
Journal of Mathematical Research with Applications

Mar., 2022, Vol. 42, No. 2, pp. 189–198

DOI:10.3770/j.issn:2095-2651.2022.02.009

Http://jmre.dlut.edu.cn

Central Extensions and Deformations of Lie Triple
Systems with a Derivation

Shuangjian GUO
School of Mathematics and Statistics, Guizhou University of Finance and Economics,

Guizhou 550025, P. R. China

Abstract In this paper, we consider Lie triple systems with derivations. A pair consisting of a

Lie triple system and a distinguished derivation is called a LietsDer pair. We define a cohomology

theory for LietsDer pair with coefficients in a representation. We study central extensions of a

LietsDer pair. In the next, we generalize the formal deformation theory to LietsDer pairs in

which we deform both the Lie triple system bracket and the distinguished derivation. It is

governed by the cohomology of LietsDer pair with coefficients in itself.
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1. Introduction

Lie triple systems arose initially in Cartan’s study of Riemannian geometry. Jacobson [1]

first introduced Lie triple systems and Jordan triple systems in connection with problems from

Jordan theory and quantum mechanics, viewing Lie triple systems as subspaces of Lie algebras

that are closed relative to the ternary product. Lister [2] investigated notions of the radical,

semi-simplicity and solvability as defined for Lie triple systems, and determined all simple Lie

triple systems over an algebraically closed field, the reader is referred to [3–11] and references

cited therein.

Algebraic structures are useful via their derivations. Derivations are also useful in construct-

ing homotopy Lie algebras [12], deformation formulas [13] and differential Galois theory [14].

They also play an essential role in control theory and gauge theories in quantum field theo-

ry [15]. In [16] the authors studied algebras with derivations from operadic point of view. Re-

cently, Lie algebras with derivations (called LieDer pairs) are studied from cohomological point

of view [17] and extensions, deformations of LieDer pairs are considered. The results of [17] have

been extended to associative algebras and Leibniz algebras with derivations in [18] and [19].

The deformation is a tool to study a mathematical object by deforming it into a family

of the same kind of objects depending on a certain parameter. The deformation theory was
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introduced by Gerstenhaber for rings and algebras [20, 21], and by Kubo and Taniguchi for Lie

triple systems [22]. They studied 1-parameter formal deformations and established the connection

between the cohomology groups and infnitesimal deformations: the suitable cohomology groups

for the deformation theory of associative algebras and Lie triple systems are the Hochschild

cohomology [23] and the Yamaguti cohomology [24], respectively.

The paper is organized as follows. In Section 2, we define a cohomology theory for LietsDer

pair with coefficients in a representation. In Section 3, we study central extensions of a LietsDer

pair and show that isomorphic classes of central extensions are classified by the second cohomol-

ogy of the LietsDer pair with coefficients in the trivial representation. In Section 4, we study

formal one-parameter deformations of LietsDer pairs in which we deform both the Lie triple

system bracket and the distinguished derivations.

Throughout this paper, we work over the field F.

2. Cohomology of LietsDer pairs

In this section, we define a cohomology theory for LietsDer pair with coefficients in a repre-

sentation.

Definition 2.1 ([2]) A vector space T together with a trilinear map (x, y, z) 7→ [x, y, z]T is

called a Lie triple system if

(T1) [x, x, y]T = 0,

(T2) [x, y, z]T + [y, z, x]T + [z, x, y]T = 0,

(T3) [u, v, [x, y, z]T ]T = [[u, v, x]T , y, z]T + [x, [u, v, y]T , z]T + [x, y, [u, v, z]T ]T ,

for all x, y, z, u, v ∈ T .

Definition 2.2 ( [24]) Let (T, [·, ·, ·]T ) be a Lie triple system, M an F-vector space. If θ :

T × T →End(M) is a bilinear map such that for all a, b, c, d ∈ T ,

θ(c, d)θ(a, b)− θ(b, d)θ(a, c)− θ(a, [b, c, d]T ) +D(b, c)θ(a, d) = 0, (2.1)

θ(c, d)D(a, b)−D(a, b)θ(c, d) + θ([a, b, c]T , d) + θ(c, [a, b, d]T ) = 0, (2.2)

where D(a, b) = θ(b, a) − θ(a, b), then (M, θ) is called the representation of (T, [·, ·, ·]T ). (M, 0)

is called the trivial representation of (T, [·, ·, ·]T ).

Definition 2.3 ([25]) Let (T, [·, ·, ·]T ) be a Lie triple system. A derivation on T is given by a

linear map ϕT : T → T satisfying

ϕT ([x, y, z]T ) = [ϕT (x), y, z]T + [x, ϕT (y), z]T + [x, y, ϕT (z)]T , ∀x, y, z ∈ T.

We call the pair (T, ϕT ) composed of a Lie triple system and a derivation a LietsDer pair.

Example 2.4 Let (T, [·, ·]) be a Lie algebra. We define [·, ·, ·]T : T ×T ×T → T and ϕT : T → T
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by

[x, y, z]T := [[x, y], z],

ϕT ([x, y, z]T ) = [ϕT (x), y, z]T + [x, ϕT (y), z]T + [x, y, ϕT (z)]T , ∀x, y, z ∈ T.

Then (T, ϕT ) becomes a LietsDer pair.

Definition 2.5 Let (T, ϕT ) be a LietsDer pair. A representation of it is given by (M,ϕM ) in

which M is a representation of T and ϕM :M →M is a linear map satisfying

ϕM (θ(x, y)(m)) = θ(ϕT (x), y)(m) + θ(x, ϕT (y))(m) + θ(x, y)(ϕM (m)),

ϕM (D(x, y)(m)) = D(ϕT (x), y)(m) +D(x, ϕT (y))(m) +D(x, y)(ϕM (m)),

for all x, y ∈ T and m ∈M .

Proposition 2.6 Let (T, ϕT ) be a LietsDer pair and (M,ϕM ) be a representation of it. Then

(T ⊕M,ϕT ⊕ ϕM ) is a LietsDer pair where the Lie triple system bracket on T ⊕M is given by

the semi-direct product

[(x,m), (y, n), (z, p)] = ([x, y, z]T , θ(y, z)(m)− θ(x, z)(n) +D(x, y)(p)),

for any x, y, z ∈ T and m,n, p ∈M .

Proof It is known that T⊕M equipped with the above product is a Lie triple system. Moreover,

we have

(ϕT ⊕ ϕM )([(x,m), (y, n), (z, p)])

= (ϕT ([x, y, z]T ), ϕM (θ(y, z)(m))− ϕM (θ(x, z)(n)) + ϕM (D(x, y)(p)))

= ([ϕT (x), y, z]T , θ(y, z)(ϕM (m))− θ(ϕT (x), z)(n) +D(ϕT (x), y)(p))+

([x, ϕT (y), z]T , θ(ϕT (y), z)(m)− θ(x, z)(ϕM (n)) +D(x, ϕT (y))(p))+

([x, y, ϕT (z)]T , θ(y, ϕT (z))(m)− θ(x, ϕT (z))(n) +D(x, y)(ϕM (p)))

= [(ϕT ⊕ ϕM )(x,m), (y, n), (z, p)] + [(x,m), (ϕT ⊕ ϕM )(y, n), (z, p)]+

[(x,m), (y, n), (ϕT ⊕ ϕM )(z, p)].

Hence the proof is completed. 2
Let θ be a representation of (T, [·, ·, ·]T ) on M . If an n-linear map f : T × T × · · · × T →M

satisfies

(1) f(x1, . . . , x, x, xn) = 0,

(2) f(x1, . . . , xn−3, x, y, z) + f(x1, . . . , xn−3, y, z, x) + f(x1, . . . , xn−3, z, x, y) = 0,

then f is called an n-cochain on T . Denote by Cn(T,M) the set of all n-cochains.

Define the linear maps d : Cn(T,M) → Cn+2(T,M), n ≥ 1 as follows:

for f ∈ C2n−1(T,M), n = 1, 2, 3, . . . ,

df(x1, . . . , x2n+1) = θ(x2n, x2n+1)f(x1, . . . , x2n−1)− θ(x2n−1, x2n+1)f(x1, . . . , x2n−2, x2n)+
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n∑
k=1

(−1)n+kD(x2k−1, x2k)f(x1, . . . , x̂2k−1, x̂2k, . . . , x2n+1)+

n∑
k=1

2n+1∑
j=2k+1

(−1)n+k+1f(x1, . . . , x̂2k−1, x̂2k, . . . , [x2k−1, x2k, xj ], . . . , x2n+1);

for f ∈ C2n(T,M), n = 1, 2, 3, . . . ,

df(y, x1, . . . , x2n+1) = θ(x2n, x2n+1)f(y, x1, . . . , x2n−1)−

θ(x2n−1, x2n+1)f(y, x1, . . . , x2n−2, x2n)+
n∑
k=1

(−1)n+kD(x2k−1, x2k)f(y, x1, . . . , x̂2k−1, x̂2k, . . . , x2n+1)+

n∑
k=1

2n+1∑
j=2k+1

(−1)n+k+1f(y, x1, . . . , x̂2k−1, x̂2k, . . . , [x2k−1, x2k, xj ], . . . , x2n+1),

where the sign̂indicates that the element below must be omitted, and d ◦ d = 0.

In the next, we introduce a cohomology for a LietsDer pair with coefficients in a representa-

tion.

Let (T, ϕT ) be a LietsDer pair and (M,ϕM ) be a representation of it. For any n ≥ 1, we

define a new map δ :Hom(T⊗n,M) →Hom(T⊗n+1,M) by

δ : Hom(T⊗n,M) → Hom(T⊗n+1,M)

δf(x1, x2, . . . , xn+1)

=
n+1∑
k=1

(
n∑
i=1

f ◦ (IdT ⊗ · · · ⊗ ϕT ⊗ · · · ⊗ IdT )− ϕM ◦ f)(x1, x2, . . . , x̂k, . . . , xn+1).

The following lemma is useful to define the coboundary operator of the cohomology of Liets-

Der pair.

Lemma 2.7 The map δ commutes with d, i.e., d ◦ δ = δ ◦ d.
We are now in a position to define the cohomology of the LietsDer pair. Define the s-

pace C0
LietsDer(T,M) of 0-cochains to be 0 and the space C1

LietsDer(T,M) of 1-cochains to be

Hom(T,M). The space of n-cochains CnLietsDer(T,M), for n ≥ 2, is defined by

CnLietsDer(T,M) := Hom(T⊗n,M)⊗Hom(T⊗n−1,M).

We define a map ∂ : CnLietsDer(T,M) → Cn+2
LietsDer(T,M) by

∂f = (df,−δf), for any f ∈ C1
LietsDer(T,M),

∂(fn, fn) = (dfn, dfn − δfn), for any (fn, fn) ∈ C2n−1
LietsDer(T,M),

∂(fn, fn) = (dfn, dfn + δfn), for any (fn, fn) ∈ C2n
LietsDer(T,M).

Proposition 2.8 The map ∂ satisfies ∂ ◦ ∂ = 0.

Proof For any f ∈ C1
LietsDer(T,M), we have

(∂ ◦ ∂)f = ∂(df,−δf) = ((d ◦ d)f,−(d ◦ δ)f + (δ ◦ d)f) = 0.
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Similarly, for any (fn, fn) ∈ CnLietsDer(T,M), we have

(∂ ◦ ∂)(fn, fn) = ∂(dfn, dfn + (−1)nfn)

= (d2fn, d
2fn + (−1)ndδfn + (−1)n+1δdfn) = 0.

Hence the proof is completed. 2
Therefore, (C∗

LietsDer(T,M), ∂) forms a cochain complex. We denote the corresponding co-

homology groups by H∗
LietsDer(T,M).

3. Central extensions of LietsDer pairs

In this section, we study central extensions of a LietsDer pair, we show that isomorphic classes

of central extensions are classified by the cohomology of the LietsDer pair with coefficients in

the trivial representation.

Let (T, ϕT ) be a LietsDer pair and (M,ϕM ) be an abelian LietsDer pair i.e., the Lie triple

system bracket of M is trivial.

Definition 3.1 A central extension of (T, ϕT ) by (M,ϕM ) is an exact sequence of LietsDer

pairs

0 // (M,ϕM )
i // (T̂ , ϕT̂ )

p // (T, ϕT ) // 0 (3.1)

such that [i(m), x̂, ŷ] = 0, for all m ∈M, x̂, ŷ ∈ T̂ .

In a central extension, we can identify M with the corresponding subalgebra of T̂ and with

this ϕM = ϕT̂ |M .

Definition 3.2 Two central extensions (T̂ , ϕT̂ ) and (T̂ ′, ϕT̂ ′) are said to be isomorphic if there

is an isomorphism η : (T̂ , ϕT̂ ) → (T̂ ′, ϕT̂ ′) of LietsDer pairs that makes the following diagram

commutative

0 // (M,ϕM )

IdM

��

i // (T̂ , ϕT̂ )

η

��

p // (T, ϕT )

IdT

��

// 0

0 // (M,ϕM )
i′ // (T̂ ′, ϕT̂ ′)

q // (T, ϕT ) // 0

Diagram 1 Two central extensions isomorphic

Let Eq. (3.1) be a central extension. A section of the map p is given by a linear map s : T → T̂

such that p ◦ s = IdT .

For any section s, we define maps ψ : T ⊗ T ⊗ T →M and χ : T →M by

ψ(x, y, z) := [s(x), s(y), s(z)]T̂ − s([x, y, z]T ), χ(x) = ϕT̂ (s(x))− s(ϕT (x)), ∀x, y, z ∈ T.

Note that the vector space T̂ is isomorphic to the direct sum T ⊕ M via the section s.

Therefore, we may transfer the structures of T̂ to T ⊕ M . The product and linear maps on

T ⊕M are given by

[(x,m), (y, n), (z, p)]ψ = ([x, y, z]T , ψ(x, y, z)),
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ϕT⊕M (x,m) = (ϕT (x), ϕM (m) + χ(x)).

Proposition 3.3 The vector space T ⊕M equipped with the above product and linear maps

ϕT⊕M forms a LietsDer pair if and only if (ψ, χ) is a 3-cocycle in the cohomology of the LietsDer

pair T with coefficients in the trivial representationM . Moreover, the cohomology class of (ψ, χ)

does not depend on the choice of the section s.

Proof The tuple (T ⊕M,ϕT⊕M ) is a LietsDer pair if and only if

[(x,m), (x,m), (y, n)]ψ = 0, (3.2)

[(x,m), (y, n), (z, p)]ψ + [(y, n), (z, p), (x,m)]ψ + [(z, p), (x,m), (y, n)]ψ = 0, (3.3)

[(x,m), (y, n), [(z, p), (v, k), (w, l)]ψ]ψ

= [[(x,m), (y, n), (z, p)]ψ, (v, k), (w, l)]ψ + [(z, p), [(x,m), (y, n), (v, k)]ψ, (w, l)]ψ+

[(z, p), (v, k), [(x,m), (y, n), (w, l)]ψ]ψ, (3.4)

ϕT⊕M [(x,m), (y, n), (z, p)]ψ

= [ϕT⊕M (x,m), (y, n), (z, p)]ψ + [(x,m), ϕT⊕M (y, n), (z, p)]ψ+

[(x,m), (y, n), ϕT⊕M (z, p)]ψ, (3.5)

for all x⊕m, y ⊕ n, z ⊕ p, v ⊕ k, w ⊕ l ∈ T ⊕M . The condition Eq. (3.2) is equivalent to

ψ(x, x, y) = 0.

The condition Eq. (3.3) is equivalent to

ψ(x, y, z) + ψ(y, z, x) + ψ(z, x, y) = 0.

The condition Eq. (3.4) is equivalent to

ψ(x, y, [z, v, w]T ) = ψ([x, y, z]T , v, w) + ψ(z, [x, y, v]T , w) + ψ(z, v, [x, y, w]T ).

Hence, d(ψ) = 0. The condition Eq. (3.5) is equivalent to

ϕM (ψ(x, y, z)) + χ([x, y, z]T ) = ψ(ϕT (x), y, z) + ψ(x, ϕT (y), z) + ψ(x, y, ϕT (z)).

This is the same as d(χ) + δψ = 0.

Let s1, s2 be two sections of p. Define a map u : T →M by u(x) := s1(x)− s2(x). Then we

have

ψ(x, y, z) =[s1(x), s1(y), s1(z)]T̂ − s1([x, y, z]T )

=[s2(x) + u(x), s2(y) + u(y), s2(z) + u(z)]T̂ − s2([x, y, z]T )− u([x, y, z]T )

=ψ′(x, y, z)− u([x, y, z]T ),

and

χ(x) = ϕT̂ (s1(x))− s1(ϕT (x)) = ϕT̂ (s2(x) + u(x))− s2(ϕT (x))− u(ϕT (x))

= χ′(x) + ϕM (u(x))− u(ϕT (x)).

This shows that (ψ, χ)− (ψ′, χ′) = ∂u. Hence they correspond to the same cohomology class. 2
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Theorem 3.4 Let (T, ϕT ) be a LietsDer pair and (M,ϕM ) be an abelian LietsDer pair. Then

the isomorphism classes of central extensions of T by M are classified by the cohomology group

H3
LietsDer(T,M).

Proof Let (T̂ , ϕT̂ ) and (T̂ ′, ϕT̂ ′) be two isomorphic central extensions and the isomorphism is

given by η : T̂ → T̂ ′. Let s : T → T̂ be a section of p. Then

p′ ◦ (η ◦ s) = (p′ ◦ η) ◦ s = p ◦ s = IdT .

This shows that s′ := η ◦ s is a section of p′. Since η is a morphism of LietsDer pairs, we have

η|M = IdM . Thus,

ψ′(x, y) = [s′(x), s′(y), s′(z)]T̂ − s′([x, y, z]T )

= η([s(x), s(y), s(z)]T̂ − [x, y, z]T ) = ψ(x, y, z),

and

χ′(x) = ϕT̂
′
(s′(x))− s′(ϕT (x)) = ϕT̂ ′(η ◦ s(x))− η ◦ s(ϕT (x))

= ϕT̂ (s(x))− s(ϕT (x)) = χ(x).

Therefore, isomorphic central extensions give rise to same 3-cocycle, hence, correspond to same

element in H3
LietsDer(T,M).

Conversely, let (ψ, χ) and (ψ′, χ′) be two cohomologous 3-cocycles. Therefore, there exists a

map v : T →M such that

(ψ, χ)− (ψ′, χ′) = ∂v.

The LietsDer pair structures on T ⊕M corresponding to the above 3-cocycles are isomorphic via

the map η : T ⊕M → T ⊕M given by η(x,m) = (x,m+ v(x)). Hence the proof is completed. 2
4. Deformations of LietsDer pairs

In this section, we study formal one-parameter deformations of LietsDer pairs in which we

deform both the Lie triple system bracket and the distinguished derivations.

Let (T, ϕT ) be a LietsDer pair. We denote the Lie triple system bracket on T by µ, i.e.,

µ(x, y, z) = [x, y, z]T , for all x, y, z ∈ T . Consider the space T [[t]] of formal power series in t with

coefficients from T . Then T [[t]] is an F[[t]]-module.

A formal one-parameter deformation of the LietsDer pair (T, ϕT ) consists of formal power

series

µt =

∞∑
i=0

tiµi ∈ Hom(T⊗3, T )[[t]] with µ0 = µ,

ϕt =
∞∑
i=0

tiϕi ∈ Hom(T, T )[[t]] with ϕ0 = ϕT ,

such that T [[t]] together with the bracket µt forms a Lie triple system over F[[t]] and ϕt is a

derivation on this Lie triple system.
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Therefore, in a formal one-parameter deformation of LietsDer pair, the following relations

hold:

µt(x, x, y) = 0, (4.1)

µt(x, y, z) + µt(y, z, x) + µt(z, x, y) = 0, (4.2)

µt(x, y, µt(z, v, w)) = µt(µt(x, y, z), v, w) + µt(z, µt(x, y, v), w) + µt(z, v, µt(x, y, w)), (4.3)

ϕt(µt(x, y, z)) = µt(ϕt(x), y, z) + µt(x, ϕt(y), z) + µt(x, y, ϕt(z)). (4.4)

Conditions Eqs. (4.1) and (4.2) are equivalent to the following equations:

µn(x, x, y) = 0,

µn(x, y, z) + µn(y, z, x) + µn(z, x, y) = 0

respectively, for n = 0, 1, 2, . . . . Conditions Eqs. (4.3) and (4.4) are equivalent to the following

equations:∑
i+j=n

µi(x, y, µj(z, v, w))

=
∑
i+j=n

µi(µj(x, y, z), v, w) + µi(z, µj(x, y, v), w) + µi(z, v, µj(x, y, w)),∑
i+j=n

ϕi(µj(x, y, z)) =
∑
i+j=n

µi(ϕj(x), y, z) + µi(x, ϕj(y), z) + µi(x, y, ϕj(z)).

All the identities hold for n = 0 as (T, ϕT ) is a LietsDer pair. For n = 1, we have

µ1(x, y, [z, v, w]T ) + [x, y, µ1(z, v, w)]T

= µ1([x, y, z]T , v, w) + [µ1(x, y, z), v, w]T + [z, µ1(x, y, v), w]T+

µ1(z, [x, y, v]T , w) + [z, v, µ1(x, y, w)]T + µ1(z, v, [x, y, w]T ), (4.5)

ϕ1([x, y, z]T ) + ϕT (µ1(x, y, z))

= µ1(ϕT (x), y, z) + [ϕ1(x), y, z]T + µ1(x, ϕT (y), z) + [x, ϕ1(y), z]T+

µ1(x, y, ϕT (z)) + [x, y, ϕ1(z)]T . (4.6)

The condition Eq. (4.5) is equivalent to d(µ1) = 0 whereas the condition Eq. (4.6) is equivalent

to d(ϕ1) + δ(µ1) = 0. Therefore, we have

∂(µ1, ϕ1) = 0.

Hence, we have the following.

Proposition 4.1 Let (µt, ϕt) be a formal one-parameter deformation of a LietsDer pair (T, ϕT ).

Then the linear term (µ1, ϕ1) is a 3-cocycle in the cohomology of the LietsDer pair T with

coefficients in itself.

The 3-cocycle (µ1, ϕ1) is called the infinitesimal of the deformation. In particular, if (µ1, ϕ1) =

· · · = (µn−1, ϕn−1) = 0 and (µn, ϕn) is non-zero, then (µn, ϕn) is a 3-cocycle.

Next we define a notion of equivalence between formal deformations of LietsDer pairs.
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Definition 4.2 Two deformations (µt, ϕt) and (µ′
t, ϕ

′
t) of a LietsDer pair (T, ϕT ) are said to be

equivalent if there exists a formal isomorphism Φt =
∑∞
i=0 t

iΦi : T [[t]] → T [[t]] with Φ0 = IdT

such that

Φt ◦ µt = µ′
t ◦ (Φt ⊗ Φt ⊗ Φt), Φt ◦ ϕt = ϕ′t ◦ Φt.

By equating coefficients of tn, we get∑
i+j=n

Φi ◦ µj =
∑

p+q+r+l=n

µ′
p ◦ (Φq ⊗ Φr ⊗ Φl),

∑
i+j=n

ϕ′i ◦ Φj =
∑

p+q=n

Φp ◦ ϕq.

The above identities hold for n = 0, for n = 1, we obtain

µ1 +Φ1 ◦ µ = µ′
1 + µ ◦ (Φ1 ⊗ Id⊗ Id) + µ ◦ (Id⊗ Id⊗ Φ1) + µ ◦ (Id⊗ Φ1 ⊗ Id), (4.7)

ϕT ◦ Φ1 + ϕ′1 = ϕ1 +Φ1 ◦ ϕT . (4.8)

These two identities together imply that

(µ1, ϕ1)− (µ′
1, ϕ

′
1) = ∂Φ1.

Thus, we have the following.

Proposition 4.3 The infinitesimals corresponding to equivalent deformations are cohomologous.

Hence, they correspond to the same cohomology class.

Definition 4.4 A deformation (µt, ϕt) of a LietsDer pair is said to be trivial if it is equivalent

to the undeformed deformation (µ′
t = µ, ϕ′t = ϕT ).

Definition 4.5 A LietsDer pair (T, ϕT ) is called analytically rigid, if every 1-parameter formal

deformation µt is trivial.

Theorem 4.6 If H3
LietsDer(T, T ) = 0, then every formal deformation of the LietsDer pair (T, ϕT )

is trivial.

Proof Let (µt, ϕt) be a deformation of the LietsDer pair (T, ϕT ). Then by Proposition 4.1, the

linear term (µ1, ϕ1) is a 3-cocycle. Therefore, (µ1, ϕ1) = ∂Φ1 for some Φ1 ∈ C1
LietsDer(T, T ) =

Hom(T, T ).

We set Φt = IdT + tΦ1 : T [[t]] → T [[t]] and define

µ′
t = Φ−1

t ◦ µt ◦ (Φt ⊗ Φt ⊗ Φt), ϕ′t = Φ−1
t ◦ ϕt ◦ Φt. (4.9)

By definition, (µ′
t, ϕ

′
t) is equivalent to (µt, ϕt). Moreover, it follows from Eq. (4.9) that

µ′
t = µ+ t2µ′

2 + · · · and ϕ′t = ϕT + t2ϕ′2 + · · · .

In other words, the linear terms vanish. By repeating this argument, we conclude the result. 2
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