
Journal of Mathematical Research with Applications

May, 2022, Vol. 42, No. 3, pp. 297–306

DOI:10.3770/j.issn:2095-2651.2022.03.008

Http://jmre.dlut.edu.cn

Nonlinear Maps Preserving the Mixed Triple Products
between Factors

Fangjuan ZHANG1,∗, Xinhong ZHU2

1. School of Science, Xi’an University of Posts and Telecommunications, Shaanxi 710121, P. R. China;

2. Xi’an Modern Control Technology Institute, Shaanxi 710065, P. R. China
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1. Introduction

Let A and B be two ∗-algebras and ϕ : A → B be a map. We consider that ϕ preserves

the mixed triple product if ϕ([A,B] • C) = [ϕ(A), ϕ(B)] • ϕ(C) for all A,B,C ∈ A, where

[A,B] = AB − BA is the Lie product and A • B = AB + BA∗ is the Jordan ∗-product of A

and B. Recently, some authors have considered the mixture of (skew) Lie product and Jordan

∗-product [1–11]. For example, Yang and Zhang [1] proved the nonlinear maps preserving the

mixed skew Lie triple product [[A,B]∗, C] on factors. Zhao et al. [2] proved the nonlinear maps

preserving mixed product [A • B,C] on von Neumann algebras. Yang and Zhang [3] proved

the nonlinear maps preserving the second mixed Lie triple product [[A,B], C]∗ on factors. In

this article, motivated by the above results, we will obtain the structure of the nonlinear maps

preserving the mixed triple product [A,B] • C on factors.

As usual, R and C denote respectively the real field and complex field. A von Neumann

algebra A is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing

the identity operator I. A is a factor means that its center only contains the scalar operators.

It is well known that the factor A is prime, that is, for A,B ∈ A, if AAB = {0}, then A = 0 or

B = 0.

Choose an arbitrary nontrivial projection P1 ∈ A, write P2 = I − P1. Denote Aij = PiAPj ,

i, j,= 1, 2. Then A =
∑2

i,j=1 Aij . For every A ∈ A, we can write it as A =
∑2

i,j=1Aij , where
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Aij denotes an arbitrary element of Aij .

Lemma 1.1 ([6]) Let A be a factor and A ∈ A. Then AB + BA∗ = 0 for all B ∈ A implies

that A ∈ iRI (i is the imaginary number unit).

Lemma 1.2 ([9]) Let A be a factor, for any Tii ∈ Aii with i = 1, 2, if A21T11 = T22A21 for all

A21 ∈ A21 or T11A12 = A12T22 for all A12 ∈ A12, then T11 + T22 ∈ CI.

Lemma 1.3 ([12, Problem 230]) Let A be a Banach algebra with the identity I. If A,B ∈ A
and λ ∈ C are such that [A,B] = λI, where [A,B] = AB −BA, then λ = 0.

2. Additivity

Our first theorem is as follows:

Theorem 2.1 Let A and B be two factor von Neumann algebras. Suppose that ϕ is a bijective

map from A to B with ϕ([A,B]•C) = [ϕ(A), ϕ(B)]•ϕ(C) for all A,B,C ∈ A. Then ϕ is additive.

Proof We will complete the proof by proving several claims.

Claim 1. ϕ(0) = 0, ϕ(CI) = CI.
Since ϕ is surjective, there exists A ∈ A such that ϕ(A) = 0. Then we obtain

ϕ(0) = ϕ([0, 0] •A) = [ϕ(0), ϕ(0)] • ϕ(A) = 0.

It is easy to verify that 0 = ϕ([λI,A]•B) = [ϕ(λI), ϕ(A)]•ϕ(B) for every A,B ∈ A and λ ∈ C.
By applying the surjectivity of ϕ and Lemma 1.1, we obtain [ϕ(λI), ϕ(A)] ∈ iRI. It follows from
Lemma 1.3 that [ϕ(λI), ϕ(A)] = 0. Thus ϕ(λI) ∈ CI for every λ ∈ C. By considering ϕ−1, we

obtain that ϕ(CI) = CI.
Claim 2. ϕ(A11 +A22) = ϕ(A11) + ϕ(A22) for all A11 ∈ A11 and A22 ∈ A22.

Choose X =
∑2

i,j=1Xij ∈ A such that ϕ(X) = ϕ(A11 + A22) − ϕ(A11) − ϕ(A22). Since

[Pk, Aii] • Pk = 0, 1 ≤ k, i ≤ 2, by applying Claim 1, we obtain

[ϕ(Pk), ϕ(A11 +A22)] • ϕ(Pk) = ϕ([Pk, A11 +A22] • Pk)

= ϕ([Pk, A11] • Pk) + ϕ([Pk, A22] • Pk)

= [ϕ(Pk), ϕ(A11) + ϕ(A22)] • ϕ(Pk).

Thus [ϕ(Pk), ϕ(X)] • ϕ(Pk) = ϕ([Pk, X] • Pk) = 0. By the injectivity of ϕ, we obtain that

[Pk, X] • Pk = 0, and so X12 = X21 = 0.

For every Bkl ∈ Akl, since [Bkl, Pl] •Akk = 0, k ̸= l, we obtain

[ϕ(Bkl), ϕ(Pl)] • ϕ(A11 +A22) = ϕ([Bkl, Pl] • (A11 +A22))

= ϕ([Bkl, Pl] •All) = ϕ([Bkl, Pl] •A11) + ϕ([Bkl, Pl] •A22)

= [ϕ(Bkl), ϕ(Pl)] • (ϕ(A11) + ϕ(A22)).

Thus [ϕ(Bkl), ϕ(Pl)] • ϕ(X) = ϕ([Bkl, Pl] •X) = 0, and so [Bkl, Pl] •X = 0, which indicates that

BklXll = 0 for every Bkl ∈ Akl. Since A is prime, we have Xll = 0, l = 1, 2, and so X = 0.
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Consequently, ϕ(A11 +A22) = ϕ(A11) + ϕ(A22).

Claim 3. ϕ(A22 + A21 + A11) − ϕ(A22) − ϕ(A21) − ϕ(A11) ∈ CI and ϕ(A11 + A12 + A22) −
ϕ(A11)− ϕ(A12)− ϕ(A22) ∈ CI for all A11 ∈ A11, A12 ∈ A12, A21 ∈ A21 and A22 ∈ A22.

ChooseX =
∑2

i,j=1Xij ∈ A such that ϕ(X) = ϕ(A22+A21+A11)−ϕ(A22)−ϕ(A21)−ϕ(A11).

It follows from Claims 1 and 2 that

[ϕ(Pk), ϕ(A22 +A21 +A11)] • ϕ(Pk) = ϕ([Pk, A22 +A21 +A11] • Pk)

= ϕ([Pk, A21] • Pk) = [ϕ(Pk), ϕ(A22) + ϕ(A21) + ϕ(A11)] • ϕ(Pk),

which indicates that [Pk, X] • Pk = 0. Thus we get X12 = X21 = 0.

For every B21 ∈ A21, since [B21, A21] • P1 = 0, from Claim 2, we obtain

[ϕ(B21), ϕ(A22 +A21 +A11)] • ϕ(P1) = ϕ([B21, A22 +A21 +A11] • P1)

= ϕ([B21, A22 +A11] • P1) + ϕ([B21, A21] • P1)

= ϕ([B21, ϕ(A22) + ϕ(A21) + ϕ(A11)] • ϕ(P1).

Thus [B21, X] • P1 = 0, this indicates that B21X11 = X22B21 for every B21 ∈ A21. It follows

from Lemma 1.2 that X11 + X22 ∈ CI, and so X ∈ CI. Since ϕ(CI) = CI, we have ϕ(A22 +

A21 + A11) − ϕ(A22) − ϕ(A21) − ϕ(A11) ∈ CI. In the second case, we can similarly prove that

the conclusion is valid.

Claim 4. ϕ(A11 + A12 + A21 + A22) − ϕ(A11) − ϕ(A12) − ϕ(A21) − ϕ(A22) ∈ CI for all

A11 ∈ A11, A12 ∈ A12, A21 ∈ A21 and A22 ∈ A22.

Let X =
∑2

i,j=1Xij ∈ A such that ϕ(X) = ϕ(A11 + A12 + A21 + A22)− ϕ(A11)− ϕ(A12)−
ϕ(A21)− ϕ(A22). For k ̸= l, it follows from Claims 1 and 3 that

[ϕ(Pk), ϕ(A11 +A12 +A21 +A22)] • ϕ(Pk)

= ϕ([Pk, A11 +A12 +A21 +A22] • Pk) = ϕ([Pk, Alk] • Pk)

= [ϕ(Pk), ϕ(A11) + ϕ(A12) + ϕ(A21) + ϕ(A22)] • ϕ(Pk),

this indicates that [Pk, X] • Pk = 0. Thus we get X12 = X21 = 0.

By Claim 3 again, we obtain

[ϕ(B21), ϕ(A11 +A12 +A21 +A22)] • ϕ(P1)

= ϕ([B21, A11 +A12 +A21 +A22] • P1)

= ϕ([B21, A11 +A12 +A22] • P1) + ϕ([B21, A21] • P1)

= ϕ([B21, ϕ(A11) + ϕ(A12) + ϕ(A21) + ϕ(A22)] • ϕ(P1)

for every B21 ∈ A21. Thus [B21, X] • P1 = 0, which indicates that B21X11 = X22B21 for every

B21 ∈ A21. It follows from Lemma 1.2 that X11+X22 ∈ CI, and so X ∈ CI. By applying Claim

1, we obtain ϕ(A11 +A12 +A21 +A22)− ϕ(A11)− ϕ(A12)− ϕ(A21)− ϕ(A22) ∈ CI.
Claim 5. Let i, j ∈ {1, 2} with i ̸= j. Then ϕ(Aij + Bij) − ϕ(Aij) − ϕ(Bij) ∈ CI for all

Aij , Bij ∈ Aij .
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Let X =
∑2

i,j=1Xij ∈ A such that ϕ(X) = ϕ(Aij +Bij)− ϕ(Aij)− ϕ(Bij). We obtain

[ϕ(Pi), ϕ(Aij +Bij)] • ϕ(Pi) = ϕ([Pi, Aij +Bij ] • Pi)

= ϕ([Pi, Aij ] • Pi) + ϕ([Pi, Bij ] • Pi)

= [ϕ(Pi), ϕ(Aij) + ϕ(Bij)] • ϕ(Pi),

which indicates that [Pi, X] • Pi = 0. Thus we get Xji = 0.

By Claim 4, we obtain

[ϕ(Aij +Bij), ϕ(Pj)] • ϕ(Pj) = ϕ([Aij +Bij , Pj ] • Pj)

= ϕ([Pi +Aij , Pj +Bij ] • Pj)

= [ϕ(Pi) + ϕ(Aij), ϕ(Pj) + ϕ(Bij)] • ϕ(Pj)

= [ϕ(Pi), ϕ(Bij)] • ϕ(Pj) + [ϕ(Aij), ϕ(Pj)] • ϕ(Pj)

= [ϕ(Aij) + ϕ(Bij), ϕ(Pj)] • ϕ(Pj),

this indicates that [X,Pj ] • Pj = 0, and so Xij = 0.

It is easy to verify that

[ϕ(Cij), ϕ(Aij +Bij)] • ϕ(Pj) = ϕ([Cij , Aij +Bij ] • Pj)

= ϕ([Cij , Aij ] • Pj) + ϕ([Cij , Bij ] • Pj)

= [ϕ(Cij), ϕ(Aij) + ϕ(Bij)] • ϕ(Pj)

for every Cij ∈ Aij . Thus [Cij , X] • Pj = 0, which indicates that CijXjj = XiiCij for every

Cij ∈ Aij . It follows from Lemma 1.2 that Xii +Xjj ∈ CI, and so X ∈ CI. By applying Claim

1, we obtain ϕ(Aij +Bij)− ϕ(Aij)− ϕ(Bij) ∈ CI.
Claim 6. ϕ(Aii +Bii)− ϕ(Aii)− ϕ(Bii) ∈ CI for all Aii, Bii ∈ Aii, i = 1, 2.

Choose X =
∑2

i,j=1Xij ∈ A such that ϕ(X) = ϕ(Aii +Bii)− ϕ(Aii)− ϕ(Bii). For k = 1, 2,

we obtain

[ϕ(Pk), ϕ(Aii +Bii)] • ϕ(Pk) = ϕ([Pk, Aii +Bii] • Pk)

= ϕ([Pk, Aii] • Pk) + ϕ([Pk, Bii] • Pk)

= [ϕ(Pk), ϕ(Aii) + ϕ(Bii)] • ϕ(Pk),

this indicates that [Pk, X] • Pk = 0. Thus we get X12 = X21 = 0.

It follows from Claims 4 and 5 that

[ϕ(Aii +Bii)− ϕ(Aii)− ϕ(Bii), ϕ(Cij)] • ϕ(Pj)

= ϕ([Aii +Bii, Cij ] • Pj)− ϕ([Aii, Cij ] • Pj)− ϕ([Bii, Cij ] • Pj)

= ϕ(AiiCij +BiiCij + C∗
ijA

∗
ii + C∗

ijB
∗
ii)− ϕ(AiiCij + C∗

ijA
∗
ii)− ϕ(BiiCij + C∗

ijB
∗
ii) ∈ CI

for every Cij ∈ Aij . This indicates that [X,Cij ] •Pj = XiiCij −CijXjj +C
∗
ijX

∗
ii−X∗

jjC
∗
ij ∈ CI,

and so XiiCij − CijXjj = 0. By Lemma 1.2, we obtain Xii + Xjj ∈ CI. Thus X ∈ CI. By

applying Claim 1, we obtain ϕ(Aii +Bii)− ϕ(Aii)− ϕ(Bii) ∈ CI.
Claim 7. ϕ is additive.
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By applying Claims 4–6, for every A,B ∈ A, we obtain ϕ(A+B)−ϕ(A)−ϕ(B) ∈ CI. Thus
there exists a map h : A × B → CI such that h(A,B) = ϕ(A + B) − ϕ(A) − ϕ(B). For every

A,B,C,D ∈ A, we obtain

[ϕ(C), ϕ(D)] • h(A,B) = [ϕ(C), ϕ(D)] • (ϕ(A+B)− ϕ(A)− ϕ(B))

= ϕ([C,D] • (A+B))− ϕ([C,D] •A)− ϕ([C,D] •B) ∈ CI,

which indicates that

[ϕ(C), ϕ(D)]h(A,B) + h(A,B)[ϕ(C), ϕ(D)]∗ ∈ CI.

Thus h(A,B)[ϕ(C), ϕ(D)] ∈ CI for every A,B,C,D ∈ A. If there exist A,B ∈ A such that

h(A,B) ̸= 0, then [ϕ(C), ϕ(D)] = 0 for every C,D ∈ A, which is a contradiction because B is

not abelian, and so h(A,B) = 0 for every A,B ∈ A. Thus ϕ is additive. 2
3. Linearity

Our main theorem is as follows:

Theorem 3.1 Let A and B be two factors with dimA > 4. Suppose that ϕ is a bijective map

from A to B with ϕ([A,B] • C) = [ϕ(A), ϕ(B)] • ϕ(C) for all A,B,C ∈ A. Then ϕ is a linear

∗-isomorphism, a conjugate linear ∗-isomorphism, the negative of a linear ∗-isomorphism, or the

negative conjugate linear ∗-isomorphism.

We will prove Theorem 3.1 by the following lemmas.

Lemma 3.2 For any A,B ∈ A, [ϕ(A), ϕ(B)] = 0 if and only if [A,B] = 0.

Proof It is easy to verify that

0 = ϕ([A,B] • C) = [ϕ(A), ϕ(B)] • ϕ(C) (3.1)

for every A,B,C ∈ A with [A,B] = 0. It follows from (3.1) and Lemma 1.1 that [ϕ(A), ϕ(B)] ∈
iRI, by Lemma 1.3, we obtain [ϕ(A), ϕ(B)] = 0. By considering ϕ−1, we obtain that [ϕ(A), ϕ(B)] =

0 if and only if [A,B] = 0 for every A,B ∈ A. 2
Lemma 3.3 For any A,B ∈ A, we have

(1) ϕ(iA)− θ(iI)ϕ(A) ∈ CI;
(2) ϕ([A,B]) = ϵ[ϕ(A), ϕ(B)] and ϕ([A∗, B∗]) = ϵ[ϕ(A)∗, ϕ(B)∗], where ϵ ∈ {1,−1}.

Proof (1) From Lemma 3.2 and Theorem 2.1, ϕ is an additive bijection that preserves commu-

tativity in both directions. It follows from [10, Theorem 3.1] that

ϕ(A) = aθ(A) + ξ(A)

for all A ∈ A, where a ∈ C is a nonzero scalar, θ : A → B is an additive Jordan isomorphism,

and ξ : A → CI is an additive map with ξ([A,B]) = 0 for every A,B ∈ A. It is easy to get that

θ(iI) = ±iI.
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For every A ∈ A, we obtain

ϕ(iA)− θ(iI)ϕ(A) = aθ(iA) + ξ(iA)− θ(iI)ϕ(A)

= aθ(iI)θ(A) + ξ(iA)− θ(iI)ϕ(A)

= θ(iI)(aθ(A) + ξ(A)) + ξ(iA)− θ(iI)ξ(A)− θ(iI)ϕ(A)

= ξ(iA)− θ(iI)ξ(A) ∈ CI.

(2) For every A,B ∈ A, we obtain

ϕ([A,B]− [A∗, B∗]) = ϕ([A,B] • I) = ϕ(I)([ϕ(A), ϕ(B)]− [ϕ(A)∗, ϕ(B)∗]). (3.2)

By Lemma 3.3 (1), we obtain

ϕ(i[A,B])− θ(iI)ϕ([A,B]) = ξ([iA,B])− θ(iI)ξ([A,B]) = 0

for every A,B ∈ A. Replacing A by iA in (3.2), from the above equation and Lemma 3.3 (1), we

obtain that

θ(iI)ϕ([A,B] + [A∗, B∗]) = ϕ([iA,B]− [(iA)∗, B∗])

= ϕ([iA,B] • I) = ϕ(I)([ϕ(iA), ϕ(B)]− [ϕ(iA)∗, ϕ(B)∗])

= θ(iI)ϕ(I)([ϕ(A), ϕ(B)] + [ϕ(A)∗, ϕ(B)∗])

for every A,B ∈ A, this indicates

ϕ([A,B] + [A∗, B∗]) = ϕ(I)([ϕ(A), ϕ(B)] + [ϕ(A)∗, ϕ(B)∗]). (3.3)

From (3.2) and (3.3), we obtain

ϕ([A,B]) = ϕ(I)[ϕ(A), ϕ(B)] (3.4)

and

ϕ([A∗, B∗]) = ϕ(I)[ϕ(A)∗, ϕ(B)∗] (3.5)

for every A,B ∈ A. By (3.4) and (3.5), we have

[ϕ(A∗), ϕ(B∗)] = [ϕ(A)∗, ϕ(B)∗] (3.6)

for every A,B ∈ A. From (3.4), we obtain

ϕ([[A,B], C]) = ϕ(I)2[[ϕ(A), ϕ(B)], ϕ(C)] (3.7)

for every A,B,C ∈ A. By (3.7), we have

ϕ(C[A,B]− C[A∗, B∗]) = ϕ([A,B] • C)− ϕ([[A,B], C])

= (1− ϕ(I)2)[ϕ(A), ϕ(B)]ϕ(C)− ϕ(C)[ϕ(A)∗, ϕ(B)∗]+

ϕ(I)2ϕ(C)[ϕ(A), ϕ(B)]

for every A,B,C ∈ A. Replacing A by iA in the above equation, we obtain

ϕ(C[A,B] + C[A∗, B∗])− (1− ϕ(I)2)[ϕ(A), ϕ(B)]ϕ(C)−

ϕ(C)[ϕ(A)∗, ϕ(B)∗]− ϕ(I)2ϕ(C)[ϕ(A), ϕ(B)] ∈ CI
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for every A,B,C ∈ A. This indicates that

ϕ(C[A,B])− (1− ϕ(I)2)[ϕ(A), ϕ(B)]ϕ(C)− ϕ(I)2ϕ(C)[ϕ(A), ϕ(B)] ∈ CI (3.8)

and

ϕ(C[A∗, B∗])− ϕ(C)[ϕ(A)∗, ϕ(B)∗] ∈ CI (3.9)

for every A,B,C ∈ A. From (3.6), (3.8) and (3.9), we have

(1− ϕ(I)2)[[ϕ(A), ϕ(B)], ϕ(C)] ∈ CI (3.10)

for every A,B,C ∈ A. By (3.10), ϕ(CI) = CI and the surjectivity of ϕ, we obtain ϕ(I)2 =

I. Hence there exists ϵ ∈ {1,−1} such that ϕ([A,B]) = ϵ[ϕ(A), ϕ(B)] and ϕ([A∗, B∗]) =

ϵ[ϕ(A)∗, ϕ(B)∗]. 2
Remark 3.4 Let ψ = ϵϕ, ϵ ∈ {1,−1}. From Theorem 2.1 and Lemma 3.3 (2), we have ψ : A → B
is an additive bijective map preserving the mixed Lie triple product and satisfies

ψ([A,B]) = [ψ(A), ψ(B)]

and

[ψ(A∗), ψ(B∗)] = ψ([A∗, B∗]) = [ψ(A)∗, ψ(B)∗] (3.11)

for every A,B ∈ A. By [11, Theorem 2.1], there exists an additive map f : A → CI with

f([A,B]) = 0 for all A,B ∈ A such that one of the following statements holds:

(i) ψ(A) = φ(A) + f(A) for every A ∈ A, where φ : A → B is an additive isomorphism;

(ii) ψ(A) = −φ(A)+f(A) for every A ∈ A, where φ : A → B is an additive anti-isomorphism.

Lemma 3.5 The statement (ii) does not occur.

Proof If ψ = −φ+ f , where φ : A → B is an additive anti-isomorphism and f : A → CI is an

additive map with f([A,B]) = 0 for every A,B ∈ A, then

ψ([A,B] • C) = [ψ(A), ψ(B)] • ψ(C) = [φ(A), φ(B)] • (−φ(C) + f(C))

for every A,B,C ∈ A. On the other hand, from (3.11), we obtain

ψ([A,B] • C) = (−φ+ f)([A,B] • C)

= −φ([A,B]C) + φ(C[A∗, B∗]) + f([A,B] • C)

= φ(C)[φ(A), φ(B)]− [φ(A)∗, φ(B)∗]φ(C) + f([A,B] • C)

for every A,B,C ∈ A. Then

(φ(C)−f(C))([φ(A), φ(B)]+ [φ(A), φ(B)]∗)+([φ(A), φ(B)]+ [φ(A), φ(B)]∗)φ(C) ∈ CI (3.12)

for every A,B,C ∈ A. Replace φ(A) by iφ(A) in (3.12) that

(φ(C)−f(C))([φ(A), φ(B)]− [φ(A), φ(B)]∗)+([φ(A), φ(B)]− [φ(A), φ(B)]∗)φ(C) ∈ CI (3.13)

for every A,B,C ∈ A. From (3.12) and (3.13), we obtain

(φ(C)− f(C))[φ(A), φ(B)] + [φ(A), φ(B)]φ(C) ∈ CI (3.14)



304 Fangjuan ZHANG and Xinhong ZHU

for every A,B,C ∈ A. Let P be a non-trivial projection in A. Then φ(P ) is a non-trivial

idempotent in B. Taking C = P in (3.14), we have

(φ(P )− f(P ))[φ(A), φ(B)] + [φ(A), φ(B)]φ(P ) ∈ CI. (3.15)

Multiplying (3.15) on the right-hand side by φ(P⊥) and on the left-hand side by φ(P ), we obtain

(I − f(P ))φ(P⊥[B,A]P ) = (I − f(P ))φ(P )[φ(A), φ(B)]φ(P⊥) = 0

for every A,B ∈ A. Let A ∈ A be such that P⊥AP ̸= 0. Since A is prime and φ is a bijective

map, we have

φ(P⊥[P⊥, A]P ) = φ(P⊥AP ) ̸= 0.

Thus, f(P ) = I for any non-trivial projection P ∈ A, from (3.15), we have

φ(P )[φ(A), φ(B)]φ(P ) ∈ Cφ(P )

for every A,B ∈ A and any non-trivial projection P ∈ A. Hence

P [A,B]P ∈ CP and P⊥[A,B]P⊥ ∈ CP⊥

for every A,B ∈ A and any non-trivial projection P ∈ A. Then

[PAP,PBP ] = 0 and [P⊥AP⊥, P⊥BP⊥] = 0

for every A,B ∈ A, from this, we obtain

PAP = CP and P⊥AP⊥ = CP⊥.

This is a contradiction with dimA > 4. 2
Lemma 3.6 ψ is an additive ∗-isomorphism.

Proof From Remark 3.4 and Lemma 3.5, we obtain ψ = φ+ f , where φ : A → B is an additive

isomorphism and f : A → CI is an additive map with f [A,B] = 0 for every A,B ∈ A. Then

ψ([A,B] • C) = [ψ(A), ψ(B)] • ψ(C) = [φ(A), φ(B)] • (φ(C) + f(C))

for every A,B,C ∈ A. From (3.11), we obtain

ψ([A,B] • C) = φ([A,B]C)− φ(C[A∗, B∗]) + f([A,B] • C)

= [φ(A), φ(B)]φ(C)− φ(C)[φ(A)∗, φ(B)∗] + f([A,B] • C)

= [φ(A), φ(B)] • φ(C) + f([A,B] • C)

for every A,B,C ∈ A. From this, we have

f(C)([φ(A), φ(B)] + [φ(A), φ(B)]∗) ∈ CI

for every A,B,C ∈ A. This indicates that

f(C)[φ(A), φ(B)] = 0
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for every A,B,C ∈ A. From this, we get that f(C) = 0 for every C ∈ A. Thus, ψ = φ is an

additive isomorphism. From (3.11), we obtain

φ([A,B]∗) = [φ(A), φ(B)]∗ = φ([A,B])∗ (3.16)

for every A,B ∈ A. From (3.16), we have

φ(A∗
ij) = φ(Aij)

∗

for every Aij ∈ Aij , i ̸= j. From this and φ is an isomorphism, we obtain

φ(Aij)
∗φ(A∗

ii) = φ((AiiAij)
∗) = φ(Aij)

∗φ(Aii)
∗

and

φ(Aji)
∗φ(A∗

ii) = φ((AiiAji)
∗) = 0 = φ((AiiAji))

∗ = φ(Aji)
∗φ(Aii)

∗

for every Aii ∈ Aii, Aji ∈ Aji, 1 ≤ i ̸= j ≤ 2. This indicates that

A∗
ijT = 0 and A∗

jiT = 0

for every Aij ∈ Aij , Aji ∈ Aji, i ̸= j and T = φ−1(φ(A∗
ii)−φ(Aii)

∗). Then PiT = 0 and PjT = 0.

Since A is prime, we have T = 0. Thus φ(A∗
ii) = φ(Aii)

∗, and φ(A∗) = φ(A)∗ for every A ∈ A.

Therefore, ψ = φ is an additive ∗-isomorphism. 2
Proof of Theorem 3.1 From Remark 3.4 and Lemma 3.6, we obtain that ϕ = ϵψ and ψ : A → B
is an additive ∗-isomorphism. Then

ψ(iI) = ±iI, ψ(qI) = qI

for any rational number q, and ψ is order preserving.

Let λ ∈ R. Choose sequences {an} and {bn} of rational numbers such that an ≤ λ ≤ bn for

all n and limn→∞ an = limn→∞ bn = λ. From anI ≤ λI ≤ bnI, we obtain

anI ≤ ϕ(λI) ≤ bnI.

Taking the limit, we have ϕ(λI) = λI. This indicates for any α = a+ ib ∈ C,

ψ(αI) = ψ(aI) + ψ(ibI) = (a± ib)I = αI or αI.

Then for every A ∈ A, we obtain

ϕ(αA) = ϕ((αI)A) = ϕ(αI)ϕ(A) = αϕ(A) or αϕ(A).

Therefore, ψ is a linear ∗-isomorphism or a conjugate linear ∗-isomorphism. 2
By Theorem 3.1 and the fact that every ring isomorphism between type I factors is spatial,

we obtain the following corollary.

Corollary 3.7 Let A and B be two type I factors acting on a complex Hilbert spaces H with

dimH > 2. Then a bijective map ϕ : A → B satisfies

ϕ([A,B] • C) = [ϕ(A), ϕ(B)] • ϕ(C)
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or all A,B,C ∈ A if and only if there exists ϵ ∈ {1,−1} such that ϕ(A) = ϵUAU∗ for all A ∈ A,

where U is a unitary or conjugate unitary operator.
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