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1. Introduction

In this paper, we prove the existence of three nontrivial solutions for a class of semilinear

Schrödinger equations when a parameter approaches one of the eigenvalues of the leading operator

without assuming the Ambrosetti-Rabinowitz condition.

Going into details, we investigate the multiplicity of solutions for a class of semilinear equa-

tions of the form (Pλ) :

−∆u− V (x)u+ λu = f(x, u), x ∈ RN ,

where λ is a parameter, the nonlinearity f ∈ C(RN×R,R), V (x) ∈ C(RN ,R) and lim|x|→∞ V (x) =

v∞, for some v∞ ∈ R. The Schrödinger operator S is defined as

Su(x) = −∆u(x)− V (x)u(x), D(S) = H2(RN ). (1.1)

Next, we recall a few basic facts in theory of Schrödinger operators which are relevant to our

discussion [1].

(1) Since lim|x|→∞ V (x) = v∞, one has σess(S) = [−v∞,∞).

(2) The bottom of the spectrum σ(S) of the operator S is given by

Λ = λ0 = inf
0̸=u∈H2(RN )

∫
|∇u|2 − V (x)u2∫

u2
.

Therefore, we clearly have Λ ≤ −v∞. If Λ < −v∞, then by using the Concentration Compactness

Principle of Lions, one shows that Λ is the principle eigenvalue of S with a positive eigenfunction

Φ0:

SΦ0 = λ0Φ0, Φ0 ∈ H2(RN ), Φ0 > 0.
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(3) The spectrum of S in (−∞,−v∞), namely, σ(S) ∩ (−∞,−v∞), is at most a countable

set, which is denoted by

Λ = λ0 < λ1 < λ2 < · · · ,

where each λk is an isolated eigenvalue of S of the finite multiplicity. Let Eλj denote the

eigenspace of S corresponding to the eigenvalue λj , and let Hi−1 = ⊕k≤i−1Eλk
and H0

i = Eλi .

The main purpose of this paper is to use a critical point theorem of mixed type, one of

the so-called ∇-theorems, posed by Marino and Saccon [2], which permit to find multiplicity

results in a very beautiful way. These theorems have been successfully used in some different

contexts [3–12]. In particular, in our previous work [13], we established a multiplicity result for

problem (Pλ) by using this type theorem, assuming that f satisfies a growth condition of the

Ambrosetti-Rabinowitz type. Here we want to improve our previous work from one main aspect,

that is, we do not need the nonlinearity f satisfying the classical Ambrosetti-Rabinowitz type

condition (see our condition (H2)).

Now, we state our main result. In this paper, we often suppose that lim|x|→∞ V (x) = v∞,

Λ < −v∞, v∞ < 0 and C, C1 and C2 are defined as various different positive constants. Let

F (x, t) =
∫ t

0
f(x, s)ds. The conditions imposed on f(x, t) are as follows.

(H1) There exists a(x) ∈ C(RN ), a(x) > 0 for all x ∈ RN and lim|x|→∞ a(x) = 0 such that

lim
|t|→∞

f(x, t)

a(x)|t|γ
= 0 uniformly on x ∈ RN ,

for some γ ∈ (1, (2∗ − 1)) (2∗ = 2N
N−2 );

(H2) f(x, t) = ◦(|t|) as |t| → 0 uniformly on x ∈ RN and lim|t|→∞
F (x,t)
|t|2 = +∞ uniformly

on any bounded subset of RN ;

(H3) There exists max{ 2Nγ
N+2 , γ} < β < 2∗ and a(x) in (H1) such that

f(x, t)t− 2F (x, t) ≥ a(x)|t|β , ∀x ∈ RN , t ∈ R;

(H4) For a(x) in (H1) and every r > 0, there exists a positive constant Mr such that

sup
|t|≤r

|f(x, t)|
|t|

≤ Mra(x)

for all x ∈ RN .

Theorem 1.1 Assume that conditions (H1)–(H4) hold. Then, for any i ≥ 2, there exists δi > 0

such that for ∀ − λ ∈ (λi − δi, λi), problem (Pλ) possesses at least three nontrivial solutions.

Example 1.2 In case of N = 3, let

f(x, t) =
1

1 + |x|2
|t| 72 t, ∀(x, t) ∈ R3 × R.

It is easy to see that it satisfies our conditions (H1)–(H4). Here, γ = 109
24 and β = 11

2 .

The paper is organized as follows: In Section 2 we introduce some preliminary knowledge

and technical lemmas. In Section 3 we give the proof of our main result. Finally, in Appendix

we introduce the important ∇ theorem used to prove our main result.
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2. Preliminaries and technical Lemmas

The proof of Theorem 1.1 will be finished in several steps. On H1(RN ) we define the inner

product

⟨u, v⟩λ :=

∫
∇u∇v + (λ− v∞)

∫
uv, u, v ∈ H1(RN )

and the induced norm

∥u∥2λ = ⟨u, u⟩λ for all u ∈ H1(RN ).

It is easy to see that ∥ · ∥λ is equivalent to the standard norm of H1(RN ). Now regard the

functional Iλ : H1(RN ) → R defined by

Iλ(u) =
1

2
∥u∥2λ − 1

2

∫
(V (x)− v∞)u2 −

∫
F (x, u).

From f ∈ C(RN ×R,R) and (H1) we know that Iλ is a C1 functional on H1(RN ). We want

to show that if there exists i in N such that λi−1 < −λ < λi < λi+1, and −λ is sufficiently

close to λi, then the topological situation described in Theorem 4.1 (see Appendix) holds (with

X1 = Hi−1, X2 = H0
i and X3 = H⊥

i ) and in particular that (▽) (Iλ,Hi−1 ⊕ H⊥
i , a, b) (see

Appendix) holds for suitable a and b.

To show that, we begin from the following notations. If i < k and i ∈ N, then we denote:

Bi(R) = {u ∈ Hi : ∥u∥λ ≤ R}

and

Γi−1,i(R) = {u ∈ Hi−1 : ∥u∥λ ≤ R} ∪ {u ∈ Hi : ∥u∥λ = R},

S+
k (ρ) = {u ∈ H⊥

k : ∥u∥λ = ρ}, B+
k (ρ) = {u ∈ H⊥

k : ∥u∥λ ≤ ρ}.

Lemma 2.1 If λi−1 < λi and −λ ∈ (λi−1, λi), then there exist R and ρ, R > ρ > 0, such that

sup Iλ(Γi−1,i(R)) < inf Iλ(S
+
i−1(ρ)).

Proof From (H3), we know that F (x,t)
t2 is increasing for t > 0 and decreasing for t < 0. This

together with the first condition of (H2), we have F (x, t) ≥ 0 for all (x, t) ∈ RN ×R. So, for any
u ∈ Hi−1 and −λ ∈ (λi−1, λi), we get

Iλ(u) =
1

2
∥u∥2λ − 1

2

∫
(V (x)− v∞)u2 −

∫
F (x, u)

≤ −C∥u∥2λ ≤ 0, (2.1)

where C > 0.

Next, we claim that Iλ(u) → −∞, as ∥u∥λ → ∞ for all u ∈ Hi. Argue by the contradiction

that there exists a sequence {un} such that

Iλ(un) =
1

2
∥un∥2λ − 1

2

∫
(V (x)− v∞)u2

n −
∫

F (x, un) ≥ C. (2.2)

Set vn = un

∥un∥λ
. Then {vn} is a bounded sequence in Hi. Because dimHi is finite, there exists

v ∈ Hi\{0} such that

∥vn − v∥λ → 0, vn → v a.e., x ∈ RN .
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Thus, by the assumptions of V (x) and condition (H2), for R > 0 large enough and n large

enough, from (2.2), we get

Iλ(un)

∥un∥2λ
=
1

2
− 1

2

∫
(V (x)− v∞)v2n −

∫
F (x, un)

∥un∥2λ

≤1

2
− 1

2

∫
BR(0)

(V (x)− v∞)v2dx+ ◦(1)−
∫
BR(0)

F (x, un)

u2
n

v2ndx

≤C1 + ◦(1)−
∫
BR(0)

lim inf
n→∞

F (x, un)

u2
n

v2ndx → −∞.

This is a contradiction and our claim holds.

On the other hand, from (H1), (H2) and (H4), for any ϵ > 0 small enough, there exists C > 0

such that

F (x, t) ≤ ϵ

2
t2 + C|t|2

∗
, ∀(x, t) ∈ RN × R.

Hence, we have ∣∣∣ ∫ F (x, u)
∣∣∣ ≤ ϵ

2
∥u∥2L2 + C∥u∥2

∗

L2∗ , ∀u ∈ H1(RN ). (2.3)

For any u ∈ H⊥
i−1, by (2.3), we get

Iλ(u) =
1

2
∥u∥2λ − 1

2

∫
(V (x)− v∞)u2 −

∫
F (x, u)

≥C1||u||2λ − C2∥u∥2
∗

λ . (2.4)

In fact, we define the linear operator

L : H2(RN ) → L2(RN ) : u → −∆u− V (x)u+ λu.

Then it is invertible since −λ ∈ (λi−1, λi). Then, we have

a(u, v) :=

∫
|L| 12u|L| 12 v

and the corresponding norm

∥u∥a =
√
a(u, v).

Hence, from the equivalent property of the norm, there exists C1 > 0 such that

∥u∥2a ≥ C1∥u∥2λ.

Therefore, the last inequality of (2.4) holds. Thus, from (2.1), (2.2) and (2.4), there exist two

constants R > ρ > 0 such that

sup Iλ(Γi−1,i(R)) < inf Iλ(S
+
i−1(ρ)). 2

Lemma 2.2 Assume that (H1)–(H4) hold. Then for any δ ∈ (0,min{λi+1 − λi, λi − λi−1}),
there exists ϵ0 > 0 such that for any −λ ∈ [λi − δ, λi + δ], the unique critical point u of Iλ is

constrained on Hi−1 ⊕H⊥
i such that Iλ(u) ∈ [−ϵ0, ϵ0], is the trivial.

Proof Argue by the contradiction that there exist δ > 0, −λn ∈ [λi − δ, λi + δ], and {un} ⊆
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Hi−1 ⊕H⊥
i \ {0} such that

Iλn(un) =
1

2
∥un∥2λn

− 1

2

∫
(V (x)− v∞)u2

n −
∫

F (x, un) → 0, (2.5)

⟨I ′λn
(un), v⟩ = ⟨un, v⟩λn −

∫
(V (x)− v∞)unv −

∫
f(x, un)v = 0, (2.6)

for any v in Hi−1 ⊕ H⊥
i . Of course, up to a subsequence, we can suppose −λn → −λ in

[λi − δ, λi + δ], as n → ∞. Taking v = un in (2.6), by (H3) we get

2Iλn(un)− ⟨I ′λn
(un), un⟩ =

∫
f(x, un)− 2F (x, un) ≥

∫
a(x)|un|β .

By (2.5) and (2.6), the above expression implies that∫
a(x)|un|β < C. (2.7)

Take vn in Hi−1 and wn in H⊥
i such that un = vn + wn and choose v = vn − wn in (2.6). Then

we have ∫
(|∇wn|2 − V (x)w2

n + λn|wn|2)−
∫
(|∇vn|2 − V (x)w2

n + λn|vn|2)

=

∫
f(x, un)(wn − vn).

From the above equality, similar to the proof of (2.4), we have

C∥un∥2λ ≤
∫

f(x, un)(wn − vn). (2.8)

Moreover, from (H1), we have∣∣∣ ∫ f(x, un)(wn − vn)
∣∣∣ ≤ (∫

|f(x, un)|
1+γ
γ

) γ
γ+1

(∫
|wn − vn|1+γ

) 1
1+γ

.

Using Sobolev’s embedding theorem there exists a constant C > 0 such that

∥un∥λ ≤ C
(∫

|f(x, un)|
1+γ
γ

) γ
γ+1

. (2.9)

On the other hand, from (H1), (H2), (H4), (2.7) and Hölder’s inequality, we get∣∣∣ ∫ f(x, un)(vn − wn)
∣∣∣ ≤ ∫

|f(x, un)(vn − wn)|

≤ (ϵ

∫
|vn − wn|2 + C

∫
a(x)|un|γ |vn − wn|)

≤ ϵ∥vn − wn∥2L2 + C
(∫

a(x)|un|β
) γ

β
(∫

a(x)|vn − wn|
β

β−γ

) β−γ
β

≤ C1ϵ∥vn − wn∥2λ + C2∥vn − wn∥λ
= C1ϵ∥un∥2λ + C2∥un∥λ,

where see (H3) for the restriction of β. Hence, from (2.8) and the above inequality, we know that

{un} is bounded in H1(RN ). There is a subsequence of {un}, without any loss of generality, also

denoted by {un}, and u ∈ H1(RN ) such that un ⇀ u weakly in H1(RN ), un ⇀ u strongly in
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Lp
Loc(RN ), and un(x) → u(x) a.e., x ∈ RN , where 2 ≤ p < 2∗. By (2.5), (2.6) with v = un and

Fatou’s lemma, we obtain

0 = lim
n→∞

(2Iλn(un)− ⟨I ′λn
(un), un⟩) = lim

n→∞

∫
(f(x, un)un − 2F (x, un))

≥
∫

lim inf
n→∞

(f(x, un)un − 2F (x, un)) =

∫
(f(x, u)u− 2F (x, u)).

From (H2) and (H3), the above inequality means that u = 0.

If un → 0 as n → ∞ in H1(RN ), by (H1), (H2), (H4), for any ϵ > 0, we get(∫
|f(x, un)|

γ+1
γ

) γ
γ+1 ≤ ϵ∥un∥λ + C∥un∥γλ.

Thus, from (2.9) we have

1 ≤ lim
n→∞

C
(
∫
|f(x, un)|

γ+1
γ )

γ
γ+1

∥un∥λ
= 0.

This is a contradiction.

If there exists α > 0 such that ∥un∥λ ≥ α, from (H1) and H4), for any ϵ > 0, there exist

R,MT > 0 such that

a(x) < ϵ for |x| > R

and

|f(x, t)| ≤ a(x)(MT |t|+ |t|γ), ∀(x, t) ∈ RN × R.

Thus, by un ⇀ 0, for n large enough, we get(∫
|f(x, un)|

γ+1
γ

) γ
γ+1

=
(∫

RN\BR(0)

|f(x, un)|
γ+1
γ

) γ
γ+1

+
(∫

BR(0)

|f(x, un)|
γ+1
γ

) γ
γ+1

≤Cϵ(∥un∥λ + ∥un∥γλ) + ϵ.

Hence, we have

α ≤ lim
n→∞

C
(∫

|f(x, un)|
1+γ
γ

) γ
1+γ

= 0,

which also leads to a contradiction. The lemma is thus completely proved. 2
For the following lemma, for given i ∈ N, we denote by P : H1(RN ) → H0

i and Q : H1(RN ) →
Hi−1 ⊕H⊥

i the orthogonal projections.

Lemma 2.3 Assume that (H1)–(H4) hold, −λ ∈ (λi−1, λi+1) and {un} in H1(RN ) are such

that Iλ(un) is bounded, Pun → 0 and QI ′λ(un) → 0 as n → ∞. Then {un} is bounded.

Proof Arguing by the contradiction that {un} is unbounded in H1(RN ), we can suppose that

∥un∥λ → ∞, (2.10)

as n → ∞ and that there exists u ∈ H1(RN ) such that

un

∥un∥λ
⇀ u. (2.11)
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Let un = Pun +Qun. By (H1), (H2), (H4), Hölder’s inequality and dim H0
i < +∞, we get∣∣∣ ∫ f(x, un)Pun

∣∣∣ ≤ ∫
|f(x, un)Pun|

≤ϵ∥Pun∥2L2 + C
(∫

a(x)|un|β
) γ

β
(∫

|Pun|
β

β−γ

) β−γ
β

≤C1ϵ∥Pun∥2λ + C2∥Pun∥λ
(∫

a(x)|un|β
) γ

β

,

where ϵ > 0 small enough. Combining the above inequality and (H3), we obtain

2Iλ(un)− ⟨QI ′λ(un), un⟩

=

∫
(f(x, un)un − 2F (x, un)) + ∥Pun∥2λ −

∫
(V (x)− v∞)|Pun|2 −

∫
f(x, un)Pun

≥ C
(∫

a(x)|un|β
)
+ ∥Pun∥2λ −

∫
(V (x)− v∞)|Pun|2 − C1ϵ∥Pun∥2λ−

C2∥Pun∥λ
(∫

a(x)|un|β
) γ

β

.

Thanks to β > γ, dim H0
i < +∞ and ∥Pun∥λ → 0 as n → ∞, dividing by ∥un∥λ in the two

sides of inequality above, we get

(
∫
a(x)|un|β)

γ
β

∥un∥λ
→ 0 as n → ∞. (2.12)

As a consequence of (2.12), we also obtain u = 0. Now, from our assumptions and (2.10), we get

Iλ(un)

∥un∥2λ
=

1

2
− 1

2

∫
(V (x)− v∞)u2

n

∥un∥2λ
− F (x, un)

∥un∥2λ
→ 0,

which implies that ∫
F (x, un)

∥un∥2λ
→ 1

2
as n → ∞. (2.13)

On the other hand, again by (H1), (H2) and (H4), for ϵ > 0 small enough, there exists C > 0

such that ∣∣∣ ∫ F (x, un)
∣∣∣ ≤ ϵ

∫
u2
n + C

(∫
a(x)|un|β

) γ
β ∥un∥λ,

and by (2.12) we obtain a contradiction with (2.13). 2
Lemma 2.4 Suppose that (H1)–(H4) hold. Then for any δ ∈ (0,min{λi+1 − λi, λi − λi−1}),
there exists ϵ0 > 0 such that for any −λ ∈ [λi− δ, λi+ δ] and for any ϵ1, ϵ2 ∈ (0, ϵ0) with ϵ1 < ϵ2,

the condition (∇)(Iλ,Hi−1 ⊕H⊥
i , ϵ1, ϵ2) holds.

Proof Argue by contradiction that there exists δ0 > 0 such that for all ϵ0 > 0, there exist

−λ ∈ [λi − δ, λi + δ] and ϵ1, ϵ2 ∈ (0, ϵ0) with ϵ1 < ϵ2, the condition (∇)(Iλ,Hi−1 ⊕ H⊥
i , ϵ1, ϵ2)

does not hold.

Let ϵ0 > 0 be as in Lemma 2.2. There exists a sequence of {un} in H1(RN ) such that

dist(un,Hi−1 ⊕ H⊥
i ) → 0, Iλ(un) ∈ (ϵ1, ϵ2) and QI ′λ(un) → 0. By Lemma 2.3, we know that

∥un∥λ is bounded. Hence, there exists a subsequence of {un}, without loss of generality, also
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denoted by {un}, and u ∈ H1(RN ) such that un ⇀ u weakly in H1(RN ). From (H1) and (H4),

similarly to the proof of Lemma 2.6 (see next context), we have un → u and u = 0 is a critical

point of Iλ constrained on Hi−1 ⊕ H⊥
i by Lemma 2.2. But 0 < ϵ1 ≤ Iλ(u), which leads to a

contradiction. 2
Lemma 2.5 Suppose that (H2) holds. Then

lim sup
λ→−λi

Iλ(Hi) = 0.

Proof Argue by contradiction that there exist λn → −λi, {un} in Hi and ϵ > 0 such that

sup Iλn(Hi) = Iλn(un) ≥ ϵ.

Note that Iλ attains a maximum in Hi by (H2).

If {un} is bounded, we can assume that un → u in Hi. Then we have

ϵ ≤ I−λi(u) ≤ 0.

Hence, we can suppose that ∥un∥λ → ∞. In this case, the condition (H2) easily implies a

contradiction. 2
Lemma 2.6 Assume that (H1)–(H4) hold. Then Iλ satisfies (PS) condition for −λ ∈ (λi−1, λi).

Proof Let {un} ⊂ H1(RN ) be a sequence such that {Iλ(un)} is bounded and I ′λ(un) → 0. We

need to verify that {un} possesses a convergent subsequence. We will show that {un} is bounded

in H1(RN ). Arguing by the contradiction, we can suppose that ∥un∥λ → +∞.

Now, set un = zn + hn, where zn ∈ Hi−1 and hn ∈ H⊥
i−1 for every i ∈ N. From Hölder’s

inequality, we have ∫
a(x)|un|γ |zn| ≤ C

(∫
a(x)|un|β

) γ
β ∥zn∥λ, (2.14)∫

a(x)|un|γ |hn| ≤ C
(∫

a(x)|un|β
) γ

β ∥hn∥λ (2.15)

for some C > 0 and all n ∈ N. Using (H3), we again obtain

lim
n→∞

(
∫
a(x)|un|β)

γ
β

∥un∥λ
= 0, (2.16)

and so also (2.12) holds again. Now, from (H1), (H2), (H4) and (2.14), it follows

∥zn∥λo(1) =⟨I ′λ(un),−zn⟩ = −∥zn∥2λ +

∫
(V (x)− v∞)z2n +

∫
f(x, un)zn

≥C∥zn∥2λ − ϵ∥zn∥2L2 − C1

∫
a(x)|un|γ |zn|

≥C∥zn∥2λ − C2

(∫
a(x)|un|β

) γ
β ∥zn∥λ.

From (2.12) and the above expression, we can imply that

lim
n→∞

∥zn∥λ
∥un∥λ

= 0. (2.17)
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Similarly, we can also obtain that

lim
n→∞

∥hn∥λ
∥un∥λ

= 0. (2.18)

Thus, from (2.17) and (2.18), we have

1 =
∥un∥λ
∥un∥λ

≤ ∥zn∥λ + ∥hn∥λ
∥un∥λ

→ 0, as n → ∞,

which is a contradiction. So {un} is bounded in H1(RN ). Next, we prove that {un} contains a

convergent subsequence.

In fact, we know that {un} is bounded in H1(RN ). Passing to a subsequence, we may assume

that un ⇀ u in H1(RN ). In order to establish strong convergence, it suffices to show that

∥un∥λ → ∥u∥λ.

Since ⟨I ′λ(un), un − u⟩ → 0, we know that

0 ≤ lim sup
n→∞

(||un||2λ − ||u||2λ) = lim
n→∞

sup

∫
f(x, un)(un − u). (2.19)

By the condition (H1), for ϵ > 0 small enough and r > 1 large enough, we have∫
|un|≥r

f(x, un)(un − u) <
ϵ

3
. (2.20)

Moreover, by (H4) there exists R > 0 such that∫
|un|≤r;|x|≥R

f(x, un)(un − u) ≤ ϵ

3
. (2.21)

Finally, by (H1), using Lebesgue convergence theorem, we find that∫
|un|≤r;|x|≤R

f(x, un)(un − u) ≤ ϵ

3
, (2.22)

for n large enough. Thus, from (2.20)–(2.22), we obtain∫
f(x, un)(un − u) ≤ ϵ,

for n large enough. So from above the inequality and (2.19), our conclusion holds. 2
3. The proof of main result

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 The argument will be divided into two steps.

(a) Two critical points are obtained.

Take δ′ > 0 and find ϵ0 as in Lemma 2.4. Denote ϵ1 < ϵ2 < ϵ0. By Lemma 2.5 there exists

δ1 ≤ δ′ such that, if −λ ∈ (λi − δ1, λi), then sup Iλ(Hi) < ϵ2 and by Lemma 2.4, ▽(Iλ,Hi−1 ⊕
H⊥

i , ϵ1, ϵ2) holds. Moreover, since −λ < λi, the topological strcture of Lemma 2.1 is satisfied.

By Theorem 4.1, there exist two critical points u1, u2 of Iλ such that Iλ(ui) ∈ [ϵ1, ϵ2], i = 1, 2. In

particular u1 and u2 are nontrivial solutions of problem (Pλ).
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(b) The third critical point is obtained.

Since the classical Linking Theorem [14] and Lemma 2.6, it suffices to prove that there exist

δi > 0, ρ1 > 0 and R1 > ρ1 such that for any −λ in (λi − δi, λi)

sup Iλ(Γi,i+1(R1)) < inf Iλ(S
+
i (ρ1)). (3.1)

Hence, there is a critical point u of Iλ such that Iλ(u) > inf Iλ(S
+
i (ρ1)).

In fact, from (2.3), we conclude that for any u ∈ H⊥
i

Iλ(u) =
1

2
∥u∥2λ − 1

2

∫
(V (x)− v∞)u2 −

∫
F (x, u)

≥C∥u∥2λ − C1∥u∥2
∗

λ . (3.2)

By above the inequality, there exist ρ1 > 0, α > 0 such that

inf Iλ(S
+
i (ρ1)) ≥ α.

On the other hand, using (H2), we can obtain that

Iλ(u) → −∞ as ∥u∥λ → ∞, u ∈ Hi+1.

By Lemma 2.5, there exists δi > 0 such that for any −λ in (λi − δi, λi), we get

sup Iλ(Hi) < α.

Thus (3.1) holds. Hence u is different from the critical point ui (i = 1, 2), since

Iλ(ui) ≤ sup Iλ(Hi) < α ≤ Iλ(u). 2

4. Appendix

In this section we recall one theorem belonging to a class of recent variational ones which

provide the existence of several critical points under a “mixed type” assumption on the functional,

in the sense that there are hypotheses both on the values of functional on some suitable sets and

on the values of its gradient. Theorems of this kind were first introduced in [2] as follows.

Definition 4.1 ([2]) Let X be a Hilbert space, let I : X → R be a C1 function, let M be a

closed subspace of X, and let a, b ∈ R∪{−∞,+∞}. We say that condition (∇)(I,M, a, b) holds

if there exists γ > 0 such that

inf{∥PM∇I(u)∥ |a ≤ I(u) ≤ b, dist(u,M) ≤ γ} > 0,

where PM : X → M is the orthogonal projection of X onto M .

Theorem 4.2 ([2, (∇)-Theorem]) Let X be a Hilbert space and Xi, i = 1, 2, 3 three subspaces

of X such that X = X1 ⊕X2 ⊕X3 and dimXi < ∞ for i = 1, 2. Denote by Pi the orthogonal

projection of X onto Xi. Let I : X → R be a C1,1 function. Let ρ, ρ′, ρ′′, ρ1 be such that

ρ1 > 0, 0 ≤ ρ′ < ρ < ρ′′ and define

∆ = {u ∈ X1 ⊕X2|ρ′ ≤ ∥P2u∥ ≤ ρ′′, ∥P1u∥ ≤ ρ1} and Γ = ∂X1⊕X2∆,
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S23(ρ) = {u ∈ X2 ⊕X3| ∥u∥ = ρ} and B23(ρ) = {u ∈ X2 ⊕X3| ∥u∥ ≤ ρ}.

Assume that

a′ = sup I(Γ) < inf I(S23(ρ)) = a′′.

Let a and b be such that a′ < a < a′′ and b > sup I(∆). Assume (∇)(I,X1 ⊕ X3, a, b) holds

and that (PS)c holds at any c in [a, b]. Then I has at least two critical points in I−1([a, b]).

Moreover, if

inf I(B23(ρ)) > −∞ and a1 < inf I(B23(ρ))

and (PS)c holds at any c in [a1, b], then I has another critical level in [a1, a
′].
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