]

Iσ,λ(γ(t)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Iσ,λ(γ(1)) < 0}. Then we obtain

cσ,λ = inf
γ∈Γ

max
t∈[0,1]

Iσ,λ(γ(t)) ≤ max
t∈[0,1]

I1,λ(tTv)

≤ max
t∈[0,1]

( t2T 2

2
∥v∥2E +

t2T 2

2
∥v∥22 +

t4T 4

4
∥v∥4Hs − λ

∫
R3

F̃ (tTv)dx
)

≤ max
t∈[0,1]

( t2T 2

2
∥v∥2E +

t2T 2

2
∥v∥22 +

t2T 2

4
∥v∥4Hs − CλtβT β

∫
R3

|v|βdx
)

≤ Cλ− 2
β−2 ,

where T is given by Lemma 3.2, C is independent of σ and λ. By Mountain pass theorem, cσ,λ

is a critical point of Iσ,λ. Then, we can choose a sequence σn → 0, a sequence of critical points

{un,λ} ⊂ E satisfying

I ′σn,λ(un,λ) = 0, Iσn,λ(un,λ) ≤ Cλ− 2
β−2 . (3.3)
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By Lemma 3.4, uλ is a critical point of Iλ. It remains to show that uλ ̸= 0. We derive

0 =∥un,λ∥2Hs(R3) + σn

∫
R3

V (x)u2
n,λdx+∫

R3

ϕα
un,λ

u2
n,λdx− λ

∫
R3

f̃(un,λ)un,λdx

≥∥un,λ∥2Hs(R3) − Cλ∥un,λ∥ττ
≥C∥un,λ∥2τ − Cλ∥un,λ∥ττ .

Hence, we have ∥un,λ∥τ ≥ (Cλ )
1

τ−2 . If {un,λ} is vanishing, then ∥un,λ∥τ → 0 by Lemma 3.5,

which is a contradiction. Therefore, we can obtain the existence of nontrivial critical point of Iλ

for every λ ≥ 1.

Next we shall study the L∞-estimates for solution uλ of problem (2.8).

Lemma 3.6 Let uλ ∈ E be a weak solution of problem (2.8). Then uλ ∈ L∞(R3). Moreover,

∥uλ∥∞ < Cλ
β−2∗s

(2∗s−τ)(β−2) ,

C is independent of λ.

Proof Let uλ be a weak solution of{
(−∆)su+ u+ ϕu = λf̃(u) in R3,

(−∆)αϕ = u2 in R3.
(3.4)

For L > 0, set uλ,L = min{uλ, L} and Υ(uλ) := Υλ,L(uλ) = uλ|uλ,L|2(η−1) with η > 1 to be

determined later. Let Φ(t) = 1
2 |t|

2 and Γ(t) =
∫ t

0
(Υ′(t))

1
2 . Then, if a > b, we have

Φ′(a− b)(Υ(a)−Υ(b)) = (a− b)(Υ(a)−Υ(b)) = (a− b)

∫ a

b

(Γ′(t))2dx

≥
(∫ a

b

Γ′(t)dx

)2

= |Γ(a)− Γ(b)|2.

If a ≤ b, we can use a similar argument to obtain the conclusion. It follows that

Φ′(a− b)(Υ(a)−Υ(b)) ≥ |Γ(a)− Γ(b)|2,

for every a, b ∈ R, which implies that

|Γ(uλ(x))− Γ(uλ(y))|2 ≤ [uλ(x)− uλ(y)][(uλ|uλ,L|2(η−1))(x)− (uλ|uλ,L|2(η−1))(y)].

Choosing Υ(uλ) as a test function in (2.10), we obtain∫
R3

|(−∆)
s
2Γ(uλ)|2dx+

∫
R3

u2
λ|uλ,L|2(η−1)dx+

∫
R3

ϕα
uλ
u2
λ|uλ,L|2(η−1)dx

≤
∫
R3

∫
R3

[uλ(x)− uλ(y)][(uλ|uλ,L|2(η−1))(x)− (uλ|uλ,L|2(η−1))(y)]

|x− y|3+2s
dxdy+∫

R3

u2
λ|uλ,L|2(η−1)dx+

∫
R3

ϕα
uλ
u2
λ|uλ,L|2(η−1)dx

= λ

∫
R3

f̃(uλ)uλ|uλ,L|2(η−1)dx,
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we get ∫
R3

|(−∆)
s
2Γ(uλ)|2dx ≤ Cλ

∫
R3

|uλ|τ |uλ,L|2(η−1)dx.

Since |Γ(uλ)| ≥ 1
η |uλ||uλ,L|η−1, we have∫

R3

|(−∆)
s
2Γ(uλ)|2dx ≥ C

(∫
R3

|Γ(uλ)|2
∗
sdx

) 2
2∗s ≥ C

η2
∥uλ|uλ,L|η−1∥22∗s .

Therefore,

∥uλ|uλ,L|η−1∥22αs ≤ Cη2λ

∫
R3

|uλ|τ |uλ,L|2(η−1)dx.

Let τ∗s =
22∗s

2∗s−τ+2 . We have

∥uλ|uλ,L|η−1∥22∗s ≤ Cη2λ

∫
R3

|uλ|τ |uλ,L|2(η−1)dx

≤ Cη2λ

∫
R3

|uλ|τ−2u2
λ|uλ,L|2(η−1)dx

≤ Cη2λ∥uλ∥τ−2
2∗s

(∫
R3

|uλ|uλ,L|η−1|τ
∗
s dx

) 2
τ∗
s

≤ Cη2λ∥uλ∥τ−2∥uλ∥2ηητ∗
s
.

Using the Fatou’s lemma, letting L → ∞, it follows that

∥uλ∥2∗sη ≤ (Cη2λ∥uλ∥τ−2)
1
2η ∥uλ∥ητ∗

s
.

Define ηn+1τ
∗
s = 2∗sηn, where n = 1, 2, . . . and η1 =

2∗s+2−τ
2 . We have

∥uλ∥2∗sη2 ≤ (Cη22λ∥uλ∥τ−2)
1

2η2 ∥uλ∥2∗sη1

≤ (Cλ∥uλ∥τ−2)
1

2η1
+ 1

2η2 η
1
η1
1 η

1
η2
2 ∥uλ∥2∗s .

By the elementary calculus, we know that

∞∑
i=1

1

ηi
=

1

η1 − 1
,

∞∑
i=1

i

ηi1
= η

η1
(η1−1)2

1 .

By iteration we have ∥uλ∥∞ ≤ Cλ
1

2∗s−τ ∥uλ∥
2∗s−2

2∗s−τ

Hs . Since uλ is a weak solution of (2.8), by (3.3),

∥uλ∥2Hs ≤ lim inf
n→∞

∥un,λ∥2Hs ≤ C(Iσn,λ(un,λ)−
1

θ
(I ′σn,λ(un,λ), un,λ)) ≤ Cλ− 2

β−2 ,

then we have ∥uλ∥Hs ≤ Cλ− 1
β−2 . Thus,

∥uλ∥∞ ≤ Cλ
β−2∗s

(2∗s−τ)(β−2) ,

we complete the proof. 2
Proof of Theorem 1.1 By Lemma 3.6, there exists λ1 ≥ 1 such that for all λ > λ1,

∥uλ∥∞ ≤ δ,

where δ is fixed in (2.7). Thus, uλ is a nontrivial solution of the original problem (1.1). 2
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