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Abstract The purpose of this paper is to develop a method to construct the Pythagorean-

hodograph hyperbolic (PH-H) curves based on the good geometric properties of PH curves and

algebraic hyperbolic curves. The definition of Pythagorean-hodograph hyperbolic curves is given

and their properties are examined. By using hyperbolic basis functions and algebraic Bézier

basis functions respectively, two different necessary and sufficient conditions for a planar cubic

algebraic hyperbolic Bézier curve to be a PH curve are obtained. Moreover, cubic PH-H curves

are applied in the problem of G1 Hermite interpolation with determined closed form solutions.

Several examples serve to illustrate our method.

Keywords Pythagorean-hodograph curve; algebraic hyperbolic Bézier curve; G1 Hermite

interpolation
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1. Introduction

Pythagorean-hodograph (PH) curves, a kind of polynomial curves r(t) = (x(t), y(t)), t ∈ [0, 1]

with derivative components x′(t), y′(t) satisfying the condition

x′2(t) + y′2(t) = σ2(t)

for some polynomial σ(t), play significant role in the theory as well as in practical applications

of polynomial curves [1]. Because of their unique properties, such as exact representation of

polynomial arc length and rational offset, there has been a respectful amount of work devoted

to the PH curves since their first appearance [2–4]. Moreover, they have been widely used in

geometric modeling and CNC machining [5].

It is well known that Bézier basis is presented in the space spanned by {1, t, . . . , tn−2,

tn−1, tn}, and it is often used to represent polynomial PH curves in the previous research work

on PH curves. However, as shown by Mainar et al. [6], there still exist several limitations of

Bézier model and B-Spline model. For instance, it cannot accurately represent transcendental

curves such as hyperbola, catenary and exponential curves. In order to avoid the inconveniences

of the rational Bézier model, many scholars have proposed many bases in new spaces other than
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the polynomial space. Sánchez-Reyes [7] gave a basis for the space of trigonometric polynomials

{1, sint, cost, . . . , sinmt, cosmt}. In [8], Chen and Wang constructed C-Bézier basis of the space

spanned by {1, t, . . . , tn−2, sint, cost} which can represent exactly transcendental curves such as

helix and cycloid. Furthermore, the Pythagorean-hodograph cycloidal curves (PHC curves) were

proposed and a necessary and sufficient condition for a cubic plane C-Bézier curve to be a PHC

curve was obtained in [9]. Li and Wang [10] constructed a basis for the algebraic hyperbolic

space spanned by {1, t, . . . , tn−2, sinht, cosht} and studied the algebraic hyperbolic (AH) Bézier

curves. Tan et al. [11, 12] discussed the problem of interpolation, splicing and segmentation by

AH Bézier curve.

In recent years, a lot of work have been given in the literature to deal with the problem

of G1 Hermite interpolation. The G1 interpolation problem by cubic optimized geometric Her-

mite curves was presented and a general algorithm to construct such interpolation was described

in [13]. Wu and Yang [14] proposed techniques of interpolation of intrinsically defined curves to

geometric Hermite data. Jaklič and Žagar [15] constructed cubic G1 interpolatory splines by tak-

ing tangent directions as unknowns, thereby relaxing conditions on admissible regions for tangent

directions. Various types of spirals that have monotone curvatures were also used for interpola-

tion of G1 Hermite data [16, 17]. Besides, Kozak et al. [18] gave a geometric characterization of

PHC curves, and the Hermite interpolation problem by PHC curves was also studied.

In this paper, polynomial PH curves are extended to algebraic hyperbolic space. Firstly,

we define Pythagorean-hodograph hyperbolic curves based on AH Bézier curves and PH curves.

Secondly, two necessary and sufficient conditions for planar cubic AH Béziers to be PH-H curves

are presented. Furthermore, the problem of G1 Hermite interpolation with PH-H curves is

outlined. The analysis shows that there may be one, two or no solutions depending on the

data supplied, similar to the case of cubic PHC curves. Finally, some examples are used to

demonstrate the practicability of our method.

The remainder of this paper is organized as follows. In Section 2, we review the properties

of AH Bézier curves and introduce the definition of PH-H curves. Section 3 gives two necessary

and sufficient conditions of planar cubic AH Bézier curves to be PH-H curves by two different

bases. In Section 4, the problem of G1 Hermite interpolation with cubic PH-H curves is outlined.

Finally, we conclude the paper in Section 5.

2. Algebraic hyperbolic Bézier curves

Let us consider the PH condition applied to n-hyperbolic curves based upon the space

Γn = span{1, t, . . . , tn−2, sinht, cosht}. The definition of algebraic hyperbolic Bézier curve and

its related theorems and corollaries are as follows.

The AH Bézier basis functions start with the two initial functions

Z0,1(t) =
sinh(α− t)

sinhα
, Z1,1(t) =

sinht

sinhα
, t ∈ [0, α], α ∈ (0,+∞).
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For n > 1, the AH Bézier basis functions {Zi,n} of the space Γn are defined recursively as

Z0,n(t) =1−
∫ t

0

δ0,n−1Z0,n−1(s)ds,

Zi,n(t) =

∫ t

0

δi−1,n−1Zi−1,n−1(s)− δi,n−1Zi,n−1(s)ds, i = 1, 2, . . . , n− 1,

Zn,n(t) =

∫ t

0

δn−1,n−1Zn−1,n−1(s)ds,

where

δi,n =
1∫ α

0
Zi,n(t)dt

.

One can refer to [10] for the details of AH Bézier curves and their properties.

The cubic AH Bézier curve is a kind of special curves generated in algebraic hyperbolic mixed

space Γ3 = span{1, t, sinht, cosht}. It retains the advantages of Bézier curve and can represent

transcendental curve such as catenary. It can be expressed as

P (t) =
3∑

i=0

biZi,3, t ∈ [0, α], α ∈ (0,+∞), (2.1)

where {bi} ∈ R2 are control points and {Zi,3} are the AH Bézier basis of Γ3 defined as

Z0,3(t) =
(α− t)− sinh(α− t)

α− sinhα
, Z3,3(t) =

t− sinht

α− sinhα
,

Z1,3(t) =M [
αcoshα− tcoshα− sinhα+ sinht

αcoshα− sinhα
− Z0,3(t)],

Z2,3(t) =M [
sinh(α− t) + tcoshα− sinhα

αcoshα− sinhα
− Z3,3(t)],

with

M =
αcoshα− sinhα

αcoshα− 2sinhα+ α
.

Note that the functions {Zi,3} form the partition of unity and have symmetry, i.e.,

3∑
i=0

Zi,3(t) = 1, Z0,3(t) = Z3,3(α− t), Z1,3(t) = Z2,3(α− t).

Definition 2.1 A planar algebraic hyperbolic Bézier curve P (t) = (x(t), y(t)) ∈ Γn, that has

derivative components x′(t), y′(t) satisfying x′2(t)+y′2(t) = σ2(t) for some σ(t) ∈ Γn−1, is called

a Pythagorean-hodograph hyperbolic (PH-H) curve.

Lemma 2.2 ([9]) Three real polynomials a(t), b(t) and c(t) satisfy the condition

a2(t) + b2(t) = c2(t)

iff

a(t) = w(t)(u2(t)− v2(t)), b(t) = 2w(t)u(t)v(t), c(t) = w(t)(u2(t) + v2(t)),

where u(t), v(t) and w(t) are real polynomials.
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3. Planar cubic Pythagorean-hodograph hyperbolic curves

Two different necessary and sufficient conditions for planar cubic AH Bézier curves to be

PH-H curves by two different bases are proposed in this section.

3.1. The necessary and sufficient condition of cubic PH-H curve based on hyperbolic

basis functions {1, t, sinht, cosht}

In this section, we will discuss the necessary and sufficient condition that a cubic AH Bézier

curve is PH-H curve using the hyperbolic basis functions {1, t, sinht, cosht}. A cubic AH Bézier

curve P (t) ∈ Γ3 has the general form

P (t) = v0sinht+ v1cosht+ v2t+ v3, (3.1)

where vi = (vix, viy), i = 0, 1, 2, 3. Then by Definition 2.1 and Lemma 2.2, we have the following

result.

Theorem 3.1 Suppose that a cubic AH Bézier curve P (t), distinct from a line segment, is given

in the form (3.1). The necessary and sufficient conditions for P (t) to be a PH-H curve is that

there exist real numbers x1, x2, y1, y2 such that (v0x, v1x, v2x) = (
1

2
(y21 − y22 + x2

1 − x2
2), x1y1 − x2y2,

1

2
(y21 − y22 − x2

1 + x2
2)),

(v0y, v1y, v2y) = (y1y2 + x1x2, x1y2 + x2y1, y1y2 − x1x2).
(3.2)

Proof If P (t) = (x(t), y(t)) is a PH-H curve, by Definition 2.1, we have

χ2
1 + χ2

2 = χ2
3, (3.3)

where χ1(t) = x′(t), χ2(t) = y′(t), χ3(t) = σ(t) ∈ Γ2 = span{1, sinht, cosht}. For simplicity, let

us define

v0 = (a1, a2), v1 = (b1, b2), v2 = (c1, c2),

χ3(t) = a3cosh(t) + b3sinh(t) + c3 ∈ Γ2.

Then by (3.1), we have

χi(t) = aicosh(t) + bisinh(t) + ci ∈ Γ2, i = 1, 2.

Let s = tanh( t2 ), according to hyperbolic function identities,

χi =
(ai − ci)s

2 + 2bis+ (ai + ci)

1− s2
=

gi(s)

1− s2
, i = 1, 2, 3. (3.4)

Substituting (3.4) into expression (3.3), we have

g21(s) + g22(s) = g23(s). (3.5)

Since gi(s), i = 1, 2, 3 are polynomials of degree n ≤ 2, from Lemma 2.2, the equation (3.5) holds

iff there are real polynomials

u = x1s+ y1, v = x2s+ y2
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such that

g1(s) = u2 − v2 = (x2
1 − x2

2)s
2 + 2(x1y1 − x2y2)s+ y21 − y22 ,

g2(s) = 2uv = 2x1x2s
2 + 2(x1y2 − x2y1)s+ 2y1y2,

g3(s) = u2 + v2 = (x2
1 + x2

2)s
2 + 2(x1y1 + x2y2)s+ y21 + y22 ,

where x1, x2, y1, y2 are real numbers. Substituting gi(s) into (3.4), we have

(a1, b1, c1) = (
1

2
(y21 − y22 + x2

1 − x2
2), x1y1 − x2y2,

1

2
(y21 − y22 − x2

1 + x2
2)),

(a2, b2, c2) = (y1y2 + x1x2, x1y2 + x2y1, y1y2 − x1x2),

(a3, b3, c3) = (
1

2
(y21 + y22 + x2

1 + x2
2), x1y1 + x2y2,

1

2
(y21 + y22 − x2

1 − x2
2)).

Then the necessary and sufficient condition for AH Bézier curve P (t) to be PH curve is ob-

tained. 2
By the basis transformation formula, the AH Bézier control points {bi} of the curve P (t) in

(2.1) satisfy the following relations

(v0,v1,v2,v3)
T = A(b0, b1, b2, b3)

T , (3.6)

where

A =
1

α− S


C K − CM M − CK −1

−S SM SK 0

−1 M − CK CK −M 1

α −MS −SK 0

 ,

S = sinhα, C = coshα, K =
α− S

αC − 2S + α
.

The following two examples are used to illustrate Theorem 3.1. All of the calculations are carried

out on a PC with 8 GHz cpu.

-600 -500 -400 -300 -200 -100 0

-20

-10

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50 55
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

(a) Λ1 (b) Λ2

Figure 1 The cubic PH-H curves obtained by taking Λ1 and Λ2, respectively

Example 3.2 Consider the data

Λ1 = {α, x1, y1, x2, y2, c1, c2} = {2π,−4, 4,−1, 3, 0, 0},
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and

Λ2 = {α, x1, y1, x2, y2, c1, c2} = {π, 2, 1, 5,−5, 1, 1},

respectively, in Figure 1. The solution in Figure 1(a) corresponds to the values

v0 = (11, 16), v1 = (−13, −16), v2 = (−4, 8), v3 = (0, 0),

and to four decimal places, the control points of the cubic PH-H curve are

b0 = (−13.0000, −16.0000), b1 = (−6.1387, 7.5245),

b2 = (−31.8661, 42.3648), b3 = (−560.6468, 50.2356),

while the interpolant in Figure 1 (b) corresponds to the real solution

v0 = (−22.5, 5), v1 = (27, −5), v2 = (−1.5, −15), v3 = (1, 1),

with

b0 = (28.0000, −4.0000), b1 = (8.9505, −11.9373),

b2 = (10.1365, −34.6055), b3 = (49.4237, −46.3400).

It can be easily checked that the resulting cubic curves accords with the definition of PH-H

curves.

Note that the necessary and sufficient conditions on the control points in Theorem 3.1 are

expressed as functions in x1, x2, y1, y2. But such expressions have less geometric meanings. Next

we investigate the conditions to express the control points geometrically.

Figure 2 △b0Ob3 and the control polygon b0b1b2b3

Given a triangle △b0Ob3, let the length ratio of its two sides be ∥Ob3∥
∥b0O∥ = ρ > 0, ∠b0Ob3 =

β > 0 (see in Figure 2). If two points b1 and b2 are obtained on b0O and Ob3 respectively, then

b0 and b3 are the end control points, and b0b1b2b3 is the control polygon of AH Bézier curve.

Note the vector e1 = O − b0, e2 = b3 −O, then the coordinates of b0 and b3 can be expressed

as {
b1 = λe1 + b0,

b2 = b3 − µe2,

where 0 ≤ λ, µ ≤ 1 are real numbers.

Next, we will discuss what conditions (λ, µ) meets when the AH Bézier curve obtained by the

above method is a PH curve. Since the AH Bézier curve has rotation, translation, and expansion
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invariance, the vertex O of △b0Ob3 is taken as the origin, Ob0 is the straight line where the

x-axis is located and b0 = (1, 0). Then e1 = (−1, 0), e2 = ρ(cosβ, sinβ) and the coordinates of

the control vertices are

P (β, ρ, λ, µ) = (b0, b1, b2, b3) = ((1, 0), (1− λ, 0), (1− µ)ρ(cosβ, sinβ), ρ(cosβ, sinβ)). (3.7)

From (3.6) and (3.7), we have

v0 =
1

α− S
[C − (λ− 1)(K − CM)− ρcosβ − (µ− 1)(M − CK)ρcosβ,

− ρsinβ − (µ− 1)(M − CK)ρsinβ],

v1 =
1

α− S
[−S −MS(λ− 1)−KS(µ− 1)ρcosβ, −KS(µ− 1)ρsinβ], (3.8)

v2 =
1

α− S
[−(λ− 1)(M − CK)− 1 + ρcosβ + (µ− 1)(M − CK)ρcosβ,

ρsinβ + (µ− 1)(M − CK)ρsinβ].

If the curve is a PH curve, it can be known from Theorem 3.1 that

v0 + v2 =
1

α− S
(C − 1− (λ− 1)(K − CM +M − CK), 0) = (y21 − y22 , 2y1y2),

so we have y1 = 0, it is not difficult to verify that for a given (β, ρ), the system

F (β, ρ) :

{
h1 = (v0x + v2x)v0y − v1xv1y = 0,

h2 = (v20x − v22x)− v21x + v21y = 0,
(3.9)

has a solution (λ, µ) ∈ [0, 1; 0, 1], where vix, viy is shown in (3.8), see Appendix I for details. That

is, the AH Bézier curve obtained by using (3.7) as the control points and the curve obtained by

the rotation, translation, and expansion of the curve are all PH curves. Therefore, the following

theorem can be obtained.

Theorem 3.3 Given a △(β, ρ) = b0Ob3, 0 < β < π, ρ > 0. Then as long as the points b1 and

b2 are selected on the two edges b0O, Ob3, respectively, and satisfy

∥b1 − b0∥
∥O − b0∥

= λ,
∥b3 − b2∥
∥b3 −O∥

= µ,

where (λ, µ) is the solution of the equation (3.9) in [0,1;0,1], the cubic AH Bézier curve generated

by b0b1b2b3 is a PH curve.

The AH Bézier curve has a symmetrical property, that is, the AH Bézier curve generated by

the control vertex b0b1b2b3 and the AH Bézier curve generated by the control vertex b3b2b1b0

are the same curve, and they only differ by one parameter transformation. Therefore, we have

the following result.

Corollary 3.4 Given △(β, ρ) = b0Ob3, if the ratio (λ∗, µ∗) is selected according to Theorem

3.3, the AH Bézier curve generated by the control points is a PH curve, that is, (λ∗, µ∗) is the

solution of the system F (β, ρ) in [0,1;0,1]. Then for △(β, 1
ρ ) = b3Ob0, the AH Bézier curve

generated with the control points selected by the ratio (µ∗, λ∗) is also a PH curve, and (µ∗, λ∗)

is the solution of the equation system F (β, 1
ρ ) in [0, 1; 0, 1].
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Example 3.5 Figure 3 is presented to illustrate Theorem 3.3. Taking α = π
4 , we can construct

a cubic PH-H curve starting from a △(β, ρ) = b0Ob3 with b0 = (1, 0), b3 = (
√
2
2 ,

√
2
2 ), i.e.,

(β, ρ) = (π4 , 1). By calculating the equation system F (β, ρ), we can get

(λ, µ) = (0.4373, 0.4373).

Then by (3.7), we have

b1 = (0.5627, 0.0000), b2 = (0.7071, 0.7071).
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Figure 3 Example 3.5

3.2. The necessary and sufficient condition of cubic PH-H curve based on AH Bézier

basis functions {Zi,3}3i=0

Now we will discuss the necessary and sufficient condition that a cubic AH Bézier curve is

PH-H curve using the AH Bézier basis functions {Zi,3}3i=0. The curve P (t) in the form of (2.1)

is a PH-H curve if its parametric speed σ satisfies

σ ∈ Γn−1, σ2 = Ṗ (t)T Ṗ (t).

Here, xTy denotes the scalar product of x,y ∈ R2, ∥x∥ =
√
xTx the Euclidean norm of x, and

Ṗ (t) denotes the derivation of P with respect to t.

We assume △bi = bi+1 − bi a forward difference of control points. From (2.1) and the

partition of unity, we obtain

P (t) =

3∑
i=0

biZi = b0 +

2∑
i=0

△bi

3∑
j=i+1

Zj .

Obviously, the hodograph of P (t) can be expressed as

Ṗ (t) = △b0w0 +△b1w1 +△b2w2, (3.10)

where

wi =

3∑
j=i+1

Żj(t), i = 0, 1, 2,

and further in the closed form

w0 =
1− cosh(α− t)

α− sinhα
, w2 =

1− cosht

α− sinhα
,
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w1 =
1− cosh(α− t) + coshα− cosht

α− 2sinhα+ αcoshα
.

Denote

w =

w0

w1

w2

 , G =

 ∥△b0∥2 △bT0 △b1 △bT0 △b2

△bT0 △b1 ∥△b1∥2 △bT1 △b2

△bT0 △b2 △bT1 △b2 ∥△b2∥2

 , (3.11)

and

φij = ∠(△bi,△bj), φij ∈ [0, π]. (3.12)

Note that △bTi △bj = ∥△bi∥∥△bj∥cosφij , and the matrix introduced in the (3.11) is Gram

matrix of the differences of control points, thus symmetric and positive semidefinite. If (△bi)
2
i=0

are linearly independent, it is actually positive definite, and in this case P (t) is necessarily

regular [18]. In this notation, the parametric speed σ of an AH Bézier curve satisfies

σ2(t) = Ṗ (t)T Ṗ (t) = (w0, w1, w2)G

w0

w1

w2

 = w(t)TGw(t), t ∈ [0, α]. (3.13)

For cubic polynomial curves, there exist simple necessary and sufficient condition on Bézier

control polygon to be a PH curve [1,19]. Kozak et al. [18] presented the necessary and sufficient

condition of a cycloidal curve to be a PHC curve. Similarly, we can obtain the following result.

Theorem 3.6 Suppose that a cubic AH Bézier curve P (t), distinct from a line segment, is

given in the AH Bézier form (2.1). If all control points are pairwise distinct, i.e., bi+1 ̸= bi,

i = 0, 1, 2, the necessary and sufficient conditions for P (t) to be a PH-H curve are

φ01 = φ12 and
∥△b0∥∥△b2∥

∥△b1∥2
= ρ(α)(

1− cos2φ01

1− cosφ02
), (3.14)

where

ρ(α) =
(2αeα − e2α + 1)2e−α

2(αeα + α+ 2− 2eα)2
> 0,

and the angles φij are introduced in (3.12). For a cubic PH-H curve, the parametric speed σ is

given as

σ =
2∑

i=0

σiwi = ∥△b0∥w0 + cosφ01∥△b1∥w1 + ∥△b2∥w2.

If at least one of the control point difference △bi, i = 0, 1, 2 vanishes, a cubic PH-H curve P (t)

reduces to a line segment.

Example 3.7 Figure 4 presents an example of cubic AH Bézier curve with the parameter α = π.

Its control points are

b0 = (2.0000, −3.0000), b1 = (−0.3812, 0.1749),

b2 = (−3.6182, 2.1153), b3 = (−9.4435, 3.0120).
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By Theorems 3.1 or 3.3, it can be easily checked that it is a cubic PH-H curve. Moreover, we

can easily get

φ01 = φ12 = 22.1895◦, φ02 = 44.3788◦, ρ(α) = 3.2844,

∥△b0∥∥△b2∥
∥△b1∥2

= 1.6422 = ρ(α)(
1− cos2φ01

1− cosφ02
).

Therefore, it satisfies the conditions in Theorem 3.6.

-10 -8 -6 -4 -2 0 2

-6

-4

-2

0

2

4

6

Figure 4 Example 3.7

Remark 3.8 For the two cubic PH-H curves in Example 3.2, it can be easily checked that

φ01 = φ12 = 52.7037◦, φ02 = 105.4074◦,

∥△b0∥∥△b2∥
∥△b1∥2

= ρ(α)(
1− cos2φ01

1− cosφ02
) = 6.9087,

and

φ01 = φ12 = 70.3751◦, φ02 = 140.7501◦,

∥△b0∥∥△b2∥
∥△b1∥2

= ρ(α)(
1− cos2φ01

1− cosφ02
) = 1.6422,

respectively. Obviously, they both satisfy the conditions in Theorem 3.6.

4. The G1 Hermite interpolation with cubic PH-H curves

In this section, by recalling the representation of a cubic PH-H curve in Section 3, we consider

the problem of interpolating planar G1 Hermite data by a cubic PH-H curve.

4.1. Hermite interpolation

Consider the construction of a planar PH-H cubic curve P (t) with given end points P0, P1

(P0 ̸= P1), and two normalized tangent direction d0, d1. Find a cubic PH-H curve P (t) which

interpolates these data in a geometric G1 sense, i.e., the curve should satisfy the interpolation

conditions

P (0) = P0, P (α) = P1, Ṗ (0) = λ0d0, Ṗ (α) = λ1d1,
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where λ0 and λ1 are unknown tangent lengths that should be positive. Since

w(0) =


1−coshα
α−sinhα

0

0

 =


1

ν(α)

0

0

 , w(α) =

 0

0
1

ν(α)

 ,

from (3.10), the Ṗ (0) and Ṗ (α) can be computed as

Ṗ (0) = w0(0)△b0 =
1

ν(α)
△b0, Ṗ (α) = w2(α)△b2 =

1

ν(α)
△b2,

then the control points {bi} can be expressed as

b0 = P0, b1 = P0 + λ0ν(α)d0, b2 = P1 − λ1ν(α)d1, b3 = P1 (4.1)

where two unknowns λ0 and λ1 can be determined by the PH-H condition (3.14). Let us define

constants that depend entirely on the data

δ = ∥△P0∥ = ∥P1 − P0∥, cij = cosθij ,

where

θ01 = ∠(d0,△P0), θ12 = ∠(△P0,d1), θ02 = ∠(d0,d1).

Since

△b0 = λ0ν(α)d0, △b1 = △P0 − ν(α)(λ0d0 + λ1d1), △b2 = λ1ν(α)d1,

from the first equation in (3.14), we have the equations

cosφ01 = cosφ12 =⇒ △b0△b1
∥△b0∥∥△b1∥

=
△b1△b2

∥△b1∥∥△b2∥
,

then we get the function for the unknowns λ0 and λ1

e1(λ0, λ1) = (c01 − c12)δ + (c02 − 1)ν(α)(λ0 − λ1).

Similarly, from the second equation in (3.14), we can get

e2(λ0, λ1) =λ0λ1ν(α)
2(1− c02)− ρ(α)(∥△b0∥2 − (dT

0 △b1)
2)

=ρ(α)δ2(c201 − 1) + 2ρ(α)ν(α)λ1δ(c12 − c01c02)+

λ0λ1ν(α)
2(1− c02).

Since the first function is linear and the second one quadratic, the non-linear system (e1(λ0, λ1),

e2(λ0, λ1)) = (0, 0) has two solution pairs. With the help of the functions

h(z, α) =ρ(α)(z2 − 1)− z + 1,

g1(x, y, z, α) =2ρ(α)(xz − y) + y − x,

g2(x, y, z, α) =− 4ρ(α)(x2 − 1)h(z, α) + g1(x, y, z, α)
2, (4.2)

ζ±(x, y, z, α) =
2ρ(α)δ(x2 − 1)

ν(α)(g1(x, y, z, α)∓
√
g2(x, y, z, α))

the two solutions (λ0,i, λ1,i), i = 1, 2 are simplified to

λ0,1 = ζ+(c12, c01, c02, α), λ1,1 = ζ+(c01, c12, c02, α),
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λ0,2 = ζ−(c12, c01, c02, α), λ1,2 = ζ−(c01, c12, c02, α). (4.3)

Obviously, g2 must be nonnegative to obtain real solutions. Moreover, to ensure λ0, λ1 to be

positive numbers, the specific conditions must be imposed on c01, c12, c02. The following theorem

gives the necessary and sufficient condition for G1 Hermite interpolation with cubic PH-H curves,

together with the exact number of solutions.

Theorem 4.1 Suppose that the data d0,d1,P0 and P1 are prescribed and let |c01| < 1, |c12| < 1,

the interpolation problem has three cases as follows:

• There is precisely one interpolation determined by (λ0,1, λ1,1) in (4.3), iff

−1 ≤ c02 < ϑ(α) = −1 +
1

ρ(α)
or c02 = ϑ(α), c01 + c12 > 0.

• The interpolation problem has two solutions given by the pairs (λ0,1, λ1,1) and (λ0,2, λ1,2),

iff

ϑ(α) < c02 < 1, c01 + c12 > 0, g2(c01, c12, c02, α) ≥ 0.

The two solution pairs coincide iff g2(c01, c12, c02, α) = 0.

• Otherwise, there are no solutions.

It is noted that the proof process is similar to the PHC curve in reference [18].

4.2. Examples

To illustrate our method in operation, some numerical examples are provided. To facilitate

the analysis, it is convenient to use canonical form data with P0 = (0, 0), P1 = (1, 0).

Example 4.2 Let us consider a planar Hermite interpolation data

d0 = (cos
4π

3
, sin

4π

3
), d1 = (cos

−7π

4
, sin

−7π

4
), α =

π

2
.
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Figure 5 Example 4.2

For this example, since c02 = −0.9659, ϑ(α) = −0.5582, so −1 ≤ c02 < ϑ(α). According to

the first case of Theorem 4.1, there is only one solution

λ0,1 = 0.8424, λ1,1 = 2.1109.
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By (4.1), the corresponding control points are

b0 = (0.0000, 0.0000), b1 = (−0.2039, −0.3531),

b2 = (0.2775, −0.7225), b3 = (1.0000, 0.0000)

as shown in Figure 5.

Example 4.3 Suppose that the given data are

d0 = (cos
π

3
, sin

π

3
), d1 = (cos

−0.16π

4
, sin

−0.16π

4
), α =

π

4
,

as shown in Figure 6. It can be easily checked c02 = 0.3875, ϑ(α) = −0.5152, c01+c12 = 1.4921 >

0, g2(c01, c12, c02, α) = 0.7907 > 0. Therefore, by Theorem 4.1, there are two different solutions

in this case. The red curve in Figure 6 corresponds to the parameters

λ0,1 = 0.1360, λ1,1 = 3.2680,

and the resulting control points are

b0 = (0.0000, 0.0000), b1 = (0.0174, 0.0302),

b2 = (0.1683, 0.1051), b3 = (1.0000, 0.0000),

while the blue interpolant corresponds to the real solution

λ0,2 = 3.1753, λ1,2 = 6.3074,

with the control points

b0 = (0.0000, 0.0000), b1 = (0.4073, 0.7054),

b2 = (−0.6053, 0.2028), b3 = (1.0000, 0.0000).
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Figure 6 Example 4.3

Example 4.4 For the data

d0 = (cos
π

3
, sin

π

3
), d1 = (cosπ, sinπ), α =

π

4
.

Note that c01 + c12 = −0.5000 < 0, by Theorem 4.1, there exists no admissible solution.

Namely, the tangent lengths (λ0,i, λ1,i), i = 1, 2 are all non-positive numbers.
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The above examples demonstrate that the PH-H cubic curves by our method achieve the

desired results that preserve tangent directions at the end points with prescribed end points.

This method can be applied to shape design since it can conveniently display the intended

interpolation effects.

5. Conclusion

AH Bézier curve is a new kind of curve modeling tools proposed in recent years. As a

generalization of Bézier curve, it has been widely used in CAD/CAM. By appealing to the ad-

vantageous features of PH curves, the present work proposes PH-H curve based on the properties

of AH Bézier curve. Significantly, we give the necessary and sufficient conditions of cubic PH-H

curve by two different methods. The first method is simple and extraordinary speedy to con-

struct PH-H curves, while the second one is more convenient to extend the curve from the plane

to the n-dimension space. Moreover, the problem of constructing a planar cubic G1 Hermite

interpolation with given end points and end tangents is also addressed in this paper using the

second definition.

By appealing to the excellent characteristics of PH-H curves, this study is only a basic

investigation into the planar cubic PH-H curve. There are several interesting directions in which

the present results may possibly be extended, including interpolation of higher-order data, planar

quintic PH-H curves, spatial PH-H curves and so on.
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Appendix I: Proof

For the equation (3.9), h1 is a first order equation for λ, which can be obtained as:

λ(µ) =
(µ− 1)(α− sinhα)2(ρµcosβ − ρcosβ + 1)

(3− 4coshα+ cosh2α+ 2αsinhα− α2coshα)µ+ (2αsinhα− cosh2α− α2 + 1)

=
m(µ)

n(µ)
.

(5.1)

Substituting it into h2, a fourth-order polynomial h2(µ) about µ can be obtained and

h2(0) = h20(α) =
ρ2sinh2αsin2β

(α− 2sinhα+ αcoshα)2
,

h2(1) = h21(α) =
−sinh2α

(α− 2sinhα+ αcoshα)2
.

So h20(α) > 0, h21(α) < 0 for α ∈ (0,+∞). From the continuity of the function, we know that

h2(µ) has at least one solution in [0,1]. Suppose one of the solutions is µ∗, then we can get

λ∗ = λ(µ∗) from (5.1).

Note that n(µ) in (5.1) is a linear function with respect to µ, and it can be easily checked that

the coefficient of µ: f(α) = 3−4coshα+cosh2α+2αsinhα−α2coshα is increasing for α ∈ [0,+∞),

so f(α) ≥ f(0) = 0. Then n(µ) is increasing and n(µ∗) ≤ n(1) = 4αsinhα − 4coshα − α2 −
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α2coshα+ 4 ≤ 0. On the other hand, when ρcosβ ≤ 1, m(µ∗) ≤ 0; when ρcosβ ≥ 0,

m(µ∗)− n(µ∗) =(1− µ∗)(α− sinhα)2((1− µ∗)ρcosβ − 1)− n(µ∗)

≥(µ∗ − 1)(α− sinhα)2 − n(µ∗) = −µ∗ · n(1) ≥ 0,

so when 0 ≤ ρcosβ ≤ 1, there is λ∗ = λ(µ∗) ∈ [0, 1]. When ρcosβ ≥ 1, consider constructing a

curve from △(β, 1
ρ ) = b3Ob0. The corresponding equation system is F (β, 1

ρ ). Since 1
ρcosβ ≤ 1,

there is a solution. According to Corollary 3.4, there is also a solution for the equation system

F (β, ρ).
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