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Abstract In this paper, we propose a new analysis framework to study the linear conver-

gence of relaxed operator splitting methods, which can be viewed as an extension of the classic

Krasnosel’skĭi-Mann iteration and Banach-Picard contraction. As applications, we derive the lin-

ear convergence of the generalized proximal point algorithm and the relaxed forward-backward

splitting method in a simple and elegant way.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ : H ×H → R and its induced norm

∥x∥ :=
√
⟨x, x⟩. A mapping T : H → H is nonexpansive if

∥T (x)− T (y)∥ ≤ ∥x− y∥, ∀x, y ∈ H.

Nonexpansive operators play a central role in modern optimization because the set of its fixed

points often represents solutions to optimization or inclusion problems [1]. In the process of

the research of iterative methods for finding fixed points of nonexpansive mappings, one of the

most famous fixed point methods is the Krasnosel’skĭi-Mann iteration [2, 3] and its iteration is

as follows:

xn+1 = (1− κ1)xn + κ1T (xn), (1.1)

which admits the weak convergence when κ1 ∈ (0, 1). If T is further assumed to be a firmly

nonexpansive operator (also called averaged with constant 1
2 , see Definition 2.1), the weak con-

vergence of {xn} generated by (1.1) can still be guaranteed when κ1 ∈ (0, 2). For the convergence

and sublinear convergence rate of (1.1), one can consult [4–8].

We now turn to the linear convergence rate of (1.1). On one hand, by means of the well-

known Banach contraction theorem [1], it is natural to assume T is contractive. In this situation,
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we know that (1 − κ1)I + κ1T is contractive if κ1 ∈ (0, 1 + µλ
2+µλ ), for example [9, Lemma 3.3].

Since contraction operator is firmly nonexpansive, there is a gap for the interval [1 + µλ
2+µλ , 2).

On the other hand, if T is negatively averaged (see Definition 2.2), it is known from [9] that the

sequence of {xn} generated by (1.1) is linearly convergent when κ1 ∈ (0, 2). From the perspective

of linear convergence, it is plausible that the negative averagedness assumption seems to be more

suitable than the conventional contraction assumption. Indeed, we should emphasize that the

recently proposed concept of negatively averaged operator plays a vital role in analyzing the

linear convergence of many classic operator splitting methods [9–11].

In this paper, we propose and study the linear convergence of the following algorithm

xn+1 = (1− κ1 − κ2)xn + κ1T1(xn) + κ2T2(xn), (1.2)

where κ1, κ2 ∈ (0, 1), T1 is averaged with constant α1 > 0 and T2 is negatively averaged with

constant α2 ∈ (0, 1). Obviously, (1.2) can be viewed as an extension of (1.1). However, the main

motivation for considering (1.2) roots in the relaxed forward-backward splitting method, whose

linear convergence was established in [10] recently. Besides, the classic generalized proximal point

algorithm (to be discussed in Section 4.1) can also be viewed as the special case of (1.2).

The rest of this paper is organized as follows. In Section 2, we recall some important defini-

tions and some known results for further analysis. The linear convergence of (1.2) is established

in Section 3. As applications, we recover the linear convergence of the generalized proximal point

algorithm and the relaxed forward-backward splitting method in Section 4.

2. Preliminaries

This section contains some important definitions and basic results that will be used in our

subsequent analysis.

Definition 2.1 ( [1, Definition 4.33]) Let D be a nonempty subset of H, and T : D → H
be nonexpansive, and let α ∈ (0, 1). Then T is averaged with constant α if there exists a

nonexpansive S such that

T = (1− α)I + αS.

Definition 2.2 ([9, Definition 3.7]) Let D be a nonempty subset of H, and T : D → H. Then

T : D → H is negatively averaged with constant θ ∈ (0, 1), if −T is averaged with constant θ,

that is T = (θ − 1)I + θS for some nonexpansive mapping S.

Definition 2.3 ([1, Definition 2.31]) Given A : H ⇒ H, the resolvent and the reflected operators

of A are denoted by

JA = (I +A)−1 and RA = 2JA − Id,

respectively.

Definition 2.4 ( [1, Definition 4.10]) Let D be a nonempty subset of H and β > 0. Then
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B : D → H is cocoercive with constant β if

⟨x− y,B(x)−B(y)⟩ ≥ β∥B(x)−B(y)∥2, ∀x, y ∈ D.

Lemma 2.5 ([1, Proposition 4.39]) Let B : H → H, β > 0 and λ ∈ (0, 2β). Then B is cocoercive

with constant β if and only if I − λB is averaged with constant λ
2β .

Definition 2.6 ([1, Definition 22.1]) Let µ > 0. An operator A : H ⇒ H is strongly monotone

with constant µ if

⟨u− v, x− y⟩ ≥ µ∥x− y∥2, ∀x, y ∈ H, u ∈ A(x), v ∈ A(y).

Lemma 2.7 ([10, Lemma 3.1]) Let λ > 0. Then A : H ⇒ H is strongly monotone with constant

µ if and only if RλA is negatively averaged with constant 1
1+λµ .

Theorem 2.8 ([1, Theorem 1.50]) Let (X,d) be a complete metric space and let T : X → X

be Lipschitz continuous with constant σ ∈ (0, 1). Given x0 ∈ X, set

xn+1 = T (xn).

Then there exists x ∈ X such that x is the unique fixed point of T . Moreover, {xn} converges

linearly to x.

3. Linear convergence for (1.2)

In this section, we prove the linear convergence of (1.2). For convenience, we set

T := (1− κ1 − κ2)I + κ1T1 + κ2T2.

Next, we need to prove the contractiveness of the operator T .

Theorem 3.1 Let T1 be averaged with constant α1 > 0 and T2 be negatively averaged with

constant α2 > 0. Assume that

κ1 ∈ [0, 1), κ2 ∈ (0, 1), α2 ∈ (0, 1), κ2 + κ1α1 < 1. (3.1)

Then the operator T is contractive. More precisely,

• If 1−2κ2−κ1α1+κ2α2 ≥ 0, then the operator T is contractive with constant 1−2κ2+2κ2α2.

• If 1−2κ2−κ1α1+κ2α2 < 0, then the operator T is contractive with constant 2κ2−1+2κ1α1.

Proof Note that, by definition we have

T = (1− κ1 − κ2)I + κ1T1 + κ2T2

= (1− κ1 − κ2)I + κ1((1− α1)I + α1S1) + κ2((α2 − 1)I + α2S2)

= (1− 2κ2 − κ1α1 + κ2α2)I + κ1α1S1 + κ2α2S2,

where S1, S2 are nonexpansive operators. Thus, for any x, y ∈ H, it holds that

∥Tx− Ty∥ = ∥(1− 2κ2 − κ1α1 + κ2α2)(x− y) + κ1α1(S1(x)− S1(y)) + κ2α2(S2(x)− S2(y))∥

≤ |1− 2κ2 − κ1α1 + κ2α2| · ∥x− y||+ κ1α1 · ∥S1(x)− S1(y)∥+ κ2α2 · ∥S2(x)− S2(y)∥
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≤ |1− 2κ2 − κ1α1 + κ2α2| · ∥x− y∥+ κ1α1 · ∥x− y∥+ κ2α2 · ∥x− y∥

= (|1− 2κ2 − κ1α1 + κ2α2|+ κ1α1 + κ2α2) · ∥x− y∥.

Now, we divide the proof into two cases.

• If 1− 2κ2 − κ1α1 + κ2α2 ≥ 0, then we have

0 < 1− 2κ2 − κ1α1 + κ2α2 + κ1α1 + κ2α2 = 1 + 2κ2(α2 − 1) < 1, (3.2)

due to α2 ∈ (0, 1). This means T is contractive with 1− 2κ2 + 2κ2α2.

• If 1− 2κ2 − κ1α1 + κ2α2 < 0, we know

0 < 2κ2 − 1 + κ1α1 − κ2α2 + κ1α1 + κ2α2 = 2(κ2 + κ1α1)− 1 < 1, (3.3)

due to κ2 + κ1α1 < 1. This means T is contractive with 2κ2 − 1 + 2κ1α1.

Thus, the proof is completed. 2
Now, the linear convergence rate for (1.2) is stated in the following theorem.

Theorem 3.2 Let {xn} be the sequence generated by (1.2) and assume that (3.1) holds. Then

{xn} converges to the unique fixed point of T linearly. More precisely,

• If 1− 2κ2 − κ1α1 + κ2α2 ≥ 0, then we have

∥xn − x∗∥ ≤ (1− 2κ2 + 2κ2α2)
n · ∥x0 − x∗∥.

• If 1− 2κ2 − κ1α1 + κ2α2 < 0, then we have

∥xn − x∗∥ ≤ (2κ2 − 1 + 2κ1α1)
n · ∥x0 − x∗∥.

Proof We know from Theorem 3.1 that the operator (1−κ1−κ2)I+κ1T1+κ2T2 is contractive.

Then, it follows from Theorem 2.8 that the conclusions are true. The proof is thus completed. 2
4. Applications

Next, we will give the applications as follows.

4.1. Generalized proximal point algorithm

Let A : H ⇒ H be a maximal monotone operator. A fundamental problem is finding a zero

point of A:

0 ∈ A(x). (4.1)

We assume that the solution set of problem (4.1) is nonempty. The proximal point algorithm

(PPA), which traces back to [12, 13], has been playing an important role both theoretically and

algorithmically for (4.1). Starting from an arbitrary point x0 ∈ H, the iterative scheme of PPA

reads as

xn+1 := JλA(xn), (4.2)

where JλA := (I + λA)−1 denotes the resolvent operator of the maximal monotone operator A.

Since JλA is an averaged operator, it is known that sequence {xn} generated by (4.2) converges
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weakly to a point in Fix(JλA) = zero(A). Under the assumption that A is strongly monotone

with constant µ, the author in [13] showed that PPA (4.2) is linear convergence. This is clear

because in this case JλA is contractive in the sense that

∥JλA(x)− JλA(y)∥ ≤ 1

1 + µλ
· ∥x− y∥, ∀x, y ∈ H.

As studied by [14,15], the classic PPA (4.2) can be further relaxed to the following form:

xn+1 := (1− γ)xn + γJλA(xn), (4.3)

where γ ∈ (0, 2). Algorithm (4.3) is known as the generalized PPA (GPPA) in the literature.

Recall that JλA is averaged with constant 1
2 . For γ ∈ (0, 2), the sequence generated by (4.3)

converges weakly to a zero point of A. It is natural to ask whether or not the sequence generated

by (4.3) is linearly convergent under the assumption A is strongly monotone when γ ∈ (0, 2). If we

set T := (1−γ)I+γJλA, in view of JλA is contractive with constant 1
1+µλ , one has T is contractive

if γ ∈ (0, 1+ µλ
2+µλ ), for example, see [9, Lemma 3.3]. Thus, for the case γ ∈ [1+ µλ

2+µλ , 2), it is not

obvious to deduce the contraction of T if we directly use the contraction of JλA. In 2013, with

the help of the properties of the Yosida approximation operator [1, Definition 23.1] of maximal

monotone operator, Corman and Yuan [16] successfully showed the linear convergence for the

GPPA (4.3) under the above mentioned assumptions. More precise, they proved the following

results.

Theorem 4.1 ([16, Theorem 6.2]) Let A be strongly monotone with constant µ. Let {xn} be

the sequence generated by the GPPA (4.3) with γ ∈ (0, 2). Then {xn} converges to a root of A

on a linear rate. More precisely, for x∗ satisfying 0 ∈ A(x∗), we have the following:

• If 0 < γ ≤ 1 + 1
1+2µλ , then ∥xn − x∗∥ ≤ Kn · ∥x0 − x∗∥, where K :=

∣∣∣1− γλµ
1+λµ

∣∣∣.
• If 1 + 1

1+2µλ ≤ γ < 2, then ∥xn − x∗∥ ≤ |γ − 1|n · ∥x0 − x∗∥.
Unlike the classic PPA (4.2), we see that the analysis for the linear convergence of GPPA

(4.3) is more complicated. In essential, they divided the proof into three cases with careful

analysis [16]. Now, we give a new simple and short proof of the linear convergence of GPPA

(4.3). Indeed, the proof strategy relies on reformulating the GPPA (4.3) as the special case of

(1.2).

Proof Based on the reflected resolvent operator RλA, we can rewrite the GPPA (4.3) as

xn+1 =
(
1− γ

2

)
xn +

γ

2
·RλA(xn). (4.4)

Since A is strongly monotone with constant µ, it follows from Lemma 2.7 that RλA is 1
1+λµ

negatively averaged. Thus, (4.4) can be viewed as a special case of (1.2) with

T1 = 0, T2 = RλA, κ1 = 0, κ2 =
γ

2
.

In this setting, α1 = 0 and α2 = 1
1+λµ . Clearly, the assumption (3.1) holds if γ ∈ (0, 2). By

Theorem 3.2, we know {xn} is linearly convergent. Note that

1− 2κ2 − κ1α1 + κ2α2 = 1− γ +
γ

2
· 1

1 + λµ
.
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Then, 1 − 2κ2 − κ1α1 + κ2α2 ≥ 0 is equivalent to γ ≤ 1 + 1
1+2µλ . In this case, the contraction

parameter is 1 − 2κ2 + 2κ2α2 = 1 − γλµ
1+λµ . On the other hand, if 1 + 1

1+2µλ ≤ γ < 2, the

contraction parameter is 2κ2 − 1 + 2κ1α1 = γ − 1. The proof is thus completed. 2
4.2. Relaxed forward-backward splitting method

As another application of Theorem 3.1, we recover the linear convergence of the relaxed

forward-backward splitting method (FBSM) recently established in [10] for solving the following

zero point problem

0 ∈ A(x) +B(x),

where A : H → H is strongly monotone with constant µ and B : H → H is cocoercive with

constant β. Recall that, the relaxed FBSM reads as,

xn+1 = (1− γ)xn + γJλA(I − λB)(xn). (4.5)

The following theorem was established in [10].

Theorem 4.2 ( [10, Theorem 3.2]) Let A be strongly monotone with constant µ and B be

cocoercive with constant β. Let {xn} be the sequence generated by the relaxed FBSM (4.5).

Assume that

0 < γ < 2, 0 < λ < min
{
2β,

2β(2− γ)

γ

}
.

Then {xn} converges linearly to the optimal solution.

Proof Based on the reflected resolvent operator RλA, we can rewrite the relaxed FBSM (4.5)

as

xn+1 = (1− γ)xn +
γ

2
(I − λB)(xn) +

γ

2
RλA(I − λB)(xn). (4.6)

Note that, we know from Lemma 2.5 that I − λB is averaged with constant λ
2β if λ < 2β.

Moreover, we know from [10, Theorem 3.1] that RλA(I−λB) is negatively averaged with constant
κ

κ+1 , where κ = 1
λµ + λ

2β−λ . Thus, (4.6) can be viewed a special case of (1.2) with

κ1 = κ2 =
γ

2
, T1 = I − λB, T2 = RλA(I − λB).

In this setting, α1 = λ
2β and α2 = κ

κ+1 . Then, assumption (3.1) becomes

γ

2
∈ (0, 1),

γ

2
+

γ

2
· λ

2β
< 1, and λ < 2β,

which is equivalent to

0 < γ < 2, 0 < λ < min
{
2β,

2β(2− γ)

γ

}
.

Therefore, by assumption we know from Theorem 3.2 that T is contractive and the conclusion

follows from Theorem 2.8 immediately. The proof is thus completed. 2
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[2] M. A. KRASNOSEL’SKĬI. Two remarks on the method of successive approximations. Uspehi Mat. Nauk

(N.S.), 1955, 10: 123–127. (in Russian)

[3] W. R. MANN. Mean value methods in iteration. Proc. Am. Math. Soc., 1953, 4(3): 506–510.

[4] C. KANZOW, Y. SHEHU. Generalized Krasnosel’skĭi-Mann-type iterations for nonexpansive mappings in

Hilbert spaces. Comput. Optim. Appl., 2017, 67(3): 593–620.
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