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Abstract In this paper, we discuss the generalized Abelian differential equation. By using the

fixed point theorem, we obtain sufficient conditions for the existence of two nonzero periodic

solutions of the equation. We also discuss the case that there is no nonzero periodic solution

and there is a unique nonzero periodic solution.
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1. Introduction

The nonlinear Abel type first-order differential equation

dx

dt
= a(t)x3 + b(t)x2 + c(t)x+ d(t) (1.1)

plays an important role in many physical and technical applications [1, 2]. The mathematical

properties of Eq. (1.1) have been intensively investigated in the mathematical and physical liter-

ature [3–7]. Cima, Gasull and Manosas [8] gave the maximum number of polynomial solutions

of some integrable Abel polynomial differential equations; Giné and Valls [9] studied the center

problem for Abel polynomial differential equations of second kind; Huang and Liang [10] devoted

to the investigation of Abel equation by means of Lagrange interpolation formula, they gave a

criterion to estimate the number of limit cycles of the Abel’s equations; Bülbül and Sezer [11]

introduced a numerical power series algorithm which is based on the improved Taylor matrix

method for the approximate solution of Abel-type differential equations; Ni et al. [12] discussed

the existence and stability of the periodic solutions of Eq. (1.1), and obtained the sufficient con-

ditions which guarnteed the existence and stability of the periodic solutions for Eq. (1.1) from a

particular one.

Alwash [13] considered the class of equations:

dx

dt
= xn + α(t)xn−1 + β(t)xn−2, n ∈ N+, n ≥ 2 (1.2)

as a generalized Abel’s differential equation, where α(t), β(t) are ω-periodic continuous functions.

They showed that if β(t) ≤ 0, then this equation has at most two nonzero periodic solutions.
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They gave conditions on α and β that imply the equation has exactly two nonzero periodic

solutions, one nonzero periodic solution, or no nonzero periodic solutions. Particular cases of

this result, with n = 4 and n = 5, were given in [14,15].

In this paper, we get the sufficient conditions of no nonzero periodic solutions for Eq. (1.2),

and obtain the existence of two nonzero periodic solution of Eq. (1.2) by the fixed point theorem.

And we give the range of periodic solutions, which is not obtained in [13]. In addition, we give

conditions on α and β that imply the equation has exactly one nonzero periodic solution. The

number of periodic solutions of the equation is closely related to the sign of the discriminant

∆ = α2(t)− 4β(t). The conclusion of this paper is an important supplement to [13].

2. Some lemmas and abbreviations

In this section, we give some lemmas and definitions which will be used later.

Lemma 2.1 ([16]) Consider the equation:

dx

dt
= a(t)x+ b(t), (2.1)

where a(t), b(t) are ω-periodic continuous functions on R. If
∫ ω

0
a(t)dt ̸= 0, then Eq. (2.1) has a

unique ω-periodic continuous solution η(t), mod (η(t)) ⊆ mod (a(t), b(t)), and η(t) can be written

as follows:

η(t) =

{ ∫ t

−∞ e
∫ t
s
a(θ)dθb(s)ds,

∫ ω

0
a(t)dt < 0

−
∫ +∞
t

e
∫ t
s
a(θ)dθb(s)ds,

∫ ω

0
a(t)dt > 0.

(2.2)

Lemma 2.2 ([17]) Suppose that an ω-periodic function sequence {fn(t)} is convergent uniformly

on any compact set of R, f(t) is an ω-periodic function, and mod (fn) ⊆ mod (f) (n = 1, 2, . . .),

then {fn(t)} is convergent uniformly on R.

Lemma 2.3 ([18]) Suppose V is a metric space, C is a convex closed set of V, its boundary is

∂C. If T : V → V is a continuous compact mapping, such that T (∂C) ⊆ C, then T has a fixed

point on C.

Definition 2.4 ([17]) Suppose f(t) is an ω-periodic continuous function on R, then

a(f, λ) =

∫ ω

0

f(t)e−iλtdt (2.3)

must exist, a(f, λ) is called the Fourier coefficient of f(t), the λ such that a(f, λ) ̸= 0 is called

the Fourier index of f(t); There is a countable set Λf , when λ ∈ Λf , a(f, λ) ̸= 0, as long as

λ ̸∈ Λf , there must be a(f, λ) = 0, Λf is called the exponential set of f(t).

Definition 2.5 ([17]) A set of real numbers composed of linear combinations of integer coeffi-

cients of elements in Λf is called a module or a frequency module of f(t), which is denoted as

mod (f), that is

mod (f) =
{
µ|µ =

N∑
j=1

njλj , nj , N ∈ Z+, N ≥ 1, λj ∈ Λf

}
. (2.4)
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For the sake of convenience, suppose that f(t) is an ω-periodic continuous function on R, we
denote

fM = sup
t∈[0,ω]

f(t), fL = inf
t∈[0,ω]

f(t). (2.5)

3. No nonzero periodic solution

In this section, we give conditions on α and β that imply Eq. (1.2) has no nonzero periodic

solution.

Theorem 3.1 Consider Eq. (1.2), where n is an even number, and α(t), β(t) are ω-periodic

continuous functions on R. Suppose that the following condition holds:

(H1) α
2(t)− 4β(t) < 0,

then Eq. (1.2) has no nonzero periodic continuous solution.

Proof The right end of Eq. (1.2) is a polynomial function with continuous coefficient functions, so

Eq. (1.2) satisfies the condition of existence and uniqueness theorems for solutions of differential

equations. If given initial condition x(t0) = 0, then the unique solution x(t) with initial condition

x(t0) = 0 satisfies

x(t) = 0.

If given initial condition x(t0) ̸= 0, then the unique solution x(t) with initial condition

x(t0) ̸= 0 satisfies

x(t) ̸= 0.

Thus if initial condition x(t0) ̸= 0, integrating both sides of (1.2) from 0 to ω, and by (H1), it

follows

x(ω)− x(0) =

∫ ω

0

dx =

∫ ω

0

xn−2(x2 + α(t)x+ β(t))dt > 0,

thus x(t) cannot be a periodic solution of Eq. (1.2). This completes the proof. 2
Theorem 3.2 Consider Eq. (1.2), where n is an odd number, and α(t), β(t) are ω-periodic

continuous functions on R. Suppose that the following condition holds:

(H1) α
2(t)− 4β(t) < 0,

then Eq. (1.2) has no nonzero ω-periodic continuous solution.

Proof The right end of Eq. (1.2) is a polynomial function with continuous coefficient functions, so

Eq. (1.2) satisfies the condition of existence and uniqueness theorems for solutions of differential

equations.

Consider Eq. (1.2), if given initial condition x(t0) = 0, then the unique solution x(t) of

Eq. (1.2) with initial condition x(t0) = 0 satisfies

x(t) = 0. (3.1)
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If given initial condition x(t0) ̸= 0, then the unique solution x(t) of Eq. (1.2) with initial

condition x(t0) ̸= 0 satisfies

x(t) ̸= 0. (3.2)

Thus if initial condition x(t0) ̸= 0, n ̸= 3, then Eq. (1.2) satisfies

1

3− n

dx3−n

dt
= x2 + α(t)x+ β(t). (3.3)

By (H1), integrating both sides of (3.3) from 0 to ω gives

x3−n(ω)− x3−n(0) = (3− n)

∫ ω

0

(x2 + α(t)x+ β(t))dt > 0. (3.4)

If initial condition x(t0) ̸= 0, n = 3, then Eq. (1.2) satisfies

d ln |x|
dt

= x2 + α(t)x+ β(t). (3.5)

By (H1), integrating both sides of (3.5) from 0 to ω, we have

|x(ω)| − |x(0)| =
∫ ω

0

(x2 + α(t)x+ β(t))dt > 0. (3.6)

Above two cases show that x(t) cannot be a periodic solution of Eq. (1.2). This completes the

proof. 2
4. One nonzero constant periodic solution

In this section, we give conditions on α and β that imply Eq. (1.2) may have a unique nonzero

constant periodic solution.

Theorem 4.1 Consider Eq. (1.2), where α(t), β(t) are ω-periodic continuous functions on R.
Suppose that the following condition holds:

(H1) α
2(t)− 4β(t) = 0,

then Eq. (1.2) has no non-constant periodic solution.

Proof We divide the proof into two cases.

(i) If α(t) ̸≡ C (C ̸= 0).

Consider Eq. (1.2), if given initial condition x(t0) = 0, then the unique solution x(t) of

Eq. (1.2) with initial condition x(t0) = 0 satisfies

x(t) = 0. (4.1)

If given initial condition x(t0) ̸= 0, then the unique solution x(t) of Eq. (1.2) with initial

condition x(t0) ̸= 0 satisfies

x(t) ̸= 0. (4.2)

Thus if initial condition x(t0) ̸= 0, n ̸= 3, then Eq. (1.2) satisfies

1

3− n

dx3−n

dt
= x2 + α(t)x+ β(t). (4.3)
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By (H1), integrating both sides of (4.3) from 0 to ω gives

x3−n(ω)− x3−n(0) = (3− n)

∫ ω

0

(x2 + α(t)x+ β(t))dt = (3− n)

∫ ω

0

(x+
α(t)

2
)2dt. (4.4)

If initial condition x(t0) ̸= 0, n = 3, then Eq. (1.2) satisfies

d ln |x|
dt

= x2 + α(t)x+ β(t). (4.5)

By (H1), integrating both sides of (4.5) from 0 to ω, we have

|x(ω)| − |x(0)| =
∫ ω

0

(x2 + α(t)x+ β(t))dt =

∫ ω

0

(x+
α(t)

2
)2dt. (4.6)

If x(t) ̸= −α(t)
2 , both (4.4) and (4.6) imply x(ω) ̸= x(0), so, x(t) cannot be an ω-periodic solution

of Eq. (1.2). If x(t) = −α(t)
2 , then x(t) satisfies neither (4.3) nor (4.5), thus x(t) cannot be an

ω-periodic solution of Eq. (1.2) either. Hence, Eq. (1.2) has no non-constant periodic solution.

(ii) If α(t) ≡ C (C ̸= 0).

By (H1) and from (4.4) and (4.6), it is easy for us to see, x(t) = −C
2 is a nonzero constant

periodic solution of (1.2).

Above two cases show that Eq. (1.2) has no non-constant solution. If Eq. (1.2) has a nonzero

periodic solution, the nonzero periodic solution must be nonzero constant periodic solution. This

completes the proof. 2
5. Two nonzero periodic solutions

In this section, we give conditions on α and β that imply Eq. (1.2) has exactly two nonzero

periodic solutions.

Theorem 5.1 Consider Eq. (1.2), where n is an even number, and α(t), β(t) are ω-periodic

continuous functions on R. Suppose that the following conditions hold:

(H1) α2(t)− 4β(t) > 0,

(H2) (−α−
√

α2 − 4β)M < (−α+
√

α2 − 4β)L,

then Eq. (1.2) has exactly two nonzero ω-periodic continuous solutions.

(1) One ω-periodic continuous solution is γ1(t), and

(−α−
√
α2 − 4β)L
2

≤ γ1(t) ≤
(−α−

√
α2 − 4β)M
2

;

(2) Another ω-periodic continuous solution is γ2(t), and

(−α+
√
α2 − 4β)L
2

≤ γ2(t) ≤
(−α+

√
α2 − 4β)M
2

.

Proof By (H1), Eq. (1.2) can be turned into

dx

dt
= xn−2(x+

α(t) +
√

α2(t)− 4β(t)

2
)(x+

α(t)−
√
α2(t)− 4β(t)

2
). (5.1)

Denote

λ1(t) =
−α(t)−

√
α2(t)− 4β(t)

2
, λ2(t) =

−α(t) +
√

α2(t)− 4β(t)

2
. (5.2)
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It follows from (H1) and (H2) that

(λ1)L ≤ λ1(t) ≤ (λ1)M < (λ2)L ≤ λ2(t) ≤ (λ2)M . (5.3)

It follows from (5.2) that Eq. (5.1) becomes

dx

dt
= xn−2(x− λ1(t))(x− λ2(t)). (5.4)

Next, we divide the proof into three steps.

(1) We prove the existence of the periodic solution γ1(t) of Eq. (1.2).

Suppose

S = {Φ(t) ∈ C(R,R)|Φ(t+ ω) = Φ(t)}. (5.5)

Given any Φ(t),Ψ(t) ∈ S, the distance is defined as follows:

ρ(Φ,Ψ) = sup
t∈[0,ω]

|Φ(t)−Ψ(t)|, (5.6)

thus (S, ρ) is a complete metric space.

Take a convex closed set B1 of S as follows:

B1 = {Φ(t) ∈ S|(λ1)L ≤ Φ(t) ≤ (λ1)M ,mod (Φ) ⊆ mod (α, β)}. (5.7)

Given any Φ(t) ∈ B1, consider the following equation:

dx

dt
=Φn−2(t)(x− λ1(t))(Φ(t)− λ2(t))

=Φn−2(t)(Φ(t)− λ2(t))x− Φn−2(t)(Φ(t)− λ2(t))λ1(t). (5.8)

By (5.3), (5.7) and n is an even number, we get that

|λ1|n−2
M ((λ1)L − (λ2)M ) ≤ Φn−2(t)(Φ(t)− λ2(t)) ≤ |λ1|n−2

L ((λ1)M − (λ2)L) < 0, (5.9)

hence we have ∫ ω

0

Φn−2(t)(Φ(t)− λ2(t))dt < 0. (5.10)

Since Φ(t), λ1(t) and λ2(t) are ω-periodic continuous functions, it follows

Φn−2(t)(Φ(t)− λ2(t)),Φ
n−2(t)(Φ(t)− λ2(t))λ1(t)

are ω-periodic continuous functions, by (5.10), according to Lemma 2.1, Eq. (5.8) has a unique

ω-periodic continuous solution as follows:

η(t) = −
∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθΦn−2(s)(Φ(s)− λ2(s))λ1(s)ds, (5.11)

and

mod (η) ⊆ mod (Φn−2(t)(Φ(t)− λ2(t)),Φ
n−2(t)(Φ(t)− λ2(t))λ1(t)). (5.12)

It follows from (5.2) and (5.7) that

mod (Φn−2(t)(Φ(t)− λ2(t))) ⊆ mod (α, β),

mod (Φn−2(t)(Φ(t)− λ2(t))λ1(t)) ⊆ mod (α, β),
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hence we have

mod (η) ⊆ mod (α, β). (5.13)

It follows from (5.7), (5.9) and (5.11) that

η(t) ≥− (λ1)L

∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθΦn−2(s)(Φ(s)− λ2(s))ds

=(λ1)L

∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθd

(∫ t

s

Φn−2(θ)(Φ(θ)− λ2(θ))dθ

)
=(λ1)L[e

∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθ]t−∞

=(λ1)L[1− e
∫ t
−∞ Φn−2(θ)(Φ(θ)−λ2(θ))dθ] = (λ1)L,

and

η(t) ≤− (λM )L

∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθΦn−2(s)(Φ(s)− λ2(s))ds

=(λ1)M

∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθd

(∫ t

s

Φn−2(θ)(Φ(θ)− λ2(θ))dθ

)
=(λ1)M [e

∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθ]t−∞

=(λ1)M [1− e
∫ t
−∞ Φn−2(θ)(Φ(θ)−λ2(θ))dθ] = (λ1)M ,

hence, η(t) ∈ B1.

Defining a mapping as follows

(TΦ)(t) = −
∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθΦn−2(s)(Φ(s)− λ2(s))λ1(s)ds, (5.14)

thus if given any Φ(t) ∈ B1, then (TΦ)(t) ∈ B1, hence T : B1 → B1.

Now, we prove that the mapping T is a compact mapping. Consider any sequence {Φk(t)} ⊆
B1 (k = 1, 2, . . .), then it follows

(λ1)L ≤ Φk(t) ≤ (λ1)M ,mod (Φk) ⊆ mod (α, β), k = 1, 2, . . . . (5.15)

On the other hand, (TΦk)(t) = xΦk
(t) satisfies

dxΦk
(t)

dt
= Φn−2

k (t)(Φk(t)− λ2(t))xΦk
(t)− Φn−2

k (t)(Φk(t)− λ2(t))λ1(t), (5.16)

thus we have

|dxΦk
(t)

dt
| ≤ 2|λ1|n−2

M |(λ1)L − (λ2)M ||λ1|M ,mod (xΦk
(t)) ⊆ mod (α, β), (5.17)

hence {dxΦk
(t)

dt } is uniformly bounded, therefore, {xΦk
(t)} is uniformly bounded and equicon-

tinuous on R. By the theorem of Ascoli-arzela, for any sequence {xΦk
(t)} ⊆ B1, there exists

a subsequence (also denoted by {xΦk
(t)}) such that {xΦk

(t)} is convergent uniformly on any

compact set of R. By (5.17), combined with Lemma 2.2, {xΦk
(t)} is convergent uniformly on R,

that is to say, T is relatively compact on B1.

Next, we prove that T is a continuous mapping.
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Suppose {Φk(t)} ⊆ B1,Φ(t) ∈ B1, and

Φk(t) → Φ(t), k → ∞. (5.18)

It follows from (5.14) that

|(TΦk)(t)− (TΦ)(t)|

=
∣∣∣ ∫ t

−∞
e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθΦn−2
k (s)(Φk(s)− λ2(s))λ1(s)ds−∫ t

−∞
e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθΦn−2(s)(Φ(s)− λ2(s))λ1(s)ds

∣∣∣
=

∣∣∣ ∫ t

−∞
e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθ[Φn−2
k (s)(Φk(s)− λ2(s))− Φn−2(s)(Φ(s)− λ2(s))]λ1(s)ds+∫ t

−∞
(e

∫ t
s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθ − e
∫ t
s
Φn−2(θ)(Φ(θ)−λ2(θ))dθ)Φn−2(s)(Φ(s)− λ2(s))λ1(s)ds

∣∣∣
=

∣∣∣ ∫ t

−∞
e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθ[Φn−2
k (s) + Φn−3

k (s)Φ(s) + · · ·Φn−2(s)−

λ2(s)(Φ
n−3
k (s) + Φn−4

k (s)Φ(s) + · · ·Φn−3(s))](Φk(s)− Φ(s))λ1(s)ds+∫ t

−∞
eξ
(∫ t

s

[Φn−2
k (θ) + Φn−3

k (θ)Φ(θ) + · · ·Φn−2(θ)− λ2(θ)(Φ
n−3
k (θ) + Φn−4

k (θ)Φ(θ)+

· · ·+Φn−3(θ))](Φk(θ)− Φ(θ))dθ
)
Φn−2(s)(Φ(s)− λ2(s))λ1(s)ds

∣∣∣
≤

∫ t

−∞
e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθ|Φn−2
k (s) + Φn−3

k (s)Φ(s) + · · ·Φn−2(s)−

λ2(s)(Φ
n−3
k (s) + Φn−4

k (s)Φ(s) + · · ·Φn−3(s))λ1(s)|ds+∫ t

−∞
eξ
(∫ t

s

|Φn−2
k (θ) + Φn−3

k (θ)Φ(θ) + · · ·Φn−2(θ)− λ2(θ)(Φ
n−3
k (θ) + Φn−4

k (θ)Φ(θ)+

· · ·Φn−3(θ))|dθ
)
|Φn−2(s)(Φ(s)− λ2(s))λ1(s)|dsρ(Φk,Φ),

here, ξ is between
∫ t

s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθ and
∫ t

s
Φn−2(θ)(Φ(θ)−λ2(θ))dθ, thus ξ is between

|λ1|n−2
M ((λ1)L − (λ2)M )(t− s) and |λ1|n−2

L ((λ1)M − (λ2)L)(t− s), hence we have

|(TΦk)(t)− (TΦ)(t)|

≤
∫ t

−∞
e|λ1|n−2

L ((λ1)M−(λ2)L)(t−s)(|λ1|n−2
M + |λ1|n−3

M |λ1|M + · · ·+ |λ1|n−2
M +

|λ2|M (|λ1|n−3
M + |λ1|n−4

M |λ1|M + · · ·+ |λ1|n−3
M )|λ1|M )ds+∫ t

−∞
e|λ1|n−2

L ((λ1)M−(λ2)L)(t−s)
(∫ t

s

(|λ1|n−2
M + |λ1|n−3

M |λ1|M + · · ·+ |λ1|n−2
M +

|λ2|M (|λ1|n−3
M + |λ1|n−4

M |λ1|M + · · ·+ |λ1|n−3
M ))dθ

)
(|λ1|n−2

M |(λ1)L − (λ2)M ||λ1|M )dsρ(Φk,Φ)

=

∫ t

−∞
e|λ1|n−2

L ((λ1)M−(λ2)L)(t−s)(|λ1|n−2
M + |λ1|n−3

M |λ1|M + · · ·+ |λ1|n−2
M +
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|λ2|M (|λ1|n−3
M + |λ1|n−4

M |λ1|M + · · ·+ |λ1|n−3
M )|λ1|M )ds+∫ t

−∞
e|λ1|n−2

L ((λ1)M−(λ2)L)(t−s)(t− s)(|λ1|n−2
M + |λ1|n−3

M |λ1|M + · · ·+ |λ1|n−2
M +

|λ2|M (|λ1|n−3
M + |λ1|n−4

M |λ1|M + · · ·+ |λ1|n−3
M ))

(|λ1|n−2
M |(λ1)L − (λ2)M ||λ1|M )dsρ(Φk,Φ)

= (
(n− 1)|λ1|n−2

M + |λ2|M (n− 2)|λ1|n−2
M

|λ1|n−2
L ((λ2)L − (λ1)M )

+

((n− 1)||λ1|n−2
M + |λ2|M (n− 2)|λ1|n−3

M )(|λ1|n−2
M |(λ1)L − (λ2)M ||λ1|M )

(|λ1|n−2
L ((λ2)L − (λ1)M ))2

)ρ(Φk,Φ).

It follows from (5.18) and above inequality that

(TΦk)(t) → (TΦ)(t), k → ∞, (5.19)

therefore, T is continuous. By (5.14), it is easy to see that T (∂B1) ⊆ B1. According to Lemma

2.3, T has at least a fixed point on B1, the fixed point is the ω-periodic continuous solution γ1(t)

of Eq. (1.2), and

(λ1)L ≤ γ1(t) ≤ (λ1)M . (5.20)

(2) We prove the existence of the periodic solution γ2(t) of Eq. (1.2).

Suppose

S = {Φ(t) ∈ C(R,R)|Φ(t+ ω) = Φ(t)}. (5.21)

Given any Φ(t),Ψ(t) ∈ S, the distance is defined as follows:

ρ(Φ,Ψ) = sup
t∈[0,ω]

|Φ(t)−Ψ(t)|,

thus (S, ρ) is a complete metric space.

Take a convex closed set B2 of S as follows:

B2 = {Φ(t) ∈ S|(λ2)L ≤ Φ(t) ≤ (λ2)M ,mod(Φ) ⊆ mod(α, β)}. (5.22)

Given any Φ(t) ∈ B2, consider the following equation:

dx

dt
=Φn−2(t)(Φ(t)− λ1(t))(x− λ2(t))

=Φn−2(t)(Φ(t)− λ1(t))x− Φn−2(t)(Φ(t)− λ1(t))λ2(t). (5.23)

By (5.3), (5.22) and n is an even number, we get that

0 < |λ2|n−2
L ((λ2)L − (λ1)M ) ≤ Φn−2(t)(Φ(t)− λ1(t)) ≤ |λ2|n−2

M ((λ2)M − (λ1)L), (5.24)

hence we have ∫ ω

0

Φn−2(t)(Φ(t)− λ1(t))dt > 0. (5.25)

Since Φ(t), λ1(t) and λ2(t) are ω-periodic continuous functions, it follows

Φn−2(t)(Φ(t)− λ1(t)), Φn−2(t)(Φ(t)− λ1(t))λ2(t)
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are ω-periodic continuous functions, by (5.25), according to Lemma 2.1, Eq. (5.23) has a unique

ω-periodic continuous solution as follows:

η(t) =

∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθΦn−2(s)(Φ(s)− λ1(s))λ2(s)ds (5.26)

and

mod(η) ⊆ mod(Φn−2(t)(Φ(t)− λ1(t)),Φ
n−2(t)(Φ(t)− λ1(t))λ2(t)). (5.27)

It follows from (5.2), (5.22) that

mod(Φn−2(t)(Φ(t)− λ1(t))) ⊆ mod(α, β),

mod(Φn−2(t)(Φ(t)− λ1(t))λ2(t)) ⊆ mod(α, β),

hence we have

mod(η) ⊆ mod(α, β). (5.28)

It follows from (5.22), (5.24) and (5.26) that

η(t) ≥(λ2)L

∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθΦn−2(s)(Φ(s)− λ1(s))ds

=− (λ2)L

∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθd

(∫ t

s

Φn−2(θ)(Φ(θ)− λ1(θ))dθ
)

=− (λ2)L[e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθ]+∞

t

=− (λ2)L[e
∫ t
+∞ Φn−2(θ)(Φ(θ)−λ2(θ))dθ − 1] = (λ2)L

and

η(t) ≤(λ2)M

∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθΦn−2(s)(Φ(s)− λ1(s))ds

=− (λ2)M

∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθd

(∫ t

s

Φn−2(θ)(Φ(θ)− λ1(θ))dθ
)

=− (λ2)M [e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθ]+∞

t

=− (λ2)M [e
∫ t
+∞ Φn−2(θ)(Φ(θ)−λ2(θ))dθ − 1] = (λ2)M ,

hence, η(t) ∈ B2.

Defining a mapping as follows

(TΦ)(t) =

∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθΦn−2(s)(Φ(s)− λ1(s))λ2(s)ds, (5.29)

thus if given any Φ(t) ∈ B2, then (TΦ)(t) ∈ B2, hence T : B2 → B2. Now, we prove that the

mapping T is a compact mapping.

Consider any sequence {Φk(t)} ⊆ B2 (k = 1, 2, . . .), then it follows

(λ2)L ≤ Φk(t) ≤ (λ2)M ,mod(Φk) ⊆ mod(α, β), k = 1, 2, . . . . (5.30)

On the other hand, (TΦk)(t) = xΦk
(t) satisfies

dxΦk
(t)

dt
= Φn−2

k (t)(Φk(t)− λ1(t))xΦk
(t)− Φn−2

k (t)(Φk(t)− λ1(t))λ2(t), (5.31)



Periodic solutions on generalized Abel’s differential equation 271

thus we have

|dxΦk
(t)

dt
| ≤ 2|λ2|n−2

M ((λ2)M − (λ1)L)|λ2|M ,mod(xΦk
(t)) ⊆ mod(α, β), (5.32)

hence {dxΦk
(t)

dt } is uniformly bounded, therefore, {xΦk
(t)} is uniformly bounded and equicon-

tinuous on R. By the theorem of Ascoli-arzela, for any sequence {xΦk
(t)} ⊆ B2, there exists

a subsequence (also denoted by {xΦk
(t)}) such that {xΦk

(t)} is convergent uniformly on any

compact set of R. By (5.32), combined with Lemma 2.2, {xΦk
(t)} is convergent uniformly on R,

that is to say, T is relatively compact on B2.

Next, we prove that T is a continuous mapping. Suppose {Φk(t)} ⊆ B2,Φ(t) ∈ B2, and

Φk(t) → Φ(t), k → ∞. (5.33)

It follows from (5.29) that

|(TΦk)(t)− (TΦ)(t)|

=
∣∣∣ ∫ +∞

t

e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ1(θ))dθΦn−2
k (s)(Φk(s)− λ1(s))λ2(s)ds−∫ +∞

t

e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθΦn−2(s)(Φ(s)− λ1(s))λ2(s)ds

∣∣∣
=

∣∣∣ ∫ +∞

t

e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ1(θ))dθ[Φn−2
k (s)(Φk(s)− λ1(s))− Φn−2(s)(Φ(s)− λ1(s))]λ2(s)ds+∫ +∞

t

(e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ1(θ))dθ − e
∫ t
s
Φn−2(θ)(Φ(θ)−λ1(θ))dθ)Φn−2(s)(Φ(s)− λ1(s))λ2(s)ds

∣∣∣
=

∣∣∣ ∫ +∞

t

e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ1(θ))dθ[Φn−2
k (s) + Φn−3

k (s)Φ(s) + · · ·Φn−2(s)−

λ1(s)(Φ
n−3
k (s) + Φn−4

k (s)Φ(s) + · · ·Φn−3(s))](Φk(s)− Φ(s))λ2(s)ds+∫ +∞

t

eξ
(∫ t

s

[Φn−2
k (θ) + Φn−3

k (θ)Φ(θ) + · · ·Φn−2(θ)−

λ1(θ)(Φ
n−3
k (θ) + Φn−4

k (θ)Φ(θ) + · · ·Φn−3(θ))]

(Φk(θ)− Φ(θ))dθ
)
Φn−2(s)(Φ(s)− λ1(s))λ2(s)ds

∣∣∣
≤

∫ +∞

t

e
∫ t
s
Φn−2

k (θ)(Φk(θ)−λ2(θ))dθ|Φn−2
k (s) + Φn−3

k (s)Φ(s) + · · ·Φn−2(s)−

λ1(s)(Φ
n−3
k (s) + Φn−4

k (s)Φ(s) + · · ·Φn−3(s))λ2(s)|ds+∫ +∞

t

eξ
(∫ t

s

|Φn−2
k (θ) + Φn−3

k (θ)Φ(θ) + · · ·Φn−2(θ)− λ1(θ)(Φ
n−3
k (θ) + Φn−4

k (θ)Φ(θ)+

· · ·Φn−3(θ))|dθ
)
|Φn−2(s)(Φ(s)− λ2(s))λ2(s)|dsρ(Φk,Φ),

here, ξ is between
∫ t

s
Φn−2

k (θ)(Φk(θ)−λ1(θ))dθ and
∫ t

s
Φn−2(θ)(Φ(θ)−λ1(θ))dθ, thus ξ is between

|λ2|n−2
M ((λ2)M − (λ1)L)(t− s) and |λ2|n−2

L ((λ2)L − (λ1)M )(t− s), hence we have

|(TΦk)(t)− (TΦ)(t)|

≤
∫ +∞

t

e|λ2|n−2
L ((λ2)L−(λ1)M )(t−s)(|λ2|n−2

M + |λ2|n−3
M |λ2|M + · · ·+ |λ2|n−2

M +
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|λ1|M (|λ2|n−3
M + |λ2|n−4

M |λ2|M + · · ·+ |λ2|n−3
M )|λ2|M )ds+∫ +∞

t

e|λ2|n−2
L ((λ2)L−(λ1)M )(t−s)

(∫ t

s

(|λ2|n−2
M (θ) + |λ2|n−3

M |λ2|M + · · ·+ |λ2|n−2
M +

|λ1|M (|λ2|n−3
M + |λ2|n−4

M |λ2|M + · · ·+ |λ2|n−3
M ))dθ

)
(|λ2|n−2

M ((λ2)M − (λ1)L)|λ2|M )dsρ(Φk,Φ)

=

∫ +∞

t

e|λ2|n−2
L ((λ2)L−(λ1)M )(t−s)(|λ2|n−2

M + |λ2|n−3
M |λ2|M + · · ·+ |λ2|n−2

M +

|λ1|M (|λ2|n−3
M + |λ2|n−4

M |λ2|M + · · ·+ |λ2|n−3
M )|λ2|M )ds+∫ +∞

t

e|λ2|n−2
L ((λ2)L−(λ1)M )(t−s)(s− t)(|λ2|n−2

M (θ) + |λ2|n−3
M |λ2|M + · · ·+ |λ2|n−2

M +

|λ1|M (|λ2|n−3
M + |λ2|n−4

M |λ2|M + · · ·+ |λ2|n−3
M ))

(|λ2|n−2
M ((λ2)M − (λ1)L)|λ2|M )dsρ(Φk,Φ)

= (
(n− 1)|λ2|n−2

M + |λ1|M (n− 2)|λ2|n−2
M

|λ2|n−2
L ((λ2)L − (λ1)M )

+

((n− 1)|λ2|n−2
M + |λ1|M (n− 2)|λ2|n−3

M )(|λ2|n−2
M ((λ2)M − (λ1)L)|λ2|M )

(|λ2|n−2
L ((λ2)L − (λ1)M ))2

)ρ(Φk,Φ).

It follows from (5.33) and above inequality that

(TΦk)(t) → (TΦ)(t), k → ∞, (5.34)

therefore, T is continuous. By (5.29), it is easy to see that T (∂B2) ⊆ B2. According to Lemma

2.3, T has at least a fixed point on B2, the fixed point is the ω-periodic continuous solution γ2(t)

of Eq. (1.2), and

(λ2)L ≤ γ2(t) ≤ (λ2)M . (5.35)

(3) We prove that Eq. (1.2) has exactly two nonzero periodic solutions.

Without loss of generality, suppose γ1(t) < 0 < γ2(t). Let us discuss the possible range of

x(t) of Eq. (1.2), we divide the initial condition x(t0) = x0 into the following parts:

x0 ∈ (−∞, (λ1)L), [(λ1)L, (λ1)M ], ((λ1)M , 0), x0 = 0, (0, (λ2)L),

[(λ2)L, (λ2)M ], ((λ2)M ,+∞).

By (5.4), let

f(t, x) = xn + α(t)xn−1 + β(t)xn−2 = xn−2(x− λ1(t))(x− λ2(t)), (5.36)

then it follows

f ′
x(t, x) = (n− 2)xn−3(x− λ1(t))(x− λ2(t)) + xn−2(x− λ2(t)) + xn−2(x− λ1(t)). (5.37)

(I) If x0 ∈ (−∞, (λ1)L).

Consider Eq. (5.4), we have dx
dt |(t0,x0) = f(t0, x0) > 0, thus x(t) may stay at (−∞, (λ1)L)

or enter into [(λ1)L, (λ1)M ] at some time t (t > t0). If x(t) stays at (−∞, (λ1)L), then
dx
dt =

f(t, x) > 0, thus x(t) cannot be a periodic solution of Eq. (5.4). If x(t) enters into [(λ1)L, (λ1)M ]
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at some time t (t > t0), then there is not a t1 (t1 > t0) such that x(t1) = x(t0) = x0, thus x(t)

cannot be a periodic solution of Eq. (5.4) either. So, Eq. (5.4) has no nonzero periodic solution,

that is, Eq. (1.2) has no nonzero periodic solution.

(II) If x0 ∈ [(λ1)L, (λ1)M ], then Eq. (1.2) has an ω-periodic continuous solution x(t) = γ1(t)

with initial value x(t0) = γ1(t0).

It follows from (5.37) that

f ′
x(t, λ1(t)) < 0, (5.38)

f ′
x(t, λ2(t)) > 0. (5.39)

Now, we prove

f ′
x(t, γ1(t)) < 0. (5.40)

We use proof by contradiction. Suppose there is a t∗ such that

f ′
x(t

∗, γ1(t
∗)) ≥ 0. (5.41)

We divide it into two cases:

(i) If

f ′
x(t

∗, γ1(t
∗)) > 0. (5.42)

It follows from (5.38) that

f ′
x(t

∗, λ1(t
∗)) < 0. (5.43)

From the continuity of f ′
x(t, x), we can see that there exists ζ

(1)
1 (t∗) such that

f ′
x(t

∗, ζ
(1)
1 (t∗)) = 0, γ1(t

∗) < ζ
(1)
1 (t∗) < λ1(t

∗), (5.44)

here, ζ
(1)
1 (t∗) is between λ1(t

∗) and γ1(t
∗), hence ζ

(1)
1 (t∗) is between (λ1)L and (λ1)M . Without

loss of generality, suppose γ1(t
∗) < λ1(t

∗), so we have γ
(1)
1 (t∗) < ζ

(1)
1 (t∗) < λ1(t

∗). And because

f(t, λ1(t)) = f(t, 0) = f(t, λ2(t)) = 0. (5.45)

According to the differential mean value theorem, we can get that there exist ζ
(1)
2 (t), ζ

(1)
3 (t),

such that

f ′
x(t, ζ

(1)
2 (t)) = 0, λ1(t) < ζ

(1)
2 (t) < 0, (5.46)

f ′
x(t, ζ

(1)
3 (t)) = 0, 0 < ζ

(1)
3 (t) < λ2(t). (5.47)

Obviously, we have

f ′
x(t

∗, ζ
(1)
2 (t∗)) = 0, λ1(t

∗) < ζ
(1)
2 (t∗) < 0, (5.48)

f ′
x(t

∗, ζ
(1)
3 (t∗)) = 0, 0 < ζ

(1)
3 (t∗) < λ2(t

∗). (5.49)

Noting that

f ′
x(t, ζ

(1)
1 (t)) = f ′

x(t, ζ
(1)
2 (t)) = f ′

x(t, 0) = f ′
x(t, ζ

(1)
3 (t)) = 0, (5.50)

by the differential mean value theorem, we can get that there exist ζ
(2)
1 (t), ζ

(2)
2 (t), ζ

(2)
3 (t), such

that

f ′′
xx(t, ζ

(2)
1 (t)) = 0, ζ

(1)
1 (t) < ζ

(2)
1 (t) < ζ

(1)
2 (t), (5.51)
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f ′′
xx(t, ζ

(2)
2 (t)) = 0, ζ

(1)
2 (t) < ζ

(2)
2 (t) < 0, (5.52)

f ′′
xx(t, ζ

(2)
3 (t)) = 0, 0 < ζ

(2)
3 (t) < ζ

(1)
3 (t). (5.53)

Obviously, we have

f ′′
xx(t

∗, ζ
(2)
1 (t∗)) = 0, ζ

(1)
1 (t∗) < ζ

(2)
1 (t∗) < ζ

(1)
2 (t∗), (5.54)

f ′
xx′(t∗, ζ

(2)
2 (t∗)) = 0, ζ

(1)
2 < ζ

(2)
2 (t∗) < 0, (5.55)

f ′′
xx(t

∗, ζ
(2)
3 (t∗)) = 0, 0 < ζ

(2)
3 (t∗) < ζ

(1)
3 (t∗). (5.56)

Noting that

f ′′
xx(t, ζ

(2)
1 (t)) = f ′′

xx(t, ζ
(2)
2 (t)) = f ′′

xx(t, 0) = f ′′
xx(t, ζ

(2)
3 (t)) = 0, (5.57)

and using the differential mean value theorem, we can get that there exist ζ
(3)
1 (t), ζ

(3)
2 (t), ζ

(3)
3 (t),

such that

f ′′′
xxx(t, ζ

(3)
1 (t)) = 0, ζ

(2)
1 (t) < ζ

(3)
1 (t) < ζ

(2)
2 (t), (5.58)

f ′′′
xxx(t, ζ

(3)
2 (t)) = 0, ζ

(2)
2 (t) < ζ

(3)
2 (t) < 0, (5.59)

f ′′′
xxx(t, ζ

(3)
3 (t)) = 0, 0 < ζ

(3)
3 (t) < ζ

(2)
3 (t). (5.60)

Obviously, we have

f ′′′
xxx(t

∗, ζ
(3)
1 (t∗)) = 0, ζ

(2)
1 (t∗) < ζ

(3)
1 (t∗) < ζ

(2)
2 (t∗), (5.61)

f ′′′
xxx(t

∗, ζ
(3)
2 (t∗)) = 0, ζ

(2)
2 (t∗) < ζ

(3)
2 (t∗) < 0, (5.62)

f ′′′
xxx(t

∗, ζ
(3)
3 (t∗)) = 0, 0 < ζ

(3)
3 (t∗) < ζ

(2)
3 (t∗). (5.63)

· · ·

Proceeding with the above arguments until the (n− 2)th derivative of f(t, x) with respect to x,

we get

f
(n−2)
x···x (t, ζ

(n−2)
1 (t)) = f

(n−2)
x···x (t, ζ

(n−2)
2 (t)) = f

(n−2)
x···x (t, ζ

(n−2)
3 (t)) = 0. (5.64)

By the differential mean value theorem, we can get that there exist ζ
(n−1)
1 (t), ζ

(n−1)
2 (t) such that

f
(n−1)
x···x (t, ζ

(n−1)
1 (t)) = 0, ζ

(n−2)
1 (t) < ζ

(n−1)
1 (t) < ζ

(n−2)
2 (t), (5.65)

f
(n−1)
x···x (t, ζ

(n−1)
2 (t)) = 0, ζ

(n−2)
2 (t) < ζ

(n−1)
2 (t) < ζ

(n−2)
3 (t). (5.66)

Obviously, we have

f
(n−1)
x···x (t∗, ζ

(n−1)
1 (t∗)) = 0, ζ

(n−2)
1 (t∗) < ζ

(n−1)
1 (t∗) < ζ

(n−2)
2 (t∗), (5.67)

f
(n−1)
x···x (t∗, ζ

(n−1)
2 (t∗)) = 0, ζ

(n−2)
2 (t∗) < ζ

(n−1)
2 (t∗) < ζ

(n−2)
3 (t∗). (5.68)

Noting that

f
(n−1)
x···x (t, ζ

(n−1)
1 (t)) = f

(n−1)
x···x (t, ζ

(n−1)
2 (t)) = 0, (5.69)

and using the differential mean value theorem, we can get that there exists ζ
(n)
1 (t) such that

f
(n)
x···x(t, ζ

(n)
1 (t)) = 0. (5.70)
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Obviously, we have

f
(n)
x···x(t

∗, ζ
(n)
1 (t∗)) = 0. (5.71)

But this is in contradiction with

f
(n)
x···x(t

∗, ζ
(n)
1 (t∗)) = n!. (5.72)

(ii) If

f ′
x(t

∗, γ1(t
∗)) = 0, (5.73)

then as long as we regard γ1(t
∗) as ζ

(1)
1 (t∗), we can get a contradiction with the same proof as

(i).

Both (i) and (ii) show that (5.40) is true.

Remark 5.2 In the above proof, we assume that β(t) ̸= 0. If β(t) = 0, then λ1(t) = −α(t),

λ2(t) = 0, and x = 0 is the n − 1 multiple zero of f(t, x). It can also be proved that (5.40) is

true.

Now, suppose that there is another ω-periodic continuous solution Ψ1(t) of Eq. (1.2) which

satisfies

(λ1)L ≤ Ψ1(t) ≤ (λ1)M . (5.74)

Because f(t, x) is a polynomial function with continuous partial derivatives to x, Eq. (1.2) satisfies

the existence and uniqueness of solutions to initial value problems of differential equations, thus

|γ1(t)−Ψ1(t)| > 0, ∀ t ∈ R. (5.75)

Similar to the analysis of (5.40), we can get

f ′
x(t,Ψ1(t)) < 0. (5.76)

Consider the following equation:

d[γ1(t)−Ψ1(t)]

dt
= f(t, γ1(t))− f(t,Ψ1(t))

= f ′
x[t,Ψ1(t) + θ(γ1(t)−Ψ1(t))](γ1(t)−Ψ1(t)), 0 < θ < 1, (5.77)

thus we have

|γ1(t)−Ψ1(t)| = |γ1(0)−Ψ1(0)|e
∫ t
0
f ′
x[s,Ψ1(s)+θ(γ1(s)−Ψ1(s))]ds. (5.78)

It follows from (5.20) and (5.74) that

(λ1)L ≤ Ψ1(t) + θ(γ1(t)−Ψ1(t)) ≤ (λ1)M . (5.79)

Similar to the analysis of (5.40), we can get

f ′
x[t,Ψ1(t) + θ(γ1(t)−Ψ1(t))] < 0. (5.80)

It follows from (5.78) and (5.80) that

|γ1(t)−Ψ1(t)| → 0, t → +∞. (5.81)
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It follows from (5.75) and (5.81) that this is a contradiction, thus Ψ1(t) cannot be a periodic

solution of Eq. (1.2), that is to say, Eq. (1.2) has a unique ω-periodic continuous solution γ1(t)

which satisfies (λ1)L ≤ γ1(t) ≤ (λ1)M .

(III) If x0 ∈ ((λ1)M , 0).

Consider Eq. (5.4), we have dx
dt |(t0,x0) = f(t0, x0) < 0, thus x(t) may stay at ((λ1)M , 0) or enter

into [(λ1)L, (λ1)M ] at some time t (t > t0). If x(t) stays at ((λ1)M , 0), we have dx
dt = f(t, x) < 0,

then x(t) cannot be a periodic solution of Eq. (5.4). If x(t) enters into [(λ1)L, (λ1)M ] at some

time t (t > t0), then there is not a t1 (t1 > t0) such that x(t1) = x(t0) = x0, thus x(t) cannot

be a periodic solution of Eq. (5.4) either. So, Eq. (5.4) has no nonzero periodic solution, that is,

Eq. (1.2) has no nonzero periodic solution.

(IV) If x0 = 0, then the unique solution of Eq. (1.2) with initial value x0 = 0 is the constant

periodic solution x(t) = 0.

(V) If x0 ∈ (0, (λ2)L).

Consider Eq. (5.4), we have dx
dt |(t0,x0) = f(t0, x0) < 0, thus x(t) (t > t0) stays at (0, (λ2)L),

and dx
dt = f(t, x) < 0, thus x(t) cannot be a periodic solution of Eq. (5.4). So, Eq. (5.4) has no

nonzero periodic solution, that is, Eq. (1.2) has no nonzero periodic solution.

Remark 5.3 When x0 ∈ (0, (λ2)L), we have x(t) ̸= 0 (t > t0), by
dx
dt |(t0,x0) = f(t0, x0) < 0,

thus x(t) (t > t0) stays at (0, (λ2)L).

(VI) If x0 ∈ [(λ2)L, (λ2)M ].

Similarly to the case (II), Eq. (1.2) has an ω-periodic continuous solution x(t) = γ2(t) with

initial value x(t0) = γ2(t0).

(VII) If x0 ∈ ((λ2)M ,+∞).

Consider Eq. (5.4), we have dx
dt |(t0,x0) = f(t0, x0) > 0, thus x(t) may stay at ∈ ((λ2)M ,+∞) or

x(t) → +∞ (t → +∞). If x(t) stays at ((λ2)M ,+∞), we have dx
dt = f(t, x) > 0, then x(t) cannot

be a periodic solution of Eq. (5.4). If x(t) → +∞ (t → +∞), then x(t) cannot be a periodic

solution of Eq. (5.4) either. So, Eq. (5.4) has no nonzero periodic solution, that is, Eq. (1.2) has

no nonzero periodic solution.

To sum up, Eq. (1.2) has exactly two nonzero ω-periodic continuous solutions γi(t) (i = 1, 2)

which satisfy

(λi)L ≤ γi(t) ≤ (λi)M , i = 1, 2. (5.82)

This is the end of the proof of Theorem 5.1. 2
Theorem 5.4 Consider Eq. (1.2), where n is an odd number, and α(t), β(t) are ω-periodic

continuous functions on R. Suppose that the following conditions hold:

(H1) α2(t)− 4β(t) > 0,

(H2) (−α−
√

α2 − 4β)M < (−α+
√

α2 − 4β)L,

then Eq. (1.2) has exactly two nonzero ω-periodic continuous solutions.
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(1) One ω-periodic continuous solution is γ1(t), and

(−α−
√
α2 − 4β)L
2

≤ γ1(t) ≤
(−α−

√
α2 − 4β)M
2

;

(2) Another ω-periodic continuous solution is γ2(t), and

(−α+
√
α2 − 4β)L
2

≤ γ2(t) ≤
(−α+

√
α2 − 4β)M
2

.

The proof of Theorem 5.4 is similar to that of Theorem 5.1, we omit it here.

6. Examples

The following examples show the feasibility of our main results.

Example 6.1 Consider the following equation:

dx

dt
= x3 + (sin t− 6)x2 + (2− 3 sin t)x. (6.1)

Here, α(t) = sin t− 6, β(t) = 2− 3 sin t, and

α2(t)− 4β(t) = 28 + sin2 t > 0.

7−
√
27

2
= (−α−

√
α2 − 4β)M < (−α+

√
α2 − 4β)L =

5 +
√
29

2
,

(H1) and (H2) of Theorem 5.1 are satisfied. It follows from Theorem 5.1 that Eq. (6.1) has two

2π-periodic continuous solutions γ1(t) and γ2(t), and

5−
√
29

2
=

(α−
√
α2 − 4β)L
2

≤ γ1(t) ≤
(α−

√
α2 − 4β)M
2

=
7−

√
29

2

and

5 +
√
29

2
=

(α+
√
α2 − 4β)L
2

≤ γ2(t) ≤
(α+

√
α2 − 4β)M
2

=
7 +

√
29

2
.

7. Conclusions

In this paper, the existence of periodic solutions of Eq. (1.2) is discussed. In addition to

having a zero periodic solution, the periodic solution of Eq. (1.2) has the following three cases:

(1) When α2(t)− 4β(t) < 0, there is no nonzero periodic solution of Eq. (1.2);

(2) When α2(t) − 4β(t) = 0 and α(t) ≡ C (C ̸= 0), there is one nonzero constant periodic

solution of Eq. (1.2);

(3) When α2(t)− 4β(t) > 0 and

(−α−
√

α2 − 4β)M < (−α+
√

α2 − 4β)L,

there are two nonzero periodic solutions of Eq. (1.2). The conclusion of this paper is an important

supplement to [13].
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