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Abstract For a graph G, the first leap Zagreb index is defined as LM1(G) =
∑

v∈V (G) d2(v/G)2,

where d2(v/G) is the 2-distance degree of a vertex v in G. Let QT (k)(n) be the set of k-

generalized quasi-trees with n vertices. In this paper, we determine the extremal elements from

the set QT (k)(n) with respect to the first leap Zagreb index.
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1. Introduction

The graph generally means a simple undirected graph G with vertex set V (G) and edge set

E(G). We write |G| for the order of G. In this paper, we always consider simple graphs which

have no loop or multiple edges. The distance d(u, v) between any two vertices u, v ∈ V (G), is

equal to the length of (number of edges in) a shortest path connecting them. The eccentricity of

v is defined as εG(v) = max{d(u, v)|u ∈ V (G)}. The diameter of G is diam(G) = max{εG(v)|v ∈
V (G)}. For a vertex v ∈ V (G) and a positive integer k, the open k-neighborhood of v in the graph

G, denoted by Nk(v/G), is defined as Nk(v/G) = {u ∈ V (G) : d(u, v) = k}. The k-distance

degree of a vertex v in G, denoted by dk(v/G), is the number of k-neighbors of the vertex v in G,

i.e., dk(v/G) = |Nk(v/G)|. For simplicity, write d1(v/G) = d(v/G) andN1(v/G) = N(v/G). The

degree sequence of G is a sequence of positive integers π = (d1, d2, . . . , dn) if di = d(vi/G) (i =

1, . . . , n) holds, where V (G) = {v1, v2, . . . , vn}. The minimum degree in a graph G is denoted by

δ(G).

For a vertex v ∈ V (G), the graph G− v is a graph obtained from G by removing the vertex

v and its incident edges. For any subset S ⊆ V (G), let G − S be the graph obtained from G

by removing all the vertices of S and its incident edges. In a graph G, if there exists a vertex

v ∈ V (G) such that G− v is a tree, then such a vertex v is called a quasi vertex and the graph G

is called a quasi-tree (or an apex tree). Similarly, a graph G with |G| = n is called a k-generalized

Received March 26, 2021; Accepted September 22, 2021

Supported by the Foundation of Henan Department of Science and Technology (Grant No. 182102310830), the

Foundation of Henan University of Engineering (Grant No.D2016018) and the Foundation of Henan Educational

Committee (Grant Nos. 20A110016; 2020GGJS239).

* Corresponding author

E-mail address: sunpeikk@sina.com (Pei SUN); wyclk@163.com (Kai LIU)



222 Pei SUN and Kai LIU

quasi-tree (or a k-apex tree), if there exists a subset Vk ⊆ V (G) with |Vk| = k such that G− Vk

is a tree but for any other subset Vk−1 ⊆ V (G) with |Vk−1| ≤ k− 1, G− Vk−1 is not a tree. The

quasi-tree and the k-generalized quasi-tree were introduced in [1,2]. In a tree T , deletion of any

vertex v with d(v/T ) = 1 will deduce another tree, which implies that any tree is a quasi-tree.

Trees are called trivial quasi-trees and other quasi-trees are called non-trivial quasi-trees. Let

QT (k)(n) be the set of k-generalized quasi-trees with n vertices, where k ≥ 2. For k = 1, we

denote by QT (1)(n) the set of non-trivial quasi-trees of order n. If a, b are two integers with

a ≤ b, we let [a, b] be the set of integers between a and b.

In the interdisciplinary of mathematics, chemistry and physics, molecular invariant could be

useful for the study of quantitative structure-property relationships (QSPR) and quantitative

structure-activity relationships (QSAR) and for the descriptive presentations of biological and

chemical properties, such as boiling and melting points, toxicity, physicochemical and biologi-

cal properties [3–9]. In 1972, Gutman and Trinajstic̀ [10] introduced the oldest degree based

topological index under the name first and second Zagreb index and defined as

M1(G) =
∑

v∈V (G)

d(v/G)2,

M2(G) =
∑

uv∈E(G)

d(u/G)d(v/G).

In recent years, some novel variants of Zagreb indices have been put forward, such as Zagreb

coindices [11–13], reformulated Zagreb indices [14, 15], Zagreb hyperindex [16, 17], multiplica-

tive Zagreb indices [18, 19], multiplicative sum Zagreb index [20, 21], and multiplicative Zagreb

coindices [22], etc. In 2017, Naji et al. [23] extended the concept of Zagreb indices to analogous

graph invariants based on the second vertex degrees and proposed to name these graph invariants

leap Zagreb indices. The first, second and third leap Zagreb index were defined in [23] as follows:

LM1(G) =
∑

v∈V (G)

d2(v/G)2,

LM2(G) =
∑

uv∈E(G)

d2(u/G)d2(v/G),

LM3(G) =
∑

v∈V (G)

d(v/G)d2(v/G).

Akhter et al. [24, 25] presented upper and lower bounds on weighted Harary index, Zagreb

index, and Randić index of k-generalized quasi-trees. Sharp bounds on first and second multi-

plicative Zagreb indices for k-generalized quasi-trees has been computed in [26]. Zeroth-order

general Randić index of k-generalized quasi-trees has been calculated in [27]. Motivated by these,

we describe the upper and the lower bounds for the first leap Zagreb index of k-generalized quasi-

trees.

2. The first leap Zagreb index of quasi-trees
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In this section, we will give the upper and the lower bounds on the first leap Zagreb index of

quasi-trees. Firstly, we calculate the upper and the lower bounds on the first leap Zagreb index

of trees. The following two lemmas are useful in the proof of our result.

Lemma 2.1 G ∈ QT (1)(n). δ(G) ≤ 2. If d(v/G) = 1, then G − v ∈ QT (1)(n − 1), that is, if

G ∈ QT (1)(n) and G− x is a tree, then d(x/G) ≥ 2.

Proof By way of contradiction, assume that δ(G) ≥ 3. Since G − x is a tree, where x is a

quasi-vertex of G, δ(G− x) = 1, contradicting δ(G) ≥ 3.

Assume that G− v /∈ QT (1)(n− 1). Then G− v is a tree. Hence there is no cycle in G− v,

which implies that G does not contain a cycle. Therefore, G is a tree, a contradiction. This

completes the proof of Lemma 2.1. 2
Lemma 2.2 If G ∈ QT (k)(n) and d(v/G) = 1, then G − v ∈ QT (k)(n − 1), that is, if G ∈
QT (k)(n) and G− x ∈ QT (k−1)(n− 1), then d(x/G) ≥ 2.

Proof We prove the result by induction on k. If k = 1, it follows from Lemma 2.1 that the

result holds. Assume that the result holds for k − 1. We choose a graph G ∈ QT (k)(n) and

d(v/G) = 1. Set G′ = G − v. By way of contradiction, suppose that G′ ∈ QT (k−1)(n − 1).

Hence there is a vertex x ∈ V (G) with d(x/G′) ≥ 2 such that G′ − x ∈ QT (k−2)(n− 2), that is,

G− x− v ∈ QT (k−2)(n− 2). Set G′′ = G− x. We claim that G′′ /∈ QT (k−1)(n− 1). Otherwise,

it contradicts the induction hypothesis. If G′′ ∈ QT (k)(n− 1), then G−x− v ∈ QT (k−1)(n− 1),

a contradiction. This completes the proof of Lemma 2.2. 2
The next two lemma provide the sharp lower and upper bound on the first leap Zagreb index

of trees and characterize the extremal graphs achieving such bound.

Lemma 2.3 Let T be a tree with |T | = n and n ≥ 4. Then LM1(T ) ≥ 4n− 12. Equality holds

if and only if T is a path.

Proof We will prove the theorem by induction on n. If n = 4, it is easy to check that

LM1(T ) ≥ 4n − 12. Assume that the result holds for any tree T with |T | = n − 1. We will

prove the result holds for any tree T with |T | = n. For a vertex v ∈ V (T ) with d(v/T ) = 1, set

T ′ = T − v. By the induction hypothesis, we have

LM1(T ) ≥ LM1(T
′) +

∑
w∈N2(v/T )

(2d2(w/T
′) + 1) + d2(v/T )

2

≥ 4(n− 1)− 12 + 4 = 4n− 12.

Equality holds if and only if d2(v/T ) = d2(w/T
′) = 1, that is, T is a path. Hence, Lemma 2.3 is

true. 2
Lemma 2.4 Let T be a tree with |T | = n. Then LM1(T ) ≤ (n− 2)2(n− 1) and equality holds

if and only if T is a star.

Proof By way of contradiction, let T be a minimum counter example to Lemma 2.4. Let
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v ∈ V (T ) such that d(v/T ) = 1. Then LM1(T − v) ≤ (n− 3)2(n− 2). Set T ′ = T − v.

LM1(T ) = LM1(T
′) + d2(v/T )

2 +
∑

u∈N2(v/T )

(2d2(u/T
′) + 1)

≤ (n− 3)2(n− 2) + (n− 2)2 + (n− 2)(2(n− 3) + 1)

= (n− 2)2(n− 1),

a contradiction. Hence, Lemma 2.4 is true. 2
In the following, we will give the upper and the lower bound of the first leap Zagreb index

for quasi-trees.

Theorem 2.5 Let G be a quasi-tree on n vertices. Then

LM1(G) ≥


2, if n = 4,

8, if n = 5,

12, if n = 6,

4n− 10, if n ≥ 7.

Equality holds if and only if δ(G) = d(v/G) = 1 and the degree sequence of G is (3, 2, . . . , 2︸ ︷︷ ︸
n−2

, 1).

Proof Assume that δ(G) = d(v/G) and x is the quasi vertex.

We will prove the theorem by induction on n. If n ∈ [4, 6], it is easy to check that LM1(G) ≥ 2,

8 or 12, respectively. In the following, we may assume that n ≥ 7 and Theorem 2.5 holds for

any graph G ∈ QT (1)(n − 1). Now we choose G ∈ QT (1)(n) such that LM1(G) is as small as

possible. Set N(v/G) = {v1, v2, . . . , vp}. Then p ≤ 2. Let G′ = G− v.

If G′ is not a tree, then G′ ∈ QT (1)(n− 1). By the induction hypothesis, we can get that

LM1(G) ≥ LM1(G
′) +

∑
u∈N2(v/G)

(2d2(u/G
′) + 1) + d2(v/G)2

≥ 4(n− 1)− 10 + 4 = 4n− 10.

Equality holds if and only if δ(G) = d(v/G) = d2(v/G) = d2(u/G
′) = 1 and the degree sequence

of G is (3, 2, . . . , 2︸ ︷︷ ︸
n−2

, 1).

If G′ is a tree, then d(v/G) = 2 = δ(G). Suppose that N(v/G) = {v1, v2}. This together

with Lemma 2.3, we have

LM1(G) ≥ LM1(G
′) +

∑
u∈N2(v/G)

(2d2(u/G
′) + 1) + d2(v/G

′)2

≥ 4(n− 1)− 12 + 5 + 1 ≥ 4n− 10.

Equality holds if and only if G′ is a path, d2(u/G
′) = 2 and d2(v/G

′) = 1. Therefore, the degree

sequence of G is (3, 2, . . . , 2︸ ︷︷ ︸
n−2

, 1). Hence, Theorem 2.5 is true. 2

Lemma 2.6 ([23]) LM1(G) ≤ M1(G) + n(n − 1)2 − 4m(n − 1). Equalities hold if and only if
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the diameter of G is at most two.

Lemma 2.7 ([28]) Let T be a tree on n vertices. Then M1(T ) ≤ n(n− 1) equality holds if and

only if T is a star on n vertices.

Based on the above two lemmas, we will compute the upper bound of the first leap Zagreb

index for quasi-trees.

Lemma 2.8 Let G be a quasi-tree on n vertices and m edges. Then M1(G) + n(n − 1)2 −
4m(n− 1) ≤ 2(n− 3)2 + (n− 3)(n− 2)2, where n ≥ 4. Equality holds if and only if the degree

sequence of G is (n− 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

).

Proof We will prove the lemma by induction on n. It is easy to check Lemma 2.8 is true if n = 4.

Suppose that the result holds for any graph G ∈ QT (1)(n − 1). Now we choose G ∈ QT (1)(n).

Assume that δ(G) = d(v/G). By Lemma 2.1, d(v/G) ≤ 2.

Case 1. d(v/G) = 1.

Suppose that uv ∈ E(G). Then G′ = G− v ∈ QT (1)(n− 1) and m = m′ +1, where m′ is the

number of edges of G′. Hence,

M1(G) + n(n− 1)2 − 4m(n− 1)

= M1(G
′) + 2d(u/G′) + 1 + n(n− 1)2 − 4(m′ + 1)(n− 1) + 1

≤ 2(n− 4)2 + (n− 4)(n− 3)2 − (n− 1)(n− 2)2 − 4m′ − 4(n− 1) + 2d(u/G′) + 2 + n(n− 1)2

≤ n3 − 5n2 + 4n+ 6 = 2(n− 3)2 + (n− 3)(n− 2)2.

Equality holds if and only if d(u/G′) = n− 2, m′ = n− 1 and the diameter of G is two, that is,

the degree sequence of G is (n− 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

).

Case 2. d(v/G) = 2.

Assume that vv1, vv2 ∈ E(G). Then m = m′ + 2.

(1) G′ = G− v is not a tree. Hence,

M1(G) + n(n− 1)2 − 4m(n− 1)

= M1(G
′) + 2d(v1/G

′) + 2d(v2/G
′) + 2 + n(n− 1)2 − 4(m′ + 2)(n− 1) + 22

≤ 2(n− 4)2 + (n− 4)(n− 3)2 − (n− 1)(n− 2)2 + n(n− 1)2 + 2− 4m′ − 8(n− 1)+

2(d(v1/G
′) + d(v2/G

′)) + 4.

Since d(v1/G
′) + d(v2/G

′) ≤ m′ + 1, we have

M1(G) + n(n− 1)2 − 4m(n− 1) ≤ n3 − 5n2 + 2n+ 14 < n3 − 5n2 + 4n+ 6.

(2) d(v/G) = 2 and T = G− v is a tree.

Hence, by Lemma 2.7, we have

M1(G) + n(n− 1)2 − 4m(n− 1)

= M1(T ) + 2d(v1/T ) + 2d(v2/T ) + 2 + n(n− 1)2 − 4(n− 2 + 2)(n− 1) + 22
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≤ M1(T ) + 2

2∑
i=1

d(vi/T ) + 2 + n(n− 1)2 − 4n(n− 1) + 22

≤ (n− 1)2 − (n− 1) + 2(n− 1) + 2 + n(n− 1)2 − 4n(n− 1) + 22

= 2(n− 3)2 + (n− 3)(n− 2)2.

Equality holds if and only if d(v1/G) + d(v2/G) = n + 1 and T is a star. This completes the

proof of Lemma 2.8. 2
Theorem 2.9 LetG be a quasi-tree. LM1(G) ≤ 2(n−3)2+(n−3)(n−2)2, where n ≥ 4. Equality

holds if and only if the diameter of G is two and the degree sequence G is (n− 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

).

Proof By Lemmas 2.5 and 2.7, Theorem 2.9 is true. Equality holds if and only if the diameter

of G is two and the degree sequence of G is (n− 1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

). 2

3. The first leap Zagreb index of k-generalized quasi-trees

In this section, we will compute the upper bounds of the k-generalized quasi-trees for the

first leap Zagreb index and the lower bounds of the k-generalized quasi-trees with k = 2 for the

first leap Zagreb index. First, we prove the following lemma, which is useful in the proof of our

results.

Lemma 3.1 Let G ∈ QT (2)(n) on n vertices and m edges. Then M1(G) + n(n − 1)2 −
4m(n − 1) ≤ 4(n − 3)2 + (n − 5)(n − 2)2. Equality holds if and only if the degree sequence is

(n− 1, 2, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

).

Proof Since G ∈ QT (2)(n), there is a vertex x1 ∈ V (G) such that G − x1 ∈ QT (1)(n − 1).

Suppose that G′ = G − x1 and N(x1/G) = {v1, . . . , vp}. Then m = m′ + p, where m′ is the

number of edges of G′. Thus, from Lemma 2.8, we have

M1(G) + n(n− 1)2 − 4m(n− 1)

= M1(G
′) +

p∑
i=1

(2d(vi/G
′) + 1) + p2 + n(n− 1)2 − 4(m′ + p)(n− 1)

≤ 2(n− 4)2 + (n− 4)(n− 3)2 − (n− 1)(n− 2)2 + 4m′(n− 2)+
p∑

i=1

(2d(vi/G
′) + 1) + p2 + n(n− 1)2 − 4(m′ + p)(n− 1)

≤ 2(n− 4)2 + (n− 4)(n− 3)2 − (n− 1)(n− 2)2 + n(n− 1)2 + 22+

2∑
i=1

(2d(vi/G
′) + 1)− 4m′ − 8(n− 1).
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Since d(v1/G
′) + d(v2/G

′) ≤ m′ + 1, we have

M1(G) + n(n− 1)2 − 4m(n− 1) ≤ 4(n− 3)2 + (n− 5)(n− 2)2.

Equality holds if and only if the degree sequence of G is (n− 1, 2, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

). 2

Theorem 3.2 Let G ∈ QT (2)(n). Then LM1(G) ≤ 4(n− 3)2 + (n− 5)(n− 2)2. Equality holds

if and only if the degree sequence of G is (n− 1, 2, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

).

Proof It follows from Lemmas 2.7 and 3.1 that the result is true and equality holds if and only

if the degree sequence of G is (n− 1, 2, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

). 2

Theorem 3.3 Let G ∈ QT (k)(n) on n vertices and m edges. Then M1(G)+n(n−1)2−4m(n−
1) ≤ 2k(n− 3)2 + (n− 2k− 1)(n− 2)2. Equality holds if and only if the degree sequence of G is

(n− 1, 2, 2, . . . , 2︸ ︷︷ ︸
2k

, 1, . . . , 1︸ ︷︷ ︸
n−2k−1

).

Proof We will prove the lemma by induction on k. If k = 1, by Lemma 2.8, Theorem 3.3 holds.

Suppose that the result holds for any graph G ∈ QT (k−1)(n). We choose G ∈ QT (k)(n). Assume

xk ∈ V (G) such that G′ = G− xk ∈ QT (k−1)(n− 1). Set N(xk/G) = {v1, . . . , vp}. Then p ≥ 2.

By the induction hypothesis, we have

M1(G) + n(n− 1)2 − 4m(n− 1)

≤ M1(G
′) +

p∑
i=1

(2d(vp/G
′) + 1) + p2 + n(n− 1)2 − 4(m′ + p)(n− 1)

≤ 2(k − 1)(n− 4)2 + (n− 2k)(n− 3)2 − (n− 1)(n− 2)2 + 4m′(n− 2) + n(n− 1)2−

4(m′ + p)(n− 1) +

p∑
i=1

(2d(vi/G
′) + 1) + p2

≤ 2(k − 1)(n− 4)2 + (n− 2k)(n− 3)2 − (n− 1)(n− 2)2 + 4m′(n− 2) + n(n− 1)2−

4(m′ + 2)(n− 1) +
2∑

i=1

(2d(vi/G
′) + 1) + 22.

Since d(v1/G
′) + d(v2/G

′)− 1 ≤ m′, we have

M1(G) + n(n− 1)2 − 4m(n− 1) ≤ 2k(n− 3)2 + (n− 2k − 1)(n− 2)2.

Equality holds if and only if p = 2 and hence the degree sequence ofG is (n−1, 2, 2, . . . , 2︸ ︷︷ ︸
2k

, 1, . . . , 1︸ ︷︷ ︸
n−2k−1

). 2

Theorem 3.4 Let G ∈ QT (k)(n). Then LM1(G) ≤ 2k(n− 3)2 +(n− 2k− 1)(n− 2)2. Equality

holds if and only if the degree sequence is (n− 1, 2, . . . , 2︸ ︷︷ ︸
2k

, 1, . . . , 1︸ ︷︷ ︸
n−2k−1

).

Proof It follows from Lemma 2.8 and Theorem 3.3 that the result holds. Equality holds if and
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only if the degree sequence is (n− 1, 2, . . . , 2︸ ︷︷ ︸
2k

, 1, . . . , 1︸ ︷︷ ︸
n−2k−1

). 2

Theorem 3.5 If G ∈ QT (2)(n), then

LM1(G)



= 0, if n = 3 or 4,

= 2, if n = 5,

= 10, if n = 6,

= 18, if n = 7,

≥ 4n− 6, if n ≥ 8.

Equality holds if and only if d(v/G) = 1, q = 1, d2(v/G) = 1. And hence the degree sequence of

G is (4, 3, 3, 3, 2, 2, . . . , 2︸ ︷︷ ︸
n−5

, 1).

Proof It is easy to check that the result holds if n ∈ [3, 8]. We prove the result by induction on

n. Assume that the result holds for any G ∈ QT (2)(n− 1). We choose G ∈ QT (2)(n) such that

LM1(G) is as small as possible. Set d(v/G) = δ(G) and G′ = G− {v}.

LM1(G) ≥ LM1(G
′) +

∑
w∈N2(v/G)

(2d2(w/G) + 1) + d2(v/G)2

≥ 4(n− 1)− 6 + 4 = 4n− 6.

Equality holds if and only if d(v/G) = d2(v/G) = 1. And hence the degree sequence of G is

(4, 3, 3, 3, 2, 2, . . . , 2︸ ︷︷ ︸
n−5

, 1). 2

4. Concluding remarks

We have considered upper/lower bounds for the first leap Zagreb index of k-generalized quasi-

trees. The upper bound is determined in terms of number of edges, 2-distance degree and the

first Zagreb indices. The lower bound is proved by the inductive method.
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