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with Gradient Term and Lr(0, T ;Lq(Ω)) Sources
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Abstract We consider a class of nonlinear parabolic equations whose prototype is
ut −∆u =

−→
b (x, t) · ∇u+ γ|∇u|2 − div

−→
F (x, t) + f(x, t), (x, t) ∈ ΩT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω,

where the functions |
−→
b (x, t)|2, |

−→
F (x, t)|2, f(x, t) lie in the space Lr(0, T ;Lq(Ω)), γ is a positive

constant. The purpose of this paper is to prove, under suitable assumptions on the integrability

of the space Lr(0, T ;Lq(Ω)) for the source terms and the coefficient of the gradient term, a priori

L∞ estimate and the existence of bounded solutions.

The methods consist of constructing a family of perturbation problems by regularization,

Stampacchia’s iterative technique fulfilled by an appropriate nonlinear test function and com-

pactness argument for the limit process.

Keywords parabolic equations; lower order gradient term; L∞ estimate; bounded solutions

MR(2020) Subject Classification 35K20; 35K55

1. Introduction

Let Ω be a bounded open set of RN with N > 2, and ∂Ω be the smooth boundary. T > 0 is

a finite number, ΩT = Ω× (0, T ) is the cylinder, and ΓT = ∂Ω× (0, T ) is the lateral boundary.

Consider the following parabolic equation:
ut − div(a(x, t, u,∇u)) +H(x, t, u,∇u) = −div

−→
F (x, t) + f(x, t), (x, t) ∈ ΩT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

We assume that

(H1): The Carathéodory function a(x, t, s, ξ) : ΩT ×R×RN → RN satisfies: for almost every

(x, t) ∈ ΩT , for every s in R, ξ, ξ′ in RN with ξ ̸= ξ′,

a(x, t, s, ξ) · ξ ≥ α|ξ|2, (1.2)
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|a(x, t, s, ξ)| ≤ b(|s|)|ξ|, (1.3)

[a(x, t, s, ξ)− a(x, t, s, ξ′)] · (ξ − ξ′) > 0, (1.4)

where α > 0, b : [0,+∞) → (0,+∞) is a continuous function.

(H2): The Carathéodory function H : ΩT × R× RN → R satisfies the growth condition

|H(x, t, s, ξ)| ≤ |
−→
b (x, t)||ξ|+ γ|ξ|2, (1.5)

for almost every (x, t) ∈ ΩT and for all s ∈ R, ξ ∈ RN , where γ > 0 is a constant.

(H3): The initial value function u0(x) ∈ L∞(Ω). |
−→
b (x, t)|2, |

−→
F (x, t)|2, f(x, t) ∈ Lr(0, T ;Lq(Ω)),

with
1

r
+
N

2q
= 1− ϱ1 0 < ϱ1 < 1, (1.6)

and

q ∈ [
N

2(1− ϱ1)
,∞], r ∈ [

1

1− ϱ1
,∞]. (1.7)

Problem (1.1) with γ = 0 has been investigated in [1]. Without natural growth condition

with respect to the gradient, the authors established the estimate of max |u| and the maximum

principle. When H = 0, [2] studied a class of non-coercive parabolic equations with a divergence

term −div(
−→
Eu). Under the assumption |

−→
E |2 ∈ Lr(0, T ;Lq(Ω)) with 1

r + N
2q < 1, the authors

introduced a new test function and proved the existence of bounded solutions.

The main feature of Problem (1.1) is that the nonlinear first order term has natural growth

condition (the appearance of γ|∇u|2), meanwhile the square of the coefficient |
−→
b (x, t)|2, the free

terms |
−→
F (x, t)|2 and f(x, t) lie in Lr(0, T ;Lq(Ω)). Now we explain that all these characteristics

prevent us from directly observing the existence result. Let us look at the prototype of Problem

(1.1) for the sake of clarity. On one hand, if we define A(u) = −∆u −
−→
b (x, t) · ∇u, then, as

pointed in [3], the operator A is lack of coercivity. On the other hand, it is obvious that the

Lr(0, T ;Lq(Ω)) source is more complicated than the case of r = q. With the natural growth

condition, this kind of integrability has a great influence on the existence of bounded solutions.

In the stationary case, in order to have the L∞ estimate, [4] added an extra sign condition

on the gradient term. Boccardo, Murat and Puel introduced a nonlinear test function with

exponential form in [5], which makes the Stampacchia’s method adapt to the natural growth

problem. For more detailed and systematical analysis on the bounded solutions of the elliptic

equations, the readers may refer to monograph [6] and the references therein.

We absorb some ideas from elliptic equations to solve the parabolic case. Nevertheless,

compared with the elliptic equations, the parabolic framework forces us to deal with some new

technical issues, most of which are completely different from the stationary case. For instance,

the presence of Lr(0, T ;Lq(Ω)) sources and the trick to handle the lower order term in the present

paper. In the process of obtaining the necessary estimates and various results on the convergence,

it should be remarked that some elementary functions will be employed as test functions in the

evolution setting, such as exponential function eλ|x|(eλ|x|−1)sign(x) and hyperbolic sine function

sinh(λx), which simplify the calculations and the estimates.

The definition of a weak solution to Problem (1.1) is given in the following way [7, 8].
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Definition 1.1 A measurable function u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) is a weak solution

to Problem (1.1), provided that ut ∈ L2(0, T ;H−1(Ω)) + L1(ΩT ); u(x, 0) = u0(x) a.e., in Ω;

H(x, t, u,∇u) ∈ L1(ΩT ); and the equality

T∫
0

⟨ut, ϕ⟩dt+
T∫

0

∫
Ω

a(x, t, u,∇u) · ∇ϕdxdt+
T∫

0

∫
Ω

H(x, t, u,∇u)ϕdxdt

=

T∫
0

∫
Ω

−→
F (x, t) · ∇ϕdxdt+

T∫
0

∫
Ω

f(x, t)ϕdxdt (1.8)

holds for every ϕ(x, t) ∈ L2(0, T ;H1
0 (Ω))∩L∞(ΩT ). Here, ut = α(1)+α(2) ∈ L2(0, T ;H−1(Ω))+

L1(ΩT ), is understood as

T∫
0

⟨ut, ϕ⟩dt :=⟨ut, ϕ⟩L2(0,T ;H−1(Ω))+L1(ΩT ),L2(0,T ;H1
0 (Ω))∩L∞(ΩT )

=

T∫
0

⟨α(1), ϕ⟩H−1(Ω),H1
0 (Ω)dt+

T∫
0

∫
Ω

α(2)ϕdxdt.

The bracket ⟨·, ·⟩ stands for the duality pairing between H−1(Ω) + L1(Ω) and H1
0 (Ω) ∩ L∞(Ω).

2. Existence result

Now we give the existence result.

Theorem 2.1 Suppose that (H1)–(H3) hold, then there exists at least one bounded weak

solution u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) to Problem (1.1).

This section is devoted to proving the existence of bounded solutions.

2.1. Regularization

For Eq. (1.1), let us consider the following approximate problem:
∂un

∂t − div(an(x, t, un,∇un)) +Hn(x, t, un,∇un) = −div
−→
F (x, t) + f(x, t), (x, t) ∈ ΩT ,

un(x, t) = 0, (x, t) ∈ ΓT ,

un(x, 0) = u0(x), x ∈ Ω,

(2.1)

with an(x, t, s, ξ) = a(x, t, Tn(s), ξ), Tk(s) = min(|s|, k)sign(s), and

Hn(x, t, s, ξ) =
H(x, t, s, ξ)

1 + 1
n |H(x, t, s, ξ)|

. (2.2)

It follows from the parabolic theory in [1, 9, 10] that, for every n ∈ N, Problem (2.1) has a

weak solution un ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

2.2. Uniform L∞ estimate

In this subsection, our goal is to prove that {un}∞n=1 is uniformly bounded in L∞(ΩT ). We

modify the exponential test function in [5] in order to ‘cancel’ the natural growth with respect
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to the gradient. The method combines the technique to handle with the first order term and the

trick to deal with the Lr(0, T ;Lq(Ω)) sources.

Define ψ(s) = eλ|s|(eλ|s| − 1)sign(s) with λ = γ
α . Let k ≥ ∥u0∥L∞(Ω), Gk(s) = (|s| −

k)+sign(s); and denote by χA the characteristic function of a set A. If we take ψ[Gk(un)]χ[0,τ ]

as a test function in Problem (2.1), then by (1.2), (1.5), (2.2) we have

A0︷ ︸︸ ︷
τ∫

0

⟨∂un
∂t

, ψ[Gk(un)]⟩dt+λα
τ∫

0

∫
Ak(t)

|∇Gk(un)|2e2λ|Gk(un)|dxdt

≤

A1︷ ︸︸ ︷
τ∫

0

∫
Ak(t)

|
−→
b (x, t)||∇Gk(un)|eλ|Gk(un)|(eλ|Gk(un)| − 1)dxdt+

A2︷ ︸︸ ︷
τ∫

0

∫
Ak(t)

2λ|
−→
F (x, t)||∇Gk(un)|e2λ|Gk(un)|dxdt+

A3︷ ︸︸ ︷
τ∫

0

∫
Ak(t)

|f(x, t)|e2λ|Gk(un)|dxdt, (2.3)

where Ak(t) = {x ∈ Ω : |un(x, t)| > k}.
Denote ψ̃(s) =

∫ s

0
ψ(τ)dτ . First, we consider the time derivative term A0. Since k ≥

∥u0∥L∞(Ω) and ψ̃(s) = 1
2λ [e

2λ|s| − 1 − 2eλ|s|] = 1
2λ (e

λ|s| − 1)2, the integration by parts in [11]

helps us get that

A0 =

∫
Ω

ψ̃[Gk(un(τ))]dx−
∫
Ω

ψ̃[Gk(u0)]dx

=

∫
Ω

ψ̃[Gk(un(τ))]dx =
1

2λ

∫
Ω

(eλ|Gk(un(τ))| − 1)2dx.

We estimate Ai (i = 1, 2, 3), by Cauchy’s inequality with ϵ, as follows:

A1 ≤
τ∫

0

∫
Ak(t)

|
−→
b ||∇Gk(un)|e2λ|Gk(un)|dxdt

≤ ϵ

2

τ∫
0

∫
Ak(t)

|∇Gk(un)|2e2λ|Gk(un)|dxdt+
1

2ϵ

τ∫
0

∫
Ak(t)

|
−→
b |2e2λ|Gk(un)|dxdt,

A2 ≤ ϵ

2

τ∫
0

∫
Ak(t)

|∇Gk(un)|2e2λ|Gk(un)|dxdt+
1

2ϵ

τ∫
0

∫
Ak(t)

4λ2|
−→
F |2e2λ|Gk(un)|dxdt.

Furthermore, applying the inequality A2 ≤ 2(A− 1)2 + 2, we have

A1 +A2 ≤ϵ
τ∫

0

∫
Ak(t)

|∇Gk(un)|2e2λ|Gk(un)|dxdt+
1

2ϵ

τ∫
0

∫
Ak(t)

(|
−→
b |2 + 4λ2|

−→
F |2)e2λ|Gk(un)|dxdt
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≤ϵ
τ∫

0

∫
Ak(t)

|∇Gk(un)|2e2λ|Gk(un)|dxdt+
1

ϵ

τ∫
0

∫
Ak(t)

(|
−→
b |2 + 4λ2|

−→
F |2)(eλ|Gk(un)| − 1)2dxdt+

1

ϵ

τ∫
0

∫
Ak(t)

(|
−→
b |2 + 4λ2|

−→
F |2)dxdt;

and

A3 ≤ 2

τ∫
0

∫
Ak(t)

|f |(eλ|Gk(un)| − 1)2dxdt+ 2

τ∫
0

∫
Ak(t)

|f |dxdt.

Choosing ϵ = γ
2 , substituting the above estimates for Ai into (2.3), and taking the supremum

for τ ∈ [0, t1] in it, we deduce that

α

2γ
min{1, α}

L︷ ︸︸ ︷[
ess sup
τ∈[0,t1]

∫
Ω

(eλ|Gk(un(τ))| − 1)2dx+
x
Ωt1

|∇(eλ|Gk(un)| − 1)|2dxdt
]

≤

I1︷ ︸︸ ︷
t1∫
0

∫
Ak(t)

D(eλ|Gk(un)| − 1)2dxdt+

I2︷ ︸︸ ︷
t1∫
0

∫
Ak(t)

Ddxdt, (2.4)

where D = 2
γ (|

−→
b |2 + 4γ2

α2 |
−→
F |2) + 2|f |, t1 will be chosen later.

Define |v|Ωt = ∥v∥L∞(0,t;L2(Ω)) + ∥∇v∥L2(Ωt), Ωτ = Ω× [0, τ ], then

L ≥ 1

2
|eλ|Gk(un)| − 1|2Ωt1

.

Denote ϱ = 2ϱ1

N , q̂ = 2q′(1 + ϱ), r̂ = 2r′(1 + ϱ), q′ is the Hölder conjugate exponent of

q. It follows from (1.6) that 2
r̂ + N

q̂ = N
2 . Therefore, by means of Hölder’s inequality, based on

parabolic embedding L∞(0, t1;L
2(Ω))∩L2(0, t1;H

1
0 (Ω)) ↪→ Lr̂(0, t1;L

q̂(Ω)), we have an estimate

for I1:

I1 ≤∥D∥q,r,Qt1 (k)
∥eλ|Gk(un)| − 1∥22q′,2r′,Qt1 (k)

≤∥D∥q,r,Qt1
(k)

[
∥eλ|Gk(un)| − 1∥2q′(1+ϱ),2r′(1+ϱ),Ωt1

( t1∫
0

|Ak(t)|
r′
q′ dt

) 1
2r′ −

1
2r′(1+ϱ)

]2
=∥D∥q,r,Qt1 (k)

∥eλ|Gk(un)| − 1∥2q̂,r̂,Ωt1
[µ(k)]

2ϱ
r̂

≤∥D∥q,r,Qt1 (k)
β2|eλ|Gk(un)| − 1|2Ωt1

(|Ω|
r̂
q̂ t1)

2ϱ
r̂ ,

where Qt1(k) = {(x, t) ∈ Ω × (0, t1) : |u(x, t)| > k}, β = β(N) is the embedding constant,

µ(k) =
∫ t1
0

|Ak(t)|
r̂
q̂ dt, and r̂

q̂ = r′

q′ is used.

By Hölder’s inequality,

I2 ≤∥D∥q,r,Ωt1
∥1∥q′,r′,Qt1 (k)

= ∥D∥q,r,Ωt1

( t1∫
0

|Ak(t)|
r′
q′ dt

) 1
r′ ≤ ∥D∥q,r,ΩT

[µ(k)]
2(1+ϱ)

r̂ .
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Taking into account the estimates L, I1, I2 in (2.4) together, we obtain

α

4γ
min{1, α}|eλ|Gk(un)| − 1|2Ωt1

≤∥D∥q,r,Qt1 (k)
β2|Ω|

2ϱ
q̂ t

2ϱ
r̂
1 |eλ|Gk(un)| − 1|2Ωt1

+

∥D∥q,r,ΩT [µ(k)]
2(1+ϱ)

r̂ .

Choosing t1 so small that

∥D∥q,r,Qt1
(k)β

2|Ω|
2ϱ
q̂ t

2ϱ
r̂
1 ≤ α

8γ
min{1, α}, (2.5)

and utilizing the inequality ex − 1 ≥ x, ∀x ≥ 0, as a consequence, one has

λ|Gk(un)|Ωt1
≤ |eλ|Gk(un)| − 1|Ωt1

≤ C[µ(k)]
(1+ϱ)

r̂ , (2.6)

where ϱ = 2ϱ1

N > 0; and the constant C depends on α, γ, ∥|
−→
b |2∥q,r,ΩT

, ∥|−→F |2∥q,r,ΩT
, ∥f∥q,r,ΩT

.

Now we are in a position to apply the Iteration Lemma in [1] to (2.6), and we obtain

ess sup
n

∥un(x, t)∥L∞(Ωt1 )
≤ C. (2.7)

If the time interval [0, T ] is partitioned into a finite number of subintervals [0, t1], [t1, t2], . . . ,

[ts−1, ts = T ], meanwhile for each subinterval, a condition of the form (2.5) is fulfilled, then

analogous arguments are valid for the cylinder Ωti = Ω × (ti−1, ti), i = 1, 2, . . . , and finally we

arrive at

|un(x, t)| ≤ C, (2.8)

for all n and almost all (x, t) ∈ ΩT .

2.3. Almost everywhere convergence of un

Now we focus on the energy estimate. The test function is related to sinh(x), which is used

in [7, 12].1 Taking sinh(λ̂un)χ[0,τ ] with λ̂ = 2γ+3
α as a test function in (2.1) gives

1

λ̂

∫
Ω

[cosh(λ̂un(τ))− 1]dx− 1

λ̂

∫
Ω

[cosh(λ̂u0)− 1]dx+ λ̂α
x
Ωτ

cosh(λ̂un)|∇un|2dxdt

≤

J1︷ ︸︸ ︷x
Ωτ

|
−→
b (x, t)||∇un|| sinh(λ̂un)|dxdt+

J2︷ ︸︸ ︷
γ

x
Ωτ

|∇un|2| sinh(λ̂un)|dxdt+

J3︷ ︸︸ ︷
λ̂

x
Ωτ

|
−→
F (x, t)| cosh(λ̂un)|∇un|dxdt+

x
Ωτ

|f(x, t)|| sinh(λ̂un)|dxdt, (2.9)

where τ ∈ [0, T ].

Note the properties of sinh(x), cosh(x) stated in the footnote, by virtue of Cauchy’s inequality

and the uniform L∞ boundness of un, J1, J2, J3 are estimated as follows:

J1 ≤1

2

x
Ωτ

|∇un|2| sinh(λ̂un)|dxdt+
1

2

x
Ωτ

|
−→
b |2| sinh(λ̂un)|dxdt

1. sinh(x) := ex−e−x

2
, cosh(x) := ex+e−x

2
. It is clear that sinh(0) = 0, cosh(0) = 1; sinh′(x) = cosh(x),

cosh′(x) = sinh(x); | sinh(x)| ≤ cosh(x); and cosh(x) ≥ 1, ∀x ∈ R.
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≤1

2

x
Ωτ

|∇un|2 cosh(λ̂un)dxdt+
1

2
∥ sinh(λ̂un)∥L∞(ΩT )∥|

−→
b |2∥L1(ΩT ),

J2 ≤γ
x
Ωτ

|∇un|2 cosh(λ̂un)dxdt,

J3 ≤ λ̂α
2

x
Ωτ

cosh(λ̂un)|∇un|2dxdt+
λ̂

2α

x
Ωτ

cosh(λ̂un)|
−→
F |2dxdt

≤ λ̂α
2

x
Ωτ

cosh(λ̂un)|∇un|2dxdt+
λ̂

2α
∥|
−→
F |2∥L1(ΩT )∥ cosh(λ̂un)∥L∞(ΩT ).

These calculations help us estimate (2.9). Taking the supremum for τ ∈ [0, T ], recalling that

cosh(x) ≥ 1, ∀x ∈ R and the definition of λ̂, we have

1

λ̂
ess sup
τ∈[0,T ]

∫
Ω

[cosh(λ̂un(τ))− 1]dx+
x
ΩT

|∇un|2dxdt

≤ ∥ sinh(λ̂un)∥L∞(ΩT )∥f∥L1(ΩT ) +
1

2
∥ sinh(λ̂un)∥L∞(ΩT )∥|

−→
b |2∥L1(ΩT )+

λ̂

2α
∥|−→F |2∥L1(ΩT )∥ cosh(λ̂un)∥L∞(ΩT ) +

1

λ̂

∫
Ω

cosh(λ̂u0)dx,

which shows that

{un}∞n=1 is bounded in L2(0, T ;H1
0 (Ω)). (2.10)

From (2.10) and (2.8), there exist a subsequence of {un}∞n=1, not relabeled, and a function

u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ), such that

un ⇀ u weakly in L2(0, T ;H1
0 (Ω)); (2.11)

∇un ⇀ ∇u weakly in (L2(ΩT ))
N ; (2.12)

un ⇀ u weakly* in L∞(ΩT ). (2.13)

We infer from (2.10), (2.8), (1.5) and (1.3) that the term div(an(x, t, un,∇un)) is bounded

in L2(0, T ;H−1(Ω)), while Hn(x, t, un,∇un) is bounded in L1(ΩT ), thus the equality

∂un
∂t

= div(an(x, t, un,∇un))−Hn(x, t, un,∇un)− div
−→
F (x, t) + f(x, t)

implies that

{(un)t}∞n=1 is bounded in L2(0, T ;H−1(Ω)) + L1(ΩT ). (2.14)

For r < N
N−1 , there hold

{(un)t}∞n=1 is bounded in L1(0, T ;W−1,r(Ω)) (2.15)

and

H1
0 (Ω)

compact
↪→ L2(Ω) ↪→W−1,r(Ω). (2.16)

Combining (2.10), (2.15), (2.16) with Simon’s Compactness Theorem in [13], we deduce that

un → u strongly in L2(0, T ;L2(Ω)).
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Extracting a subsequence of {un}∞n=1, still denoted by {un}∞n=1 for simplicity, we have the

almost everywhere convergence of un:

un → u a.e., in ΩT . (2.17)

2.4. The strong convergence of ∇un

Subtracting (2.1)m from (2.1)n, we have
(un − um)t − div[an(un,∇un)− am(um,∇um)]+

Hn(un,∇un)−Hm(um,∇um) = 0, (x, t) ∈ ΩT ,

(un − um)(x, t) = 0, (x, t) ∈ ΓT ,

(un − um)(x, 0) = 0, x ∈ Ω,

(2.18)

where an(s, ξ) := an(x, t, s, ξ), Hn(s, ξ) := Hn(x, t, s, ξ) for the sake of brevity.

Denote σ(s) = 1
λ̄
(eλ̄|s|−1)sign(s), with λ̄ = γ+1

α , then σ̃(s) =
∫ s

0
σ(τ)dτ = 1

λ̄2 (e
λ̄|s|−1−λ̄|s|).

It is obvious that σ̃(s) ≥ 0, σ̃(0) = 0.

The use of σ(un − um) as a test function in (2.18) yields

∫
Ω

σ̃(un − um)(T )dx+

I1︷ ︸︸ ︷x
ΩT

[an(un,∇un)− am(um,∇um)] · (∇un −∇um)σ′(un − um)dxdt

≤

I2︷ ︸︸ ︷x
ΩT

|Hn(un,∇un)−Hm(um,∇um)||σ(un − um)|dxdt . (2.19)

For I1, let n,m > ess supn ∥un∥L∞(ΩT ), then

I1 =
x
ΩT

[a(un,∇un)− a(um,∇um)] · (∇un −∇um)σ′(un − um)dxdt

=
x
ΩT

A(un, um)σ′(un − um)dxdt,

where A(u, v) := [a(u,∇u)− a(v,∇v)] · (∇u−∇v).
For I2, by the hypotheses (1.5), (1.2) and Cauchy’s inequality, I2 is estimated in the following

manner:

I2 ≤
x
ΩT

|
−→
b |(|∇un|+ |∇um|)|σ(un − um)|dxdt+ γ

x
ΩT

(|∇un|2 + |∇um|2)|σ(un − um)|dxdt

≤1

2

x
ΩT

|
−→
b |2|σ(un − um)|dxdt+ (γ + 1)

x
ΩT

(|∇un|2 + |∇um|2)|σ(un − um)|dxdt

≤1

2

x
ΩT

|
−→
b |2|σ(un − um)|dxdt+ γ + 1

α

x
ΩT

a(un,∇un) · ∇un|σ(un − um)|dxdt+

γ + 1

α

x
ΩT

a(um,∇um) · ∇um|σ(un − um)|dxdt

≤1

2

x
ΩT

|
−→
b |2|σ(un − um)|dxdt+ γ + 1

α

x
ΩT

A(un, um)|σ(un − um)|dxdt+
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γ + 1

α

x
ΩT

a(un,∇un) · ∇um|σ(un − um)|dxdt+

γ + 1

α

x
ΩT

a(um,∇um) · ∇un|σ(un − um)|dxdt.

From the estimates I1, I2, and that σ′(s)− λ̄|σ(s)| = 1, ∀ s ∈ R, (2.19) is estimated as:

x
ΩT

A(un, um)dxdt ≤1

2

x
ΩT

|
−→
b |2|σ(un − um)|dxdt+

γ + 1

α

x
ΩT

a(un,∇un) · ∇um|σ(un − um)|dxdt+

γ + 1

α

x
ΩT

a(um,∇um) · ∇un|σ(un − um)|dxdt.

By the uniform L∞ bound of un, (1.3) and (2.12), we claim that a(un,∇un) is bounded in

(L2(ΩT ))
N . Thus one may assume that a(un,∇un) ⇀ ζ weakly in (L2(ΩT ))

N . For fixed n,

letting m→ ∞, we havex
ΩT

a(un,∇un) · ∇undxdt−
x
ΩT

a(un,∇un) · ∇udxdt−

x
ΩT

ζ · ∇undxdt+ lim sup
m→∞

x
ΩT

a(um,∇um) · ∇umdxdt

≤ 1

2

x
ΩT

|
−→
b |2|σ(un − u)|dxdt+ γ + 1

α

x
ΩT

a(un,∇un) · ∇u|σ(un − u)|dxdt+

γ + 1

α

x
ΩT

ζ · ∇un|σ(un − u)|dxdt, (2.20)

where we employ (2.8), (2.12), (2.17), the Vitali Theorem (see Theorem 3.2 in page 14 in [6])

and the Lebesgue Dominated Convergence Theorem to the limit.

Now letting n→ ∞ in (2.20), we obtain

lim sup
n→∞

x
ΩT

a(un,∇un) · ∇undxdt ≤
x
ΩT

ζ · ∇udxdt.

From (1.3), (2.8), (2.17) and the Lebesgue Dominated Convergence Theorem it follows

a(un,∇u) → a(u,∇u) strongly in (L2(ΩT ))
N .

Thus we get

lim sup
n→∞

x
ΩT

[a(un,∇un)− a(un,∇u)] · (∇un −∇u)dxdt ≤ 0.

It follows from (1.4) and the result in [14] that

∇un → ∇u strongly in (L2(ΩT ))
N . (2.21)

2.5. Passing to the limit
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Let ϕ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(ΩT ) be a test function in Problem (2.1). Then

T∫
0

⟨∂un
∂t

, ϕ⟩dt+
x
ΩT

an(x, t, un,∇un) · ∇ϕdxdt+
x
ΩT

Hn(x, t, un,∇un)ϕdxdt

=
x
ΩT

−→
F (x, t) · ∇ϕdxdt+

x
ΩT

f(x, t)ϕdxdt. (2.22)

By (2.17), (2.21), (1.5), (2.2) and the Vitali Theorem, we have that

Hn(x, t, un,∇un) → H(x, t, u,∇u) strongly in L1(ΩT ). (2.23)

In view of the Lebesgue Dominated Convergence Theorem and the boundedness of un, (2.12),

(2.23) and (2.17) permit the limit process in (2.22).

By virtue of (2.10) and (2.14), we know that {un}∞n=1 is bounded inW 1,1(0, T ;H−s(Ω)) with

s > N
2 + 1, thus

un → u strongly in C([0, T ];H−s(Ω)).

Therefore, the initial value has meaning and u(x, 0) = u0(x). 2
Acknowledgements We thank the referees for their time and comments.
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