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1. Introduction

The basic properties and many applications of Moore-Penrose inverse of a Hilbert space

operator are well known. A bounded operator on a Hilbert space is EP, if it is a Moore-Penrose

invertible operator (with closed range) and commutes with its Moore-Penrose inverse [1, 2]. In

fact, a bounded operator A is EP if and only if the range R(A) of A is closed and R(A) = R(A∗).

It is noted that EP objects have been studied in many contexts such as matrices, rings, C∗-

algebras, Banach spaces and Hilbert C∗-modules [3–11].

In recent years, the weighted-EP matrices (that commute with their weighted Moore-Penrose

inverse) were introduced and investigated by Tian and Wang in [12]. The notion of weighted-EP

matrices was extended to elements of C∗-algebras in [13–15] and Banach algebras in [16, 17].

The objective of this article is to introduce and study the weighted Moore-Penrose inverse and

weighted-EP properties of block operator matrices on Hilbert spaces. For the study of block

operator matrix, please refer to references [18,19]. The rest of this paper is organized as follows.

In Section 2, we recall the basic known definitions and some properties which are used throughout

the paper. Furthermore, in Section 3, we discuss the weighted Moore-Penrose inverse of block

operator matrices on Hilbert spaces, and some necessary and sufficient conditions for block

operator matrices to be weighted-EP operators are investigated on Hilbert spaces. Here we

consider the triangular and four block types of partitioned operators. Finally, in Section 4 an

application of the weighted EP operator in operator equations is given.
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2. Preliminaries

In what follows, H and K denote (complex) Hilbert spaces. B(H,K) stands for the Hilbert

space of all bounded operators from H to K. For simplicity, we use the notation B(H) instead

of B(H,H). Let B+(H) be the set of positive definite (invertible positive) operators of B(H).

The identity operator on a subspace M of H is denoted by IM (or I when it is clear from the

context of the space on which it acts). Given T ∈ B(H,K), we write R(T ), N (T ), T ∗, T−1, T
1
2

and T− for the range, the kernel, the adjoint, the inverse, the square root and the inner inverse

of T , respectively. For the sake of completeness, we recall that an operator T ∈ B(H) is positive

if ⟨Th, h⟩ ≥ 0 for all h ∈ H.

We now let M ∈ B+(K) and N ∈ B+(H). The inner-product on K induced by M is given by

⟨x, y⟩M = ⟨x,My⟩ for every x, y ∈ K.

For each T ∈ B(H,K),

⟨Tx, y⟩M = ⟨x, T ♯y⟩N for every x ∈ H, y ∈ K,

where T ♯ = N−1T ∗M ∈ B(K,H) is called the weighted adjoint operator of T (see [20, Remark

1.1]).

As an extension of the Moore-Penrose inverse, the weighted Moore-Penrose inverse is defined

as follows:

Definition 2.1 ([20, 21]) Let T ∈ B(H,K) be arbitrary and let M ∈ B+(K) and N ∈ B+(H).

The weighted Moore-Penrose inverse T †
M,N (if it exists) is the unique element X of B(K,H),

which satisfies

TXT = T, XTX = X, (MTX)∗ = MTX and (NXT )∗ = NXT.

If M = IK and N = IH , then T †
M,N is denoted simply by T †, which is called the Moore-

Penrose inverse of T . Clearly, the weighted Moore-Penrose inverse T †
M,N exists if and only if

T has a closed range. Then TT †
M,N and T †

M,NT are idempotents, so R(T ) = R(TT †
M,N ) and

R(T †
M,N ) = R(T †

M,NT ) are closed. Similar to [12, Lemma 3.1] and [20, Remark 1.2], it is not

difficult to prove the following facts.

Lemma 2.2 Let T ∈ B(H,K) with a closed range and let M ∈ B+(K) and N ∈ B+(H). Then

(1) T †
M,N = N− 1

2 (M
1
2TN− 1

2 )†M
1
2 ;

(2) (T †
M,N )†N,M = T ;

(3) (T †
M,N )∗ = (T ∗)†N−1,M−1 ;

(4) R(T †
M,N ) = R(T ♯) = R(N−1T ∗) = N−1R(T ∗);

(5) N (T †
M,N ) = N (T ♯) = N (T ∗M) = M−1N (T ∗);

(6) N (T †
M,NT ) = N (T ), N (TT †

M,N ) = N (T †
M,N ).

The definition of generalized Schur complement is given below for later weighted generalized

inverse representation of block operator matrices.
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Suppose H ∈ B(H⊕K) is an operator matrix partitioned into the form

H =

(
A B

C D

)
, (2.1)

where A ∈ B(H), B ∈ B(K,H), C ∈ B(H,K), D ∈ B(K). The positive definite operators M , N

are given by

M =

(
M1 M2

M∗
2 M3

)
∈ B+(H⊕K), N =

(
N1 N2

N∗
2 N3

)
∈ B+(H⊕K), (2.2)

where M1 ∈ B+(H), M2 ∈ B(K,H), M3 ∈ B+(K), N1 ∈ B+(H), N2 ∈ B(K,H), N3 ∈ B+(K).

Definition 2.3 Let H be a block operator matrix of the form (2.1) and let M,N ∈ B+(H⊕K)

be two operator matrices of the form (2.2). Then

S := (H/A)W = D − CA†
M1,N1

B, G := (H/D)W = A−BD†
M3,N3

C (2.3)

are called the generalized Schur complements of A and D in H in the weighted Moore-Penrose

inverse sense, respectively.

The formula (2.3) has previously appeared in papers dealing with the weighted generalized

inverses of partitioned matrices [22]. The generalized Schur complements of A and D in H are

S1 := H/A = D − CA−B, G1 := H/D = A−BD−C (2.4)

in the inner inverse (non-weighted) sense, where A− and D− are the inner inverse of A and

D, respectively. The formula (2.4) has previously appeared in papers dealing with generalized

inverses of partitioned matrices [23–25].

Similar to [26, Lemma 2.2.4], we have the following conclusion on Hilbert spaces.

Lemma 2.4 Let A ∈ B(H), B ∈ B(K,H), and C ∈ B(H,K). Suppose that the inner inverse

A− of A exists. Then

(1) N (A) ⊆ N (C) if and only if C = CA−A;

(2) N (A∗) ⊆ N (B∗) if and only if B = AA−B.

The following properties immediately follow from the definition of EP operators.

Proposition 2.5 ([1,2]) Let T ∈ B(H) with a closed range. Then the following statements are

equivalent:

(1) T is an EP operator;

(2) N (T ) = N (T ∗);

(3) T is Moore-Penrose invertible and T †T = TT †.

As an extension of the EP operator, the weighted EP operator is defined as follows:

Definition 2.6 An operator T ∈ B(H) is said to be weighted-EP with respect toM,N ∈ B+(H),

or shortly said to be weighted-EP w.r.t. (M,N), if both MT and TN−1 are EP, that is,

R(MT ) = R((MT )∗), R(TN−1) = R((TN−1)∗)
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hold and R(T ) is closed.

Remark 2.7 It follows from the definitions of EP and weighted-EP operators that every

weighted-EP operator needs to be an operator with a closed range.

In the following proposition, similar to [12, Theorem 3.5] and [13, Theorem 2.2], a number of

necessary and sufficient conditions for an operator to be weighted-EP are presented on Hilbert

spaces.

Proposition 2.8 Let T ∈ B(H) with a closed range and let M,N ∈ B+(H). Then the following

statements are equivalent:

(1) T is weighted-EP w.r.t. (M,N), i.e., MT and TN−1 are EP (or both MT and NT are

EP);

(2) T is weighted-EP w.r.t. (N,M), i.e., NT and TM−1 are EP (or both TN−1 and TM−1

are EP);

(3) T is weighted-EP both w.r.t. (M,M) and w.r.t. (N,N);

(4) R(MT ) = R(NT ) = R(T ∗);

(5) R(M−1T ∗) = R(N−1T ∗) = R(T );

(6) R(T †
M,N ) = R(T ) and R((T †

M,N )∗) = R(T ∗);

(7) N (T ∗M) = N (T ∗N) = N (T );

(8) N (TM−1) = N (TN−1) = N (T ∗);

(9) T ∗ is weighted-EP w.r.t. (M−1, N−1);

(10) T † is weighted-EP w.r.t. (M−1, N−1);

(11) T †
M,N is weighted-EP w.r.t. (M,N);

(12) TT †
M,N = T †

M,NT .

3. Weighted-EP of block operator matrices

In this section, the weighted Moore-Penrose inverse and weighted-EP of block operator ma-

trices will be investigated in the context of Hilbert spaces, based on the generalized Schur com-

plement.

First, to get the main conclusions, the weighted Moore-Penrose inverse of block operator

matrices will be considered in the context of Hilbert spaces, based on the generalized Schur

complement.

Extending [22, Theorem 4 and Corollary 7] to infinite dimensional spaces, we have the fol-

lowing two conclusions on Hilbert spaces.

Lemma 3.1 Let M,N ∈ B+(H⊕K) be two operator matrices of the form (2.2). Assume that

H is an operator matrix of the form (2.1) with R(A) and R(S) being closed such that

(M2SS
†
M3,N3

)∗ = M∗
2AA

†
M1,N1

+M∗
2 (I −AA†

M1,N1
)BS†

M3,N3
CA†

M1,N1
, (3.1)

(N2S
†
M3,N3

S)∗ = N∗
2A

†
M1,N1

A+N∗
2A

†
M1,N1

BS†
M3,N3

C(I −A†
M1,N1

A), (3.2)

S†
M3,N3

M3(I − SS†
M3,N3

) = (I − S†
M3,N3

S)M3S
†
M3,N3

. (3.3)
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Then

H†
M,N =

(
A†

M1,N1
+A†

M1,N1
BS†

M3,N3
CA†

M1,N1
−A†

M1,N1
BS†

M3,N3

−S†
M3,N3

CA†
M1,N1

S†
M3,N3

)
if and only if

CA†
M1,N1

A = C, AA†
M1,N1

B = B, BS†
M3,N3

S = B, SS†
M3,N3

C = C.

Proof Since R(A) and R(S) are closed, A†
M1,N1

and S†
M3,N3

of A and S exist, respectively.

Therefore, the proof is analogous to the proof of [22, Theorem 4]. 2
Lemma 3.2 Let M,N ∈ B+(H⊕K) be two operator matrices of the form (2.2). Assume that

H is an operator matrix of the form (2.1) with R(A) and R(S) being closed such that

CA†
M1,N1

A = C, AA†
M1,N1

B = B, BS†
M3,N3

S = B, SS†
M3,N3

C = C,

M2SS
†
M3,N3

= (M∗
2AA

†
M1,N1

)∗, N2S
†
M3,N3

S = (N∗
2A

†
M1,N1

A)∗.

Then

H†
M,N =

(
A†

M1,N1
+A†

M1,N1
BS†

M3,N3
CA†

M1,N1
−A†

M1,N1
BS†

M3,N3

−S†
M3,N3

CA†
M1,N1

S†
M3,N3

)
.

Using the generalized Schur complement G = A − BD†
M3,N3

C, similar to Lemma 3.2, one

can get the following corollary.

Corollary 3.3 Let M,N ∈ B+(H ⊕ K) be two operator matrices of the form (2.2). Assume

that H is an operator matrix of the form (2.1) with R(D) and R(G) being closed such that

BD†
M3,N3

D = B, DD†
M3,N3

C = C, CG†
M1,N1

G = C, GG†
M1,N1

B = B,

M∗
2GG†

M1,N
= (M2DD†

M3,N3
)∗, N∗

2G
†
M1,N1

G = (N2D
†
M3,N3

D)∗.

Then

H†
M,N =

(
G†

M1,N1
−G†

M1,N1
BD†

M3,N3

−D†
M3,N3

CG†
M1,N1

D†
M3,N3

+D†
M3,N3

CG†
M1,N1

BD†
M3,N3

)
.

Considering two special positive definite operator matrices M and N , we have the following

concise conclusion.

Theorem 3.4 Let M =
(
M1 0
0 M3

)
∈ B+(H⊕K), N =

(
N1 0
0 N3

)
∈ B+(H⊕K). Assume that H

is an operator matrix of the form (2.1) with R(A) and R(S) being closed. Then

H†
M,N =

(
A†

M1,N1
+A†

M1,N1
BS†

M3,N3
CA†

M1,N1
−A†

M1,N1
BS†

M3,N3

−S†
M3,N3

CA†
M1,N1

S†
M3,N3

)
if and only if

CA†
M1,N1

A = C, AA†
M1,N1

B = B, BS†
M3,N3

S = B, SS†
M3,N3

C = C.

Proof The proof is analogous to Lemma 3.1. It is worth noting that the conditions (3.1) and

(3.2) of Lemma 3.1 are naturally satisfied, and the condition (3.3) of Lemma 3.1 can be dropped

in combination with the present diagonal weights in Theorem 3.4. 2
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Using the generalized Schur complement G = A − BD†
M3,N3

C, similar to Theorem 3.4, one

can get the following theorem.

Corollary 3.5 Let M =
(
M1 0
0 M3

)
∈ B+(H⊕K), N =

(
N1 0
0 N3

)
∈ B+(H⊕K). Assume that H

is an operator matrix of the form (2.1) with R(D) and R(G) being closed. Then

H†
M,N =

(
G†

M1,N1
−G†

M1,N1
BD†

M3,N3

−D†
M3,N3

CG†
M1,N1

D†
M3,N3

+D†
M3,N3

CG†
M1,N1

BD†
M3,N3

)
if and only if

BD†
M3,N3

D = B, DD†
M3,N3

C = C, CG†
M1,N1

G = C, GG†
M1,N1

B = B.

For an upper triangular operator matrix, we can get the following concise theorem.

Theorem 3.6 Let M,N ∈ B+(H⊕K) be two operator matrices of the form (2.2). Assume that

H =
(
A B
0 D

)
∈ B(H⊕K) with R(A) and R(D) being closed such that

M2DD†
M3,N3

= (M∗
2AA

†
M1,N1

)∗, N2D
†
M3,N3

D = (N∗
2A

†
M1,N1

A)∗.

Then

H†
M,N =

(
A†

M1,N1
−A†

M1,N1
BD†

M3,N3

0 D†
M3,N3

)
if and only if

AA†
M1,N1

B = B, BD†
M3,N3

D = B.

Proof It can be easily verified according to the proof of Lemma 3.1. Note that the condition

(3.3) of Lemma 3.1 is not required in Theorem 3.6. 2
Secondly, using the properties of generalized inverses, weighted generalized inverses and gen-

eralized Schur complement, we study the weighted-EP properties of block operator matrices on

Hilbert spaces.

For the general weights M,N ∈ B+(H ⊕ K) of the form (2.2), we have only the following

sufficient condition.

Theorem 3.7 Let M,N ∈ B+(H ⊕ K) be two operator matrices of the form (2.2) and let H

be an operator matrix of the form (2.1). Assume that A and S are weighted-EP operators such

that

CA†
M1,N1

A = C, AA†
M1,N1

B = B, BS†
M3,N3

S = B, SS†
M3,N3

C = C,

M2SS
†
M3,N3

= (M∗
2AA

†
M1,N1

)∗, N2S
†
M3,N3

S = (N∗
2A

†
M1,N1

A)∗.

Then H is a weighted-EP operator matrix.

Proof According to the assumption, by the Lemma 3.2, H†
M,N exists and H†

M,N is given by

H†
M,N =

(
A†

M1,N1
+A†

M1,N1
BS†

M3,N3
CA†

M1,N1
−A†

M1,N1
BS†

M3,N3

−S†
M3,N3

CA†
M1,N1

S†
M3,N3

)
.
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By AA†
M1,N1

B = B and SS†
M3,N3

C = C, HH†
M,N is described as the form

HH†
M,N =

(
AA†

M1,N1
0

0 SS†
M3,N3

)
.

Similarly, by CA†
M1,N1

A = C and BS†
M3,N3

S = B, H†
M,NH is given by

H†
M,NH =

(
A†

M1,N1
A 0

0 S†
M3,N3

S

)
.

Since A and S are weighted-EP, AA†
M1,N1

= A†
M1,N1

A and SS†
M3,N3

= S†
M3,N3

S. Thus

HH†
M,N = H†

M,NH.

Therefore, by Proposition 2.8, H is weighted-EP. 2
Using the generalized Schur complement G = A − BD†

M3,N3
C, similar to Theorem 3.7, one

can get the following corollary.

Corollary 3.8 Let M,N ∈ B+(H ⊕ K) be two operator matrices of the form (2.2) and let H

be an operator matrix of the form (2.1). Assume that D and G are weighted-EP operators such

that

BD†
M3,N3

D = B, DD†
M3,N3

C = C, CG†
M1,N1

G = C, GG†
M1,N1

B = B,

M∗
2GG†

M1,N
= (M2DD†

M3,N3
)∗, N∗

2G
†
M1,N1

G = (N2D
†
M3,N3

D)∗.

Then H is a weighted-EP operator matrix.

When considering diagonal weights M and N , we have the following concise result providing

a necessary and sufficient condition.

Theorem 3.9 Let M =
(
M1 0
0 M3

)
∈ B+(H⊕K), N =

(
N1 0
0 N3

)
∈ B+(H⊕K). Assume that H

is an operator matrix of the form (2.1) with R(A) and R(S) being closed such that

CA†
M1,N1

A = C, AA†
M1,N1

B = B, BS†
M3,N3

S = B, SS†
M3,N3

C = C.

Then the following conditions are equivalent:

(i) H is a weighted-EP operator matrix;

(ii) A and S are weighted-EP operators.

Proof Suppose H is weighted-EP, i.e., MH and NH are EP operators. To prove that A and S

are weighted-EP, we just need to show that M1A, N1A, M3S and N3S are EP. Since R(A) and

R(S) are closed, let us define the operator matrices

L1 :=

(
I 0

CA†
M1,N1

I

)
, R1 :=

(
I BS†

M3,N3

0 I

)
, P :=

(
A 0

0 S

)
,

L2 :=

(
I 0

B∗(A†)∗N1,M1
I

)
, R2 :=

(
I C∗(S†)∗N3,M3

0 I

)
, P ∗ :=

(
A∗ 0

0 S∗

)
.
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Obviously, L1, L2, R1 and R2 are invertible. By assumption CA†
M1,N1

A = C, AA†
M1,N1

B =

B, BS†
M3,N3

S = B and SS†
M3,N3

C = C, it is clear that MH and (MH)∗ can be decomposed as

MH = ML1R1P, (MH)∗ = H∗M = L2R2P
∗M. (3.4)

Since MH is EP, we have

N (MH) = N ((MH)∗) = N (H∗M).

From (3.4) it follows that N (P ) = N (P ∗M). By Lemma 2.4 it is immediate that

N (P ) ⊆ N (P ∗M) ⇔ P ∗M = (P ∗M)P−P (3.5)

and

N (P ) ⊇ N (P ∗M) ⇔ P = P (P ∗M)−(P ∗M), (3.6)

hold for inner inverse P− and (P ∗M)− of P and P ∗M , respectively. In particular, P− and

(P ∗M)− are given by

P− =

(
A− 0

0 S−

)
, (P ∗M)− =

(
(A∗M1)

− 0

0 (S∗M3)
−

)
.

From (3.5) and (3.6), we have

P ∗M =

(
A∗M1 0

0 S∗M3

)
=

(
A∗M1 0

0 S∗M3

)(
A−A 0

0 S−S

)

=

(
(A∗M1)A

−A 0

0 (S∗M3)S
−S

)
and

P =

(
A 0

0 S

)
=

(
A 0

0 S

)(
(A∗M1)

− 0

0 (S∗M3)
−

)(
A∗M1 0

0 S∗M3

)

=

(
A(A∗M1)

−(A∗M1) 0

0 S(S∗M3)
−(S∗M3)

)
.

Hence A∗M1 = (A∗M1)A
−A implies N (M1A) = N (A) ⊆ N (A∗M1) = N ((M1A)

∗) and A =

A(A∗M1)
−(A∗M1) implies N ((M1A)

∗) = N (A∗M1) ⊆ N (A) = N (M1A). This shows that

N (M1A) = N ((M1A)
∗). Then M1A is an EP operator. Similarly, S∗M3 = (S∗M3)S

−S implies

N (M3S) = N (S) ⊆ N (S∗M3) = N ((M3S)
∗) and S = S(S∗M3)

−(S∗M3) implies N ((M3S)
∗) =

N (S∗M3) ⊆ N (S) = N (M3S). This shows that N (M3S) = N ((M3S)
∗). Then M3S is an EP

operator.

Similarly, replacing positive definite operator M with N in the above proof, it is effortless

to prove that N1A and N3S are EP operators. Therefore, by Proposition 2.8, A and S are

weighted-EP operators.

Conversely, by Theorem 3.4, H†
M,N exists and H†

M,N is given by

H†
M,N =

(
A†

M1,N1
+A†

M1,N1
BS†

M3,N3
CA†

M1,N1
−A†

M1,N1
BS†

M3,N3

−S†
M3,N3

CA†
M1,N1

S†
M3,N3

)
.
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Similarly to the proof of Theorem 3.7, it is easy to verify that H is weighted-EP. 2
Using the weighted generalized Schur complement G = A−BD†

M3,N3
C, similar to Theorem

3.9, one can get the following corollary.

Corollary 3.10 Let M =
(
M1 0
0 M3

)
∈ B+(H⊕K), N =

(
N1 0
0 N3

)
∈ B+(H⊕K). Assume that H

is an operator matrix of the form (2.1) with R(D) and R(G) being closed such that

BD†
M3,N3

D = B, DD†
M3,N3

C = C, CG†
M1,N1

G = C, GG†
M1,N1

B = B.

Then the following conditions are equivalent:

(i) H is a weighted-EP operator;

(ii) D and G are weighted-EP operators.

Remark 3.11 In the previous results, we often directly assume the closedness of R(S) or R(G).

Actually, it is possible to give some condition on the operator entries such that R(S) or R(G) is

closed. For example, letting M,N ∈ B+(H⊕K) be two operator matrices of the form (2.2) and

H an operator matrix of the form (2.1), we have:

(i) If R(A) is closed such that

CA†
M1,N1

A = C, AA†
M1,N1

B = B,

then R(H) is closed if and only if R(S) is closed;

(ii) If R(D) is closed such that

BD†
M1,N1

D = B, DD†
M1,N1

C = C,

then R(H) is closed if and only if R(G) is closed.

In fact, since R(A) is closed, A†
M1,N1

exists. Let us define the operator matrices

L =

(
I 0

CA†
M1,N1

I

)
, R :=

(
I A†

M1,N1
B

0 I

)
, H ′ :=

(
A 0

0 S

)
.

By assumption CA†
M1,N1

A = C and AA†
M1,N1

B = B, it is clear that H can be decomposed as

H = LH ′R. In view of the invertibility of L and R, R(H) is closed if and only if R(H ′) is closed.

Since R(A) is closed, R(H) is closed if and only if R(S) is closed, which proves (i). The proof

of (ii) is analogous.

Finally, using the properties of generalized inverses and weighted generalized inverses, in view

of Theorem 3.7, we have the following conclusions.

Theorem 3.12 Let H =
(
A B
0 D

)
∈ B(H ⊕ K) and let M,N ∈ B+(H ⊕ K) be two operator

matrices of the form (2.2). Assume that A and D are weighted-EP operators such that

AA†
M1,N1

B = B, BD†
M3,N3

D = B,

M2DD†
M3,N3

= (M∗
2AA

†
M1,N1

)∗, N2D
†
M3,N3

D = (N∗
2A

†
M1,N1

A)∗.

Then H is a weighted-EP operator matrix.

Proof The proof is analogous to that of Theorem 3.7. 2
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Corollary 3.13 Let X ∈ B(K,H), H =
(
A AXD
0 D

)
∈ B(H⊕K) and let M,N ∈ B+(H⊕K) be

two operator matrices of the form (2.2). Assume that A and D are weighted-EP operators such

that

M2DD†
M3,N3

= (M∗
2AA

†
M1,N1

)∗, N2D
†
M3,N3

D = (N∗
2A

†
M1,N1

A)∗.

Then H is a weighted-EP operator matrix.

Corollary 3.14 LetH =
(
A A
0 A

)
∈ B(H⊕H) and letM =

(
M1 M1

M1 M1

)
, N =

(
N1 N1

N1 N1

)
∈ B+(H⊕H).

If A is a weighted-EP operator, then H is a weighted-EP operator matrix.

When considering diagonal weights M and N , we have the following concise result providing

a necessary and sufficient condition.

Theorem 3.15 Let H =
(
A B
0 D

)
∈ B(H⊕K) with R(A) and R(D) being closed. Assume that

M =
(
M1 0
0 M3

)
, N =

(
N1 0
0 N3

)
∈ B+(H⊕K) such that

AA†
M1,N1

B = B, BD†
M3,N3

D = B.

Then the following conditions are equivalent:

(i) H is a weighted-EP operator matrix;

(ii) A and D are weighted-EP operators.

Proof It can be easily verified according to the proofs of Theorems 3.7 and 3.9. 2
Corollary 3.16 Let X ∈ B(K,H), H =

(
A AXD
0 D

)
∈ B(H ⊕ K) with R(A) and R(D) being

closed. Assume that M =
(
M1 0
0 M3

)
, N =

(
N1 0
0 N3

)
∈ B+(H⊕K). Then the following conditions

are equivalent:

(i) H is a weighted-EP operator matrix;

(ii) A and D are weighted-EP operators.

Remark 3.17 The factorization B = AXD of Corollaries 3.12 and 3.16 have important appli-

cations in operator equations [27–29].

Corollary 3.18 Let H =
(
A A
0 A

)
∈ B(H ⊕ H) with R(A) being closed. Assume that M =(

M1 0
0 M1

)
, N =

(
N1 0
0 N1

)
∈ B(H ⊕ H) are two positive definite operator matrices. Then the

following conditions are equivalent:

(i) H is a weighted-EP operator matrix;

(ii) A is a weighted-EP operator.

4. The Application of weighted EP operators

In this section, let H,K and G be separable Hilbert spaces. We establish the solvability

conditions and the general expression for the weighted EP solution to the operator equations

AX = C, XB = D, (4.1)

where A,C ∈ B(H,K), B,D ∈ B(G,H) and X ∈ B(H).
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For each T ∈ B(H) and let M ∈ B+(H), then the weighted adjoint operator

T ♯ = M−1T ∗M ∈ B(H).

If T = T ♯, then T ∈ B(H) is called the weighted self-adjoint operator with respect toM ∈ B+(H).

The set of weighted self-adjoint operators of B(H) with respect to M ∈ B+(H) will be denoted

by SM (B(H)).

Before considering the mentioned property, some preparation is needed.

Lemma 4.1 ([17]) Let T ∈ B(H) and consider two positive definite operators M , N ∈ B+(H).

Then, the following statements are equivalent:

(i) T is weighted EP with weights M and N ;

(ii) There exist two Hilbert spaces H1 and H2, T1 ∈ B(H1) and J ∈ B(H1 ⊕ H2,H)

isomorphism such that T = J(T1 ⊕ 0)J−1, T †
M,N = J(T−1

1 ⊕ 0)J−1, J(IH1 ⊕ 0)J−1 ∈ SM (B(H))

and J(0⊕ IH2)J
−1 ∈ SN (B(H)), where H1 ⊕H2 = H.

Lemma 4.2 ([30]) Let A,C ∈ B(H,K) and B,D ∈ B(G,H). Suppose that A and B have closed

ranges. Then the equation (4.1) has a common solution X ∈ B(H) if and only if

N (A∗) ⊆ N (C∗), N (B) ⊆ N (D), AD = CB.

In which case, the general common solution is given by

X = A−C +DB− −A−ADB− + (IH −A−A)Y (IH −BB−),

where Y ∈ B(H) is arbitrary.

Now we consider the weighted EP solution to the equation (4.1). By the Lemma 4.1, for the

isomorphism operator J ∈ B(H1 ⊕H2,H), the solution has the following factorization:

X = J

(
X1 0

0 0

)
J−1, X†

M,N = J

(
X−1

1 0

0 0

)
J−1,

where X1 ∈ B(H1). Let R(A), R(B) be closed, and

AJ =
(

A1 A2

)
, CJ =

(
C1 C2

)
, J−1B =

(
B1

B2

)
, J−1D =

(
D1

D2

)
,

where A1, C1 ∈ B(H1,K), A2, C2 ∈ B(H2,K), B1, D1 ∈ B(G1,H), B2, D2 ∈ B(G2,H), and

R(A1), R(B1) are closed. Then the equation (4.1) has weighted EP solution if and only if

operator equations

A1X1 = C1, X1B1 = D1, C2 = 0, D2 = 0

have a common solution. By Lemmas 4.1 and 4.2, we have the following theorem.

Theorem 4.3 Let A,C ∈ B(H,K) and B,D ∈ B(G,H). Let R(A), R(B) be closed and consider

two positive definite operators M , N ∈ B+(H). Suppose that J ∈ B(H1⊕H2,H) is isomorphism

such that

J(IH1 ⊕ 0)J−1 ∈ SM (B(H)), J(0⊕ IH2)J
−1 ∈ SN (B(H)),
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AJ =
(

A1 A2

)
, CJ =

(
C1 C2

)
, J−1B =

(
B1

B2

)
, J−1D =

(
D1

D2

)
,

where A1, C1 ∈ B(H1,K), A2, C2 ∈ B(H2,K), B1, D1 ∈ B(G1,H), B2, D2 ∈ B(G2,H), andR(A1),

R(B1) are closed. Then the equation (4.1) has a weighted EP solution X ∈ B(H) if and only if

N (A∗
1) ⊆ N (C∗

1 ), N (B1) ⊆ N (D1), A1D1 = C1B1, C2 = D2 = 0.

In this case, the general weighted EP solution of equation (4.1) is given by

X = J

(
A−

1 C1 +D1B
−
1 −A−

1 A1D1B
−
1 + (IH1 −A−

1 A1)Y1(IH1 −B1B
−
1 ) 0

0 0

)
J−1,

where Y1 ∈ B(H1) is arbitrary.
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