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Abstract In this paper, we mainly study the uniqueness of transcendental meromorphic solu-

tions for a class of complex linear differential-difference equations. Specially, suppose that f(z)

is a finite order transcendental meromorphic solution of complex linear differential-difference

equation: W1(z)f
′(z + 1) +W2(z)f(z) = W3(z), where W1(z), W2(z), W3(z) are nonzero mero-

morphic functions, with their orders of growth being less than one, such that W1(z)+W2(z) ̸≡ 0.

If f(z) and a meromorphic function g(z) share 0, 1, ∞ CM, then either f(z) ≡ g(z) or

f(z) + g(z) ≡ f(z)g(z) or f2(z)(g(z) − 1)2 + g2(z)(f(z) − 1)2 ≡ f(z)g(z)(f(z)g(z) − 1) or

there exists a polynomial φ(z) = az + b0 such that f(z) = 1−eφ(z)

eφ(z)(ea0−b0−1)
, g(z) = 1−eφ(z)

1−eb0−a0
,

where a (̸= 0), a0, b0 are constants with ea0 ̸= eb0 .
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niqueness; finite order
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1. Introduction

In this paper, we assume that the reader is familiar with the standard notations and funda-

mental results of Nevanlinna theory in [1–3]. A meromorphic function f(z) usually refers to the

meromorphic function in the whole complex plane C. In a special case, if T (r, a) = o{T (r, f)},
then the meromorphic function a(z) is called a small function of f(z).

For meromorphic functions f(z) and g(z), a ∈ C∪{∞}. If the zeros of f(z)− a and g(z)− a

are the same with the same multiplicities (ignoring multiplicities), we often call that f(z) and

g(z) share the value a CM (IM). Especially, f(z) and g(z) are said to share the value ∞ CM

(IM) provided that the poles of f(z) and g(z) are the same with the same multiplicities (ignoring

multiplicities).

The uniqueness theory of meromorphic functions plays a significant role in complex analysis.

The research of meromorphic solutions of complex differential-difference equations has become

a subject of great interest in the last decades, due to the application of Nevanlinna value distri-

bution (difference analogue) theory in complex differential-difference equations. Moreover, the
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uniqueness theory of meromorphic functions is an important part of Nevanlinna theory. The

following results are the classic five-value theorem and four-value theorem established by Nevan-

linna.

Theorem 1.1 ([3,4]) Let f(z) and g(z) be nonconstant meromorphic functions and let aj (j =

1, 2, 3, 4, 5) be five distinct complex numbers in the extended complex plane. If f(z) and g(z)

share the values aj (j = 1, 2, 3, 4, 5) IM, then f(z) ≡ g(z).

Theorem 1.2 ([3,4]) Let f(z) and g(z) be nonconstant meromorphic functions and let aj (j =

1, 2, 3, 4) be four distinct complex numbers in the extended complex plane. If f(z) and g(z)

share the values aj (j = 1, 2, 3, 4) CM, then f(z) ≡ g(z) or f(z) ≡ T (g(z)), where T is a Möbius

transformation.

In recent years, many scholars have devoted to studying whether the conditions for shared

values can be relaxed, the number of shared values can be decreased, or shared values can be

replaced by shared sets or small functions. In this direction, we recall two related situations.

On the one hand, one study the case when a meromorphic function and its shift, or difference

operator share some values such as [5–9]. On the other hand, with the rapid development

of theoretical research on complex differential equations, difference equations and differential-

difference equations, the uniqueness problems are often combined with meromorphic solutions of

the equations as well as [5, 10–15]. Chen and Shon [16] considered the growth of meromorphic

solutions of the following difference equation:

Pn(z)f(z + n) + · · ·+ P1(z)f(z + 1) + P0(z)f(z) = F (z), (1.1)

where F (z), Pn(z), P0(z) are polynomials such that F (z)Pn(z)P0(z) ̸≡ 0. They proved the

following result.

Theorem 1.3 ([16]) Let F (z), Pn(z), P0(z) be polynomials such that F (z)Pn(z)P0(z) ̸≡ 0,

satisfying Pn + · · ·+P0 ̸≡ 0. If f(z) is a finite order transcendental meromorphic solution of the

equation (1.1), then it satisfies λ(f) = σ(f) ≥ 1. Here, the order σ(f) and the exponent λ(f) of

convergence of zeros of f(z) are defined in turn as follows:

σ(f) = lim sup
r→∞

log+ T (r, f(z))

log r
, λ(f) = lim sup

r→∞

log+N(r, 1
f(z) )

log r
.

Later, Cui and Chen [11] investigated the uniqueness of meromorphic solutions of the equation

(1.1) in the case of n = 1 and obtained the following conclusion.

Theorem 1.4 ([11]) Suppose that a1(z), a0(z) are nonzero polynomials such that a1(z)+a0(z) ̸≡
0. Let f(z) be a finite order transcendental meromorphic solution of difference equation

a1(z)f(z + 1) + a0(z)f(z) = 0. (1.2)

If f(z) and a meromorphic function g(z) share 0, 1, ∞ CM, then f(z) ≡ g(z) or f(z)g(z) ≡ 1.

In [12], Cui and Chen generalized the homogeneous difference equation (1.2) to the non-

homogeneous difference equation, and proved the following theorem.
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Theorem 1.5 ([12]) Let a1(z), a0(z), F (z) be nonzero polynomials such that a1(z)+a0(z) ̸≡ 0.

Let f(z) be a finite order transcendental meromorphic solution of difference equation

a1(z)f(z + 1) + a0(z)f(z) = F (z). (1.3)

If f(z) and a meromorphic function g(z) share 0, 1, ∞ CM, then one of the following cases holds:

(i) f(z) ≡ g(z);

(ii) f(z) + g(z) ≡ f(z)g(z);

(iii) There exists a polynomial β(z) = az + b0 such that f(z) = 1−eβ(z)

eβ(z)(ea0−b0−1)
, g(z) =

1−eβ(z)

1−eb0−a0
, where a (̸= 0), a0, b0 are constants with ea0 ̸= eb0 .

Recently, Li and Chen [13] extended polynomial coefficients of the equation (1.3) to rational

coefficients, and discussed the case that f(z) and g(z) are both meromorphic solutions of the

same difference equation. In fact, they proved the following theorem.

Theorem 1.6 ([13]) Let R1(z) ̸≡ 0, R2(z), R3(z) ̸≡ 0 be rational functions, and let f(z) and

g(z) be two finite order transcendental meromorphic solutions of difference equation

R1(z)f(z + 1) +R2(z)f(z) = R3(z). (1.4)

If f(z) and g(z) share 0, ∞ CM, then either f(z) ≡ g(z) or f(z) = R3(z)
2R2(z)

(ea1z+a0 + 1) and

g(z) = R3(z)
2R2(z)

(e−a1z−a0 + 1), where a1, a0 are constants such that e−a1 = ea1 = −1, and the

coefficients of the equation (1.4) satisfy R1(z)R3(z + 1) = R3(z)R2(z + 1).

Based on the above results, a natural inquisition would be to investigate the case when the

difference equations (1.2)–(1.4) are replaced by a more general form of the differential-difference

equation with meromorphic coefficients. In this paper, we shall investigate the whole situation,

where the following main result is established.

Theorem 1.7 Let W1(z), W2(z), W3(z) be nonzero meromorphic functions such that their

orders of growth are less than one, satisfying W1(z) +W2(z) ̸≡ 0. Let f(z) be a finite order

transcendental meromorphic solution of differential-difference equation

W1(z)f
′(z + 1) +W2(z)f(z) =W3(z). (1.5)

If f(z) and a meromorphic function g(z) share 0, 1, ∞ CM, then one of the following cases holds:

(i) f(z) ≡ g(z);

(ii) f(z) + g(z) ≡ f(z)g(z);

(iii) f2(z)(g(z)− 1)2 + g2(z)(f(z)− 1)2 ≡ f(z)g(z)(f(z)g(z)− 1);

(iv) There exists a polynomial φ(z) = az + b0 such that f(z) = 1−eφ(z)

eφ(z)(ea0−b0−1)
, g(z) =

1−eφ(z)

1−eb0−a0
, where a (̸= 0), a0, b0 are constants with ea0 ̸= eb0 .

Example 1.8 The finite order transcendental entire function f(z) = ez + 1 is a solution of

differential-difference equation f ′(z + 1)− ef(z) = −e. For g1(z) = ez + 1, obviously, g1(z) and

f(z) share 0, 1, ∞ CM, satisfying f(z) ≡ g1(z). For g2(z) = e−z + 1, obviously, g2(z) and f(z)

share 0, 1, ∞ CM, satisfying f(z) + g2(z) ≡ f(z)g2(z). For g3(z) = e2z + 1, obviously, g3(z)

and f(z) share 1, ∞ CM. However, none of the four cases in Theorem 1.7 holds. This example



334 Hongjin LIN, Junfan CHEN and Shuqing LIN

illustrates that the cases (i), (ii) in Theorem 1.7 may occur and the number of sharing values

cannot be less than 3.

Example 1.9 The finite order transcendental entire function f(z) = 1 + e−z ln 2 + e−z ln 4

is a solution of differential-difference equation f ′(z + 1) + ln 2
2 f(z) = ln 2

2 . For g(z) = 1 +

ez ln 2 + ez ln 4, g(z) and f(z) share 0, 1, ∞ CM, satisfying f2(z)(g(z)− 1)2 + g2(z)(f(z)− 1)2 ≡
f(z)g(z)(f(z)g(z)− 1). This example illustrates that the case (iii) in Theorem 1.7 may occur.

Example 1.10 The finite order transcendental entire function f(z) = 1−ez+1

ez+1(e−1) is a solution of

differential-difference equation f ′(z + 1) + e−1f(z) = − 1
e(e−1) . For g(z) = 1−ez+1

1−e−1 , it is evident

that g(z) and f(z) share 0, 1, ∞ CM. This example illustrates that the case (iv) in Theorem 1.7

may occur.

Example 1.11 The finite order transcendental meromorphic function f(z) = ez+1
z is a solution

of differential-difference equation (z+1)2

ez f ′(z + 1)− zf(z) = − 1+ez
ez . For g(z) = ez+1

z , obviously,

g(z) and f(z) share 0, 1, ∞ CM, satisfying f(z) ≡ g(z). This example illustrates that the case

(i) in Theorem 1.7 may occur when f(z) is a transcendental meromorphic function.

Remark 1.12 The ideas for this work come from [11,12].

2. Some lemmas

In order to prove our result, we need the following lemmas.

Lemma 2.1 ([12]) Let ψ(z) = anz
n+an−1z

n−1+ · · ·+a0 and φ(z) = bnz
n+bn−1z

n−1+ · · ·+b0
be polynomials, where an (̸= 0), an−1, . . . , a0, bn ( ̸= 0), bn−1, . . . , b0 are constants, and n (≥ 1) is

an integer. Then deg(ψ(z+1)−ψ(z)) = deg(φ(z+1)−φ(z)) = n− 1 and deg(ψ(z+1)+φ(z)−
ψ(z)− φ(z + 1)) ≤ n− 1.

Lemma 2.2 ([17]) Let f(z) be a meromorphic function such that its order of growth σ = σ(f)

and σ < +∞. Let η be a nonzero constant. Then for each ε > 0,

T (r, f(z + η)) = T (r, f(z)) +O(rσ−1+ε).

Lemma 2.3 ([3]) Let f(z), g(z) be nonconstant meromorphic functions, and let the order of

growth of f(z) be σ(f), and the lower order of growth of g(z) be µ(g). If σ(f) < µ(g), then

T (r, f) = o{T (r, g)}, r → ∞.

Lemma 2.4 ([3]) Let fj(z) (j = 1, 2, . . . , n) be meromorphic functions, and gj(z) (j = 1, 2, . . . , n)

be entire functions, satisfying the following conditions:

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(ii) When 1 ≤ j < k ≤ n, gj(z)− gk(z) is not a constant;

(iii) When 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)}, r → ∞, r ̸∈ E,
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where E ⊂ (1,∞) is of finite logarithmic measure. Then fj(z) ≡ 0 (j = 1, 2, . . . , n).

3. Proof of Theorem 1.7

Now we give the proof of Theorem 1.7 in this section.

Proof Because of f(z) and g(z) sharing 0, 1, ∞ CM and by applying to the second main

theorem for g(z), we get

T (r, g) ≤ N(r, g) +N(r,
1

g
) +N(r,

1

g − 1
) + S(r, g)

= N(r, f) +N(r,
1

f
) +N(r,

1

f − 1
) + S(r, g)

≤ 3T (r, f) + S(r, g).

Similarly, we obtain T (r, f) ≤ 3T (r, g) + S(r, f). Then S(r, g) = S(r, f) and g(z) is also of finite

order since f(z) is of finite order.

From the condition that f(z) shares 0, 1, ∞ CM with g(z), we see that

g(z)

f(z)
= eψ(z), (3.1)

g(z)− 1

f(z)− 1
= eδ(z), (3.2)

where ψ(z) and δ(z) are nonzero polynomials.

If eψ(z) ≡ eδ(z), then from (3.1) and (3.2), we know f(z) ≡ g(z). So the case (i) holds.

If eψ(z) ̸≡ eδ(z), then by (3.1) and (3.2), we have

f(z) =
1− eδ(z)

eψ(z) − eδ(z)
. (3.3)

If ψ(z) and δ(z) are nonzero constants such that eψ ̸= eδ, then we see that f(z) is a constant

from (3.3). This contradicts that f(z) is transcendental.

Next, suppose that one of ψ(z) and δ(z) is not a constant at least. We discuss the following

three cases.

Case 1. Assume that ψ(z) is a constant and δ(z) is a nonconstant polynomial. Then we can

let eψ(z) = m(̸= 0) be a constant.

If m = 1, then from (3.1) we know f(z) ≡ g(z). So the case (i) holds.

If m ̸= 1, then we may rewrite (3.3) as

f(z) =
1− eδ(z)

m− eδ(z)
. (3.4)

Differentiating (3.4), we can easily obtain

f ′(z) = (
1− eδ(z)

m− eδ(z)
)′ =

−eδ(z)δ′(z)(m− eδ(z))− (1− eδ(z))(−eδ(z))δ′(z)
(m− eδ(z))2

=
eδ(z)δ′(z)(eδ(z) −m+ 1− eδ(z))

(m− eδ(z))2
=
eδ(z)δ′(z)(1−m)

(m− eδ(z))2
. (3.5)
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Then substituting (3.4) and (3.5) into the equation (1.5), we know

U14(z)e
2δ(z+1)+δ(z) + U13(z)e

2δ(z) + U12(z)e
δ(z) + U11(z)e

h0(z) = 0, (3.6)

where h0(z) ≡ 0 and

U14(z) =W2(z)−W3(z),

U13(z) =((1−m)W1(z)δ
′(z + 1) + 2m(W3(z)−W2(z)))e

δ(z+1)−δ(z)+

(mW3(z)−W2(z))e
2(δ(z+1)−δ(z)),

U12(z) =((m2 −m)W1(z)δ
′(z + 1) + 2m(W2(z)−mW3(z)))e

δ(z+1)−δ(z)+

m2(W2(z)−W3(z)),

U11(z) =m
2(mW3(z)−W2(z)).

From Lemma 2.1, we get deg(δ(z + 1) − δ(z)) = deg δ(z) − 1. Because of the order of eδ(z)

being of regular growth, then T (r, eδ(z+1)−δ(z)) = o{T (r, eδ(z))}.
According to Lemma 2.3, for j = 1, 2, 3, 4, we get

T (r, U1j(z)) = o{T (r, eδ(z))},

T (r, U1j(z)) = o{T (r, e2δ(z+1))},

T (r, U1j(z)) = o{T (r, e2δ(z+1)−δ(z))},

T (r, U1j(z)) = o{T (r, e2δ(z+1)+δ(z))}.

Using Lemma 2.4 on (3.6), we have U1j(z) ≡ 0 (j = 1, 2, 3, 4). By U11(z) ≡ 0 and U14(z) ≡ 0,

we obtainm2(m−1)W3(z) ≡ 0. So eitherm ≡ 0 orm ≡ 1 orW3(z) ≡ 0, which is a contradiction.

Case 2. Assume that δ(z) is a constant and ψ(z) is a nonconstant polynomial. Then we can

let eδ(z) = n ( ̸= 0) be a constant.

If n = 1, then from (3.2) we can get f(z) ≡ g(z). So the case (i) holds.

If n ̸= 1, then (3.3) can be rewritten as

f(z) =
1− n

eψ(z) − n
. (3.7)

Taking the derivative in both sides of (3.7), we can easily have

f ′(z) = (
1− n

eψ(z) − n
)′ =

(n− 1)ψ′(z)eψ(z)

(eψ(z) − n)2
. (3.8)

Then substituting (3.7) and (3.8) into the equation (1.5), we obtain

U24(z)e
2ψ(z+1)+ψ(z) + U23(z)e

2ψ(z) + U22(z)e
ψ(z) + U21(z)e

h0(z) = 0, (3.9)

where h0(z) ≡ 0 and

U24(z) =W3(z),

U23(z) =((1− n)W1(z)ψ
′(z + 1)− 2nW3(z))e

ψ(z+1)−ψ(z)+

((n− 1)W2(z)− nW3(z))e
2(ψ(z+1)−ψ(z)),

U22(z) =((n2 − n)(W1(z)ψ
′(z + 1)− 2W2(z)) + 2n2W3(z))e

ψ(z+1)−ψ(z) + n2W3(z),

U21(z) =n
2(nW2(z)−W2(z)− nW3(z)).
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From Lemma 2.1, we see deg(ψ(z + 1)− ψ(z)) = degψ(z)− 1. Because of the order of eψ(z)

being of regular growth, then T (r, eψ(z+1)−ψ(z)) = o{T (r, eψ(z))}.

According to Lemma 2.3, for j = 1, 2, 3, 4, we can know

T (r, U2j(z)) = o{T (r, eψ(z))},

T (r, U2j(z)) = o{T (r, e2ψ(z+1))},

T (r, U2j(z)) = o{T (r, e2ψ(z+1)−ψ(z))},

T (r, U2j(z)) = o{T (r, e2ψ(z+1)+ψ(z))}.

Using Lemma 2.4 on (3.9), we have U2j(z) ≡ 0 (j = 1, 2, 3, 4). From U24(z) ≡ 0, we know

W3(z) ≡ 0, which is a contradiction.

Case 3. Assume that ψ(z) and δ(z) are nonconstant polynomials satisfying eψ(z) ̸≡ eδ(z).

Taking the derivative in both sides of (3.3), we can easily have

f ′(z) =(
1− eδ(z)

eψ(z) − eδ(z)
)′ =

−eδ(z)δ′(z)(eψ(z) − eδ(z))− (1− eδ(z))(ψ′(z)eψ(z) − δ′(z)eδ(z))

(eψ(z) − eδ(z))2

=
eδ(z)δ′(z)(eδ(z) − eψ(z)) + (eδ(z) − 1)(ψ′(z)eψ(z) − δ′(z)eδ(z))

(eψ(z) − eδ(z))2
. (3.10)

Then substituting (3.3) and (3.10) into the equation (1.5), we can get

13∑
k=1

Mk(z)e
Nk(z) = 0, (3.11)

where 

M13(z) =W3(z),

M12(z) =W2(z)−W3(z),

M11(z) =W3(z),

M10(z) =W2(z)−W3(z),

M9(z) = 2(W3(z)−W2(z)) +W1(z)(ψ
′(z + 1)− δ′(z + 1)),

M8(z) =W1(z)(δ
′(z + 1)− ψ′(z + 1))− 2W3(z),

M7(z) =W1(z)ψ
′(z + 1),

M6(z) = −W1(z)ψ
′(z + 1),

M5(z) = −W1(z)δ
′(z + 1),

M4(z) =W1(z)δ
′(z + 1),

M3(z) = −W2(z),

M2(z) = 2W2(z),

M1(z) = −W2(z),
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and 

N13(z) = 2ψ(z + 1) + ψ(z),

N12(z) = 2ψ(z + 1) + δ(z),

N11(z) = 2δ(z + 1) + ψ(z),

N10(z) = 2δ(z + 1) + δ(z),

N9(z) = ψ(z + 1) + δ(z + 1) + δ(z),

N8(z) = ψ(z + 1) + δ(z + 1) + ψ(z),

N7(z) = ψ(z + 1) + ψ(z),

N6(z) = ψ(z + 1) + δ(z),

N5(z) = δ(z + 1) + ψ(z),

N4(z) = δ(z + 1) + δ(z),

N3(z) = 2ψ(z + 1),

N2(z) = ψ(z + 1) + δ(z + 1),

N1(z) = 2δ(z + 1).

We divide the degrees of the polynomials ψ(z) and δ(z) into the following three cases.

Subcase 3.1. If degψ(z) > deg δ(z) ≥ 1, then by (3.11) we have

U34(z)e
2ψ(z+1)+ψ(z) + U33(z)e

2ψ(z) + U32(z)e
ψ(z) + U31(z)e

h0(z) = 0, (3.12)

where h0(z) ≡ 0 and
U34(z) =M13(z),

U33(z) =
∑4
k=1M3,3,k(z)e

N3,3,k(z),

U32(z) =
∑5
k=1M3,2,k(z)e

N3,2,k(z),

U31(z) =M10(z)e
2δ(z+1)+δ(z) +M4(z)e

δ(z+1)+δ(z) +M1(z)e
2δ(z+1),

where 

M3,3,4(z) =M12(z),

M3,3,3(z) =M8(z),

M3,3,2(z) =M7(z),

M3,3,1(z) =M3(z),



N3,3,4(z) = 2(ψ(z + 1)− ψ(z)) + δ(z),

N3,3,3(z) = ψ(z + 1)− ψ(z) + δ(z + 1),

N3,3,2(z) = ψ(z + 1)− ψ(z),

N3,3,1(z) = 2(ψ(z + 1)− ψ(z)),

and 

M3,2,5(z) =M11(z),

M3,2,4(z) =M9(z),

M3,2,3(z) =M6(z),

M3,2,2(z) =M5(z),

M3,2,1(z) =M2(z),



N3,2,5(z) = 2δ(z + 1),

N3,2,4(z) = ψ(z + 1)− ψ(z) + δ(z + 1) + δ(z),

N3,2,3(z) = ψ(z + 1)− ψ(z) + δ(z),

N3,2,2(z) = δ(z + 1),

N3,2,1(z) = ψ(z + 1)− ψ(z) + δ(z + 1).

From degψ(z) > deg δ(z) and deg(ψ(z + 1) − ψ(z)) = degψ(z) − 1, we can obtain deg(ψ(z +

1) − ψ(z) + δ(z)) < degψ(z). Because of the order of eψ(z) and eδ(z) being of regular growth,
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then T (r, eδ(z)) = o{T (r, eψ(z))}, T (r, eψ(z+1)−ψ(z)) = o{T (r, eψ(z))}, T (r, eψ(z+1)−ψ(z)+δ(z+j)) =

o{T (r, eψ(z))} and T (r, e2δ(z+1)+δ(z)) = o{T (r, eψ(z))} (j = 0, 1).

By Lemma 2.3, we have

T (r, U3j(z)) = o{T (r, eψ(z))},

T (r, U3j(z)) = o{T (r, e2ψ(z+1))},

T (r, U3j(z)) = o{T (r, e2ψ(z+1)−ψ(z))},

T (r, U3j(z)) = o{T (r, e2ψ(z+1)+ψ(z))}.

Using Lemma 2.4 on (3.12), we see U3j(z) ≡ 0 (j = 1, 2, 3, 4). From U34(z) ≡ 0, we getW3(z) ≡ 0,

which is a contradiction.

Subcase 3.2. If deg δ(z) > degψ(z) ≥ 1, then (3.11) can be rewritten as

U44(z)e
2δ(z+1)+δ(z) + U43(z)e

2δ(z) + U42(z)e
δ(z) + U41(z)e

h0(z) = 0, (3.13)

where h0(z) ≡ 0 and
U44(z) =M10(z),

U43(z) =
∑4
k=1M4,3,k(z)e

N4,3,k(z),

U42(z) =
∑5
k=1M4,2,k(z)e

N4,2,k(z),

U41(z) =M13(z)e
2ψ(z+1)+ψ(z) +M7(z)e

ψ(z+1)+ψ(z) +M3(z)e
2ψ(z+1),

where 

M4,3,4(z) =M11(z),

M4,3,3(z) =M9(z),

M4,3,2(z) =M4(z),

M4,3,1(z) =M1(z),



N4,3,4(z) = 2(δ(z + 1)− δ(z)) + ψ(z),

N4,3,3(z) = δ(z + 1)− δ(z) + ψ(z + 1),

N4,3,2(z) = δ(z + 1)− δ(z),

N4,3,1(z) = 2(δ(z + 1)− δ(z)),

and 

M4,2,5(z) =M12(z),

M4,2,4(z) =M8(z),

M4,2,3(z) =M6(z),

M4,2,2(z) =M5(z),

M4,2,1(z) =M2(z),



N4,2,5(z) = 2ψ(z + 1),

N4,2,4(z) = δ(z + 1)− δ(z) + ψ(z + 1) + ψ(z),

N4,2,3(z) = ψ(z + 1),

N4,2,2(z) = δ(z + 1)− δ(z) + ψ(z),

N4,2,1(z) = δ(z + 1)− δ(z) + ψ(z + 1).

From deg δ(z) > degψ(z) and deg(δ(z + 1) − δ(z)) = deg δ(z) − 1, we obtain deg(δ(z + 1) −
δ(z) + ψ(z)) < deg δ(z). Because of the order of eψ(z) and eδ(z) being of regular growth, then

T (r, eδ(z+1)−δ(z)) = o{T (r, eδ(z))}, T (r, eδ(z+1)−δ(z)+ψ(z+j)) = o{T (r, eδ(z))}, T (r, e2ψ(z+1)+ψ(z)) =

o{T (r, eδ(z))} (j = 0, 1) and T (r, eψ(z)) = o{T (r, eδ(z))}.
According to Lemma 2.3, for j = 1, 2, 3, 4, we know

T (r, U4j(z)) = o{T (r, eδ(z))},

T (r, U4j(z)) = o{T (r, e2δ(z+1))},

T (r, U4j(z)) = o{T (r, e2δ(z+1)−δ(z))},

T (r, U4j(z)) = o{T (r, e2δ(z+1)+δ(z))}.
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Using Lemma 2.4 on (3.13), we get U4j(z) ≡ 0 (j = 1, 2, 3, 4). From U41(z) ≡ 0 we have

V42(z)e
2ψ(z+1)+ψ(z) + V41(z)e

2ψ(z) = 0, (3.14)

where {
V42(z) =W3(z),

V41(z) =W1(z)ψ
′(z + 1)eψ(z+1)−ψ(z) −W2(z)e

2(ψ(z+1)−ψ(z)).

Similar to the previous discussion, for j = 1, 2, we can see

T (r, V4j(z)) = o{T (r, e2ψ(z+1)−ψ(z))}.

Using Lemma 2.4 on (3.14), we get V4j(z) ≡ 0 (j = 1, 2). By V42(z) ≡ 0 we know W3(z) ≡ 0,

which is a contradiction.

Subcase 3.3. If deg δ(z) = degψ(z) = n > 1, then we can let ψ(z) = anz
n+an−1z

n−1+· · ·+a0,
and δ(z) = bnz

n + bn−1z
n−1 + · · · + b0, where an ( ̸= 0), an−1, . . . , a0, bn (̸= 0), bn−1, . . . , b0 are

constants.

Subcase 3.3.1. If an ̸= bn, an ̸= 2bn, 2an ̸= bn, 3an ̸= 2bn, and 2an ̸= 3bn, then (3.11) can

be rewritten as
7∑
j=1

U5j(z)e
h5j(z) = 0, (3.15)

where

U57(z) =M10(z),

U56(z) =M13(z),

U55(z) =M11(z)e
2(δ(z+1)−δ(z))+

M9(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U54(z) =M12(z)e
2(ψ(z+1)−ψ(z))+

M8(z)
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U53(z) =M7(z)e
ψ(z+1)−ψ(z) +M3(z)e

2(ψ(z+1)−ψ(z)),

U52(z) =M6(z)e
ψ(z+1)−ψ(z) +M5(z)e

δ(z+1)−δ(z)+

M2(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U51(z) =M4(z)e
δ(z+1)−δ(z) +M1(z)e

2(δ(z+1)−δ(z)),



h57(z) = 2δ(z + 1) + δ(z),

h56(z) = 2ψ(z + 1) + ψ(z),

h55(z) = 2δ(z) + ψ(z),

h54(z) = 2ψ(z) + δ(z),

h53(z) = 2ψ(z),

h52(z) = ψ(z) + δ(z),

h51(z) = 2δ(z).

From an ̸= bn, an ̸= 2bn, 2an ̸= bn, 3an ̸= 2bn, and 2an ̸= 3bn, we have

deg(2δ(z + 1) + δ(z)− 2ψ(z + 1)− ψ(z)) = deg(2δ(z + 1)− δ(z)− ψ(z))

= deg(δ(z + 1)− ψ(z)) = deg(2δ(z + 1) + δ(z)− 2ψ(z)) = deg(2δ(z + 1)− ψ(z))

= deg(2δ(z + 1)− δ(z)) = deg(ψ(z + 1)− δ(z)) = deg(2ψ(z + 1)− ψ(z)− δ(z))

= deg(2ψ(z + 1)− ψ(z)) = deg(2ψ(z + 1)− δ(z))

= deg(2ψ(z + 1) + ψ(z)− 2δ(z)) = deg δ(z) = degψ(z) = n.

According to Lemma 2.1, we get deg(ψ(z + 1) − ψ(z)) = deg(δ(z + 1) − δ(z)) = n − 1 and
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deg(ψ(z+1)−ψ(z)+ δ(z+1)− δ(z)) ≤ n− 1. By Lemma 2.3, for j = 1, 2, 3, 4, 5, 6, 7, we obtain

T (r, U5j(z)) = o{T (r, e2δ(z+1)+δ(z)−2ψ(z+1)−ψ(z))}, T (r, U5j(z)) = o{T (r, eδ(z+1)−ψ(z))},

T (r, U5j(z)) = o{T (r, e2δ(z+1)−δ(z)−ψ(z))}, T (r, U5j(z)) = o{T (r, e2δ(z+1)−δ(z))},

T (r, U5j(z)) = o{T (r, e2δ(z+1)+δ(z)−2ψ(z))}, T (r, U5j(z)) = o{T (r, e2δ(z+1)−ψ(z))},

T (r, U5j(z)) = o{T (r, e2ψ(z+1)−ψ(z)−δ(z))}, T (r, U5j(z)) = o{T (r, eψ(z+1)−δ(z))},

T (r, U5j(z)) = o{T (r, e2ψ(z+1)−ψ(z))}, T (r, U5j(z)) = o{T (r, e2ψ(z+1)−δ(z))},

T (r, U5j(z)) = o{T (r, e2ψ(z+1)+ψ(z)−2δ(z))}, T (r, U5j(z)) = o{T (r, eδ(z))},

T (r, U5j(z)) = o{T (r, eψ(z))}.

Using Lemma 2.4 on (3.15), we get U5j(z) ≡ 0 (j = 1, 2, 3, 4, 5, 6, 7). From U56(z) ≡ 0 we see

W3(z) ≡ 0, which is a contradiction.

Subcase 3.3.2. If an = 2bn, then (3.11) can be rewritten as

5∑
j=1

U6j(z)e
h6j(z) = 0, (3.16)

where 

U65(z) =M13(z),

U64(z) =
∑4
k=1M6,4,k(z)e

N6,4,k(z),

U63(z) =M12(z)e
2(ψ(z+1)−ψ(z)) +M8(z)e

ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U62(z) =
∑4
k=1M6,2,k(z)e

N6,2,k(z),

U61(z) =M4(z)e
δ(z+1)−δ(z) +M1(z)e

2(δ(z+1)−δ(z)),

and 

h65(z) = 2ψ(z + 1) + ψ(z),

h64(z) = 2δ(z) + ψ(z),

h63(z) = 2ψ(z) + δ(z),

h62(z) = ψ(z) + δ(z),

h61(z) = 2δ(z),

where 

M6,4,4(z) =M11(z),

M6,4,3(z) =M9(z),

M6,4,2(z) =M7(z),

M6,4,1(z) =M3(z),



N6,4,4(z) = 2(δ(z + 1)− δ(z)),

N6,4,3(z) = δ(z + 1)− δ(z) + ψ(z + 1)− ψ(z),

N6,4,2(z) = ψ(z + 1)− 2δ(z),

N6,4,1(z) = 2ψ(z + 1)− ψ(z)− 2δ(z),

and 

M6,2,4(z) =M10(z),

M6,2,3(z) =M6(z),

M6,2,2(z) =M5(z),

M6,2,1(z) =M2(z),



N6,2,4(z) = 2δ(z + 1)− ψ(z),

N6,2,3(z) = ψ(z + 1)− ψ(z),

N6,2,2(z) = δ(z + 1)− δ(z),

N6,2,1(z) = δ(z + 1)− δ(z) + ψ(z + 1)− ψ(z).
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From an = 2bn, we know

deg(ψ(z + 1)− δ(z)) = deg(2ψ(z + 1)− ψ(z)− δ(z)) = deg(2ψ(z + 1)− δ(z))

= deg(2ψ(z + 1) + ψ(z)− 2δ(z)) = deg δ(z) = degψ(z) = n.

According to Lemma 2.1, we get deg(ψ(z + 1)− ψ(z)) = deg(δ(z + 1)− δ(z)) = deg(ψ(z + 1)−
ψ(z)+δ(z+1)−δ(z)) = n−1 and deg(ψ(z+1)−2δ(z)) = deg(2ψ(z+1)−ψ(z)−2δ(z)) ≤ n−1.

By Lemma 2.3, for j = 1, 2, 3, 4, 5, we obtain

T (r, U6j(z)) = o{T (r, eψ(z+1)−δ(z))}, T (r, U6j(z)) = o{T (r, e2ψ(z+1)−ψ(z)−δ(z))},

T (r, U6j(z)) = o{T (r, e2ψ(z+1)−δ(z))}, T (r, U6j(z)) = o{T (r, e2ψ(z+1)+ψ(z)−2δ(z))},

T (r, U6j(z)) = o{T (r, eδ(z))}, T (r, U6j(z)) = o{T (r, eψ(z))}.

Using Lemma 2.4 on (3.16), we have U6j(z) ≡ 0 (j = 1, 2, 3, 4, 5). Because of U65(z) ≡ 0, we see

W3(z) ≡ 0, which is a contradiction.

Subcase 3.3.3. If 2an = bn, then we can rewrite (3.11) as

5∑
j=1

U7j(z)e
h7j(z) = 0, (3.17)

where

U75(z) =M10(z),

U74(z) =M11(z)e
2(δ(z+1)−δ(z))+

M9(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U73(z) =M7(z)e
ψ(z+1)−ψ(z) +M3(z)e

2(ψ(z+1)−ψ(z)),

U72(z) =
∑4
k=1M7,2,k(z)e

N7,2,k(z),

U71(z) =
∑4
k=1M7,1,k(z)e

N7,1,k(z),



h75(z) = 2δ(z + 1) + δ(z),

h74(z) = 2δ(z) + ψ(z),

h73(z) = 2ψ(z),

h72(z) = ψ(z) + δ(z),

h71(z) = 2δ(z),

where 

M7,2,4(z) =M6(z),

M7,2,3(z) =M5(z),

M7,2,2(z) =M2(z),

M7,2,1(z) =M13(z),



N7,2,4(z) = ψ(z + 1)− ψ(z),

N7,2,3(z) = δ(z + 1)− δ(z),

N7,2,2(z) = ψ(z + 1)− ψ(z) + δ(z + 1)− δ(z),

N7,2,1(z) = 2ψ(z + 1)− δ(z),

and 

M7,1,4(z) =M4(z),

M7,1,3(z) =M1(z),

M7,1,2(z) =M12(z),

M7,1,1(z) =M8(z),



N7,1,4(z) = δ(z + 1)− δ(z),

N7,1,3(z) = 2(δ(z + 1)− δ(z)),

N7,1,2(z) = 2ψ(z + 1)− δ(z),

N7,1,1(z) = ψ(z + 1) + δ(z + 1) + ψ(z)− 2δ(z).

From 2an = bn we see

deg(2δ(z + 1)− δ(z)− ψ(z)) = deg(2δ(z + 1) + δ(z)− 2ψ(z)) = deg(2δ(z + 1)− ψ(z))

= deg(2δ(z + 1)− δ(z)) = deg δ(z) = degψ(z) = deg(ψ(z)− δ(z)) = n.
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According to Lemma 2.1, we have deg(ψ(z+1)−ψ(z)) = deg(δ(z+1)− δ(z)) = deg(ψ(z+1)−
ψ(z)+δ(z+1)−δ(z)) = n−1 and deg(2ψ(z+1)−δ(z)) = deg(ψ(z+1)+ψ(z)+δ(z+1)−2δ(z)) ≤
n− 1. By Lemma 2.3, for j = 1, 2, 3, 4, 5, we obtain

T (r, U7j(z)) = o{T (r, e2δ(z+1)−δ(z)−ψ(z))}, T (r, U7j(z)) = o{T (r, e2δ(z+1)+δ(z)−2ψ(z))},

T (r, U7j(z)) = o{T (r, e2δ(z+1)−ψ(z))}, T (r, U7j(z)) = o{T (r, e2δ(z+1)−δ(z))},

T (r, U7j(z)) = o{T (r, eδ(z))}, T (r, U7j(z)) = o{T (r, eψ(z))},

T (r, U7j(z)) = o{T (r, eψ(z)−δ(z))}.

Using Lemma 2.4 on (3.17), we know U7j(z) ≡ 0 (j = 1, 2, 3, 4, 5). From U73(z) ≡ 0, U72(z) ≡ 0,

and U75(z) ≡ 0, we see

W1(z)ψ
′(z + 1)eψ(z+1)−ψ(z) −W2(z)e

2(ψ(z+1)−ψ(z)) = 0, (3.18)

4∑
k=1

M7,2,k(z)e
N7,2,k(z) = 0, (3.19)

W2(z)−W3(z) = 0. (3.20)

If n ≥ 2, then ψ(z+1)−ψ(z) = n− 1 ≥ 1. So T (r,W1(z)ψ
′(z+1)) = o{T (r, eψ(z+1)−ψ(z))} and

T (r,W2(z)) = o{T (r, eψ(z+1)−ψ(z))}. Using Lemma 2.4 on (3.18), we obtain W2(z) ≡ 0, which

is a contradiction. Hence n = 1.

We can let ψ(z) = az + a0 and δ(z) = 2az + b0, where a (̸= 0), a0, b0 are constants. Now

(3.18) and (3.19) can be rewritten as

W1(z)ae
a −W2(z)e

2a = 0, (3.21)

−W1(z)ae
a − 2W1(z)ae

2a + 2W2(z)e
3a +W3(z)e

2a+2a0−b0 = 0. (3.22)

This together with (3.20) gives that

e2aW2(z)(e
2a0−b0 − 1) = 0. (3.23)

If e2a0−b0 = 1, then eδ(z) = e2ψ(z). Thus combining (3.1) with (3.2), we have g2(z)
f2(z) =

g(z)−1
f(z)−1 ,

that is,

(f(z)g(z)− (f(z) + g(z)))(f(z)− g(z)) = 0.

So either f(z) ≡ g(z) or f(z) + g(z) ≡ f(z)g(z). This proves that either the case (i) or the case

(ii) holds.

If e2a0−b0 ̸= 1, then from (3.23), we know W2(z) ≡ 0, which is a contradiction.

Subcase 3.3.4. If 2an = 3bn, then (3.11) can be rewritten as

6∑
j=1

U8j(z)e
h8j(z) = 0, (3.24)
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where

U86(z) =M13(z),

U85(z) =M11(z)e
2(δ(z+1)−δ(z))+

M9(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U84(z) =M12(z)e
2(ψ(z+1)−ψ(z))+

M8(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U83(z) =M7(z)e
ψ(z+1)−ψ(z) +M3(z)e

2(ψ(z+1)−ψ(z))+

M10(z)e
2δ(z+1)+δ(z)−2ψ(z),

U82(z) =M6(z)e
ψ(z+1)−ψ(z) +M5(z)e

δ(z+1)−δ(z)+

M2(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U81(z) =M4(z)e
δ(z+1)−δ(z) +M1(z)e

2(δ(z+1)−δ(z)),



h86(z) = 2ψ(z + 1) + ψ(z),

h85(z) = 2δ(z) + ψ(z),

h84(z) = 2ψ(z) + δ(z),

h83(z) = 2ψ(z),

h82(z) = ψ(z) + δ(z),

h81(z) = 2δ(z).

From 2an = 3bn, we know

deg(ψ(z + 1)− δ(z)) = deg(2ψ(z + 1)− ψ(z)− δ(z)) = deg(2ψ(z + 1)− ψ(z))

= deg(2ψ(z + 1)− δ(z)) = deg(2ψ(z + 1) + ψ(z)− 2δ(z)) = deg(2δ(z)− ψ(z))

= deg δ(z) = degψ(z) = n.

According to Lemma 2.1, we get deg(ψ(z + 1)− ψ(z)) = deg(δ(z + 1)− δ(z)) = deg(ψ(z + 1)−
ψ(z) + δ(z+1)− δ(z)) = n− 1 and deg(2δ(z+1)+ δ(z)− 2ψ(z)) ≤ n− 1. From Lemma 2.3, for

j = 1, 2, 3, 4, 5, 6, we have

T (r, U8j(z)) = o{T (r, eψ(z+1)−δ(z))}, T (r, U8j(z)) = o{T (r, e2ψ(z+1)−ψ(z)−δ(z))},

T (r, U8j(z))= o{T (r, e2ψ(z+1)−ψ(z))}, T (r, U8j(z)) = o{T (r, e2ψ(z+1)−δ(z))},

T (r, U8j(z)) = o{T (r, e2ψ(z+1)+ψ(z)−2δ(z))}, T (r, U8j(z)) = o{T (r, eδ(z))},

T (r, U8j(z)) = o{T (r, e2δ(z)−ψ(z))}, T (r, U8j(z)) = o{T (r, eψ(z))}.

Using Lemma 2.4 on (3.24), we obtain U8j(z) ≡ 0 (j = 1, 2, 3, 4, 5, 6). From U86(z) ≡ 0 we see

W3(z) ≡ 0, which is a contradiction.

Subcase 3.3.5. If 3an = 2bn, then (3.11) can be rewritten as

6∑
j=1

U9j(z)e
h9j(z) = 0, (3.25)

where

U96(z) =M10(z),

U95(z) =M11(z)e
2(δ(z+1)−δ(z)) +M9(z)e

ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U94(z) =M12(z)e
2(ψ(z+1)−ψ(z)) +M8(z)e

ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U93(z) =M7(z)e
ψ(z+1)−ψ(z) +M3(z)e

2(ψ(z+1)−ψ(z)),

U92(z) =M6(z)e
ψ(z+1)−ψ(z) +M5(z)e

δ(z+1)−δ(z) +M2(z)e
ψ(z+1)−ψ(z)+δ(z+1)−δ(z),

U91(z) =M4(z)e
δ(z+1)−δ(z) +M1(z)e

2(δ(z+1)−δ(z)) +M13(z)e
2ψ(z+1)+ψ(z)−2δ(z),
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and 

h96(z) = 2δ(z + 1) + δ(z),

h95(z) = 2δ(z) + ψ(z),

h94(z) = 2ψ(z) + δ(z),

h93(z) = 2ψ(z),

h92(z) = ψ(z) + δ(z),

h91(z) = 2δ(z).

Because of 3an = 2bn, we see

deg(2δ(z + 1)− δ(z)− ψ(z)) = deg(δ(z + 1)− ψ(z)) = deg(2δ(z + 1) + δ(z)− 2ψ(z))

= deg(2δ(z + 1)− ψ(z)) = deg(2δ(z + 1)− δ(z)) = deg δ(z) = degψ(z)

= deg(2ψ(z)− δ(z)) = n.

According to Lemma 2.1, we get deg(ψ(z + 1)− ψ(z)) = deg(δ(z + 1)− δ(z)) = deg(ψ(z + 1)−
ψ(z) + δ(z + 1)− δ(z)) = n− 1 and deg(2ψ(z + 1) + ψ(z)− 2δ(z)) ≤ n− 1. By Lemma 2.3, for

j = 1, 2, 3, 4, 5, 6, we obtain

T (r, U9j(z)) = o{T (r, e2δ(z+1)−δ(z)−ψ(z))}, T (r, U9j(z)) = o{T (r, eδ(z+1)−ψ(z))},

T (r, U9j(z)) = o{T (r, e2δ(z+1)+δ(z)−2ψ(z))}, T (r, U9j(z)) = o{T (r, e2δ(z+1)−ψ(z))},

T (r, U9j(z)) = o{T (r, e2δ(z+1)−δ(z))}, T (r, U9j(z)) = o{T (r, eδ(z))},

T (r, U9j(z)) = o{T (r, eψ(z))}, T (r, U9j(z)) = o{T (r, e2ψ(z)−δ(z))}.

Using Lemma 2.4 on (3.25), we have U9j(z) ≡ 0 (j = 1, 2, 3, 4, 5, 6). From U93(z) ≡ 0, U91(z) ≡ 0,

U95(z) ≡ 0, and U96(z) ≡ 0, we see

W1(z)ψ
′(z + 1)eψ(z+1)−ψ(z) −W2(z)e

2(ψ(z+1)−ψ(z)) = 0, (3.26)

W1(z)δ
′(z + 1)eδ(z+1)−δ(z) −W2(z)e

2(δ(z+1)−δ(z)) +W3(z)e
2ψ(z+1)+ψ(z)−2δ(z) = 0, (3.27)

M11(z)e
2(δ(z+1)−δ(z)) +M9(z)e

ψ(z+1)−ψ(z)+δ(z+1)−δ(z) = 0, (3.28)

W2(z)−W3(z) = 0. (3.29)

If n ≥ 2, then ψ(z+1)−ψ(z) = n− 1 ≥ 1. So T (r,W1(z)ψ
′(z+1)) = o{T (r, eψ(z+1)−ψ(z))} and

T (r,W2(z)) = o{T (r, eψ(z+1)−ψ(z))}. Using Lemma 2.4 on (3.26), we get W2(z) ≡ 0, which is a

contradiction. Hence n = 1.

We may let ψ(z) = 2
3az + a0 and δ(z) = az + b0, where a ( ̸= 0), a0, b0 are constants. Now

we rewrite (3.26)–(3.28) as

W1(z)
2

3
ae

2
3a −W2(z)e

4
3a = 0, (3.30)

W1(z)ae
a −W2(z)e

2a +W3(z)e
4
3a+3a0−2b0 = 0, (3.31)

W3(z)e
2a + (2W3(z)−W1(z)a+W1(z)

2

3
a− 2W2(z))e

5
3a = 0. (3.32)

By (3.29), (3.30) and (3.32), we get

ea = 8. (3.33)
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From (3.29)–(3.31), we have

e
4
3aW2(z)(

3

2
e

1
3a − e

2
3a + e3a0−2b0) = 0. (3.34)

Substituting (3.33) into (3.34), we obtain

24W2(z)(−1 + e3a0−2b0) = 0. (3.35)

If e3a0−2b0 = 1, then e2δ(z) = e3ψ(z). Thus combining (3.1) with (3.2), we get g
3(z)
f3(z) =

(g(z)−1)2

(f(z)−1)2 .

So

[f2(z)(g(z)− 1)2 + g2(z)(f(z)− 1)2 − f(z)g(z)(f(z)g(z)− 1)](f(z)− g(z)) = 0,

that is, f(z) ≡ g(z) or f2(z)(g(z)− 1)2 + g2(z)(f(z)− 1)2 ≡ f(z)g(z)(f(z)g(z)− 1). Therefore,

either the case (i) or the case (iii) holds.

If e3a0−2b0 ̸= 1, then from (3.35) we obtain W2(z) ≡ 0, which is a contradiction.

Subcase 3.3.6. If an = bn, then (3.11) can be rewritten as

U10,2(z)e
2δ(z+1)+δ(z) + U10,1(z)e

δ(z)+ψ(z+1) = 0, (3.36)

where {
U10,2(z) =

∑6
k=1M10,2,k(z)e

N10,2,k(z),

U10,1(z) =
∑7
k=1M10,1,k(z)e

N10,1,k(z),

where 

M10,2,6(z) =M13(z),

M10,2,5(z) =M12(z),

M10,2,4(z) =M11(z),

M10,2,3(z) =M10(z),

M10,2,2(z) =M9(z),

M10,2,1(z) =M8(z),



N10,2,6(z) = 2(ψ(z + 1)− δ(z + 1)) + ψ(z)− δ(z),

N10,2,5(z) = 2(ψ(z + 1)− δ(z + 1)),

N10,2,4(z) = ψ(z)− δ(z),

N10,2,3(z) = 0,

N10,2,2(z) = ψ(z + 1)− δ(z + 1),

N10,2,1(z) = ψ(z + 1)− δ(z + 1) + ψ(z)− δ(z),

and 

M10,1,7(z) =M7(z),

M10,1,6(z) =M6(z),

M10,1,5(z) =M5(z),

M10,1,4(z) =M4(z),

M10,1,3(z) =M3(z),

M10,1,2(z) =M2(z),

M10,1,1(z) =M1(z),



N10,1,7(z) = ψ(z)− δ(z),

N10,1,6(z) = 0,

N10,1,5(z) = ψ(z)− ψ(z + 1) + δ(z + 1)− δ(z),

N10,1,4(z) = δ(z + 1)− ψ(z + 1),

N10,1,3(z) = ψ(z + 1)− δ(z),

N10,1,2(z) = δ(z + 1)− δ(z),

N10,1,1(z) = 2δ(z + 1)− δ(z)− ψ(z + 1).

According to Lemma 2.1 and an = bn, we know deg(ψ(z + 1)− ψ(z) + δ(z + 1)− δ(z)) = n− 1,

deg(2δ(z + 1) − ψ(z + 1)) = n, deg(ψ(z + i) − δ(z + j)) ≤ n − 1 (i, j = 0, 1), deg(2δ(z + 1) −
δ(z)− ψ(z + 1)) ≤ n− 1 and deg(ψ(z + 1)− δ(z + 1)− ψ(z) + δ(z)) ≤ n− 1. From Lemma 2.3,

for j = 1, 2, we have

T (r, U10,j(z)) = o{T (r, e2δ(z+1)−ψ(z+1))}.
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Using Lemma 2.4 on (3.36), we get U10,j(z) ≡ 0 (j = 1, 2). Because of U10,1(z) ≡ 0, we know

7∑
k=1

M10,1,k(z)e
N10,1,k(z) = 0. (3.37)

If degψ(z) = n ≥ 2, then deg(ψ(z + 1)− ψ(z)) = n− 1 ≥ 1.

If deg(ψ(z + i) − δ(z + j)) ≤ n − 2 (i, j = 0, 1), then by Lemma 2.3, T (r, eψ(z+i)−δ(z+j)) =

o{T (r, eδ(z+1)−δ(z))} (i, j = 0, 1), T (r, eδ(z+1)−δ(z)−ψ(z+1)+ψ(z)) = o{T (r, eδ(z+1)−δ(z))}. More-

over, we can rewrite (3.37) as

V10,2(z)e
δ(z+1)−δ(z) + V10,1(z)e

h0(z) = 0, (3.38)

where h0(z) ≡ 0 and {
V10,2(z) =M1(z)e

δ(z+1)−ψ(z+1) +M2(z),

V10,1(z) =
∑5
k=1K10,1,k(z)e

L10,1,k(z),

where 

K10,1,5(z) =M7(z),

K10,1,4(z) =M6(z),

K10,1,3(z) =M5(z),

K10,1,2(z) =M4(z),

K10,1,1(z) =M3(z),



L10,1,5(z) = ψ(z)− δ(z),

L10,1,4(z) = 0,

L10,1,3(z) = δ(z + 1)− δ(z) + ψ(z)− ψ(z + 1),

L10,1,2(z) = δ(z + 1)− ψ(z + 1),

L10,1,1(z) = ψ(z + 1)− δ(z).

According to Lemma 2.4 and (3.38), we know V10,j(z) ≡ 0 (j = 1, 2). By V10,2(z) ≡ 0, we get

(−W2(z)e
δ(z)−ψ(z+1))eδ(z+1)−δ(z) + 2W2(z) = 0. (3.39)

Similarly to the previous discussion, using Lemma 2.4 on (3.39), we have W2(z) ≡ 0, which is a

contradiction.

If deg(ψ(z + i)− δ(z + j)) = n− 1 (i, j = 0, 1), then from (3.37) and Lemma 2.4, we deduce

W2(z) ≡ 0, which is a contradiction. Hence n = 1.

We may let ψ(z) = az + a0 and δ(z) = az + b0, where a (̸= 0), a0 and b0 are constants such

that ea0−b0 ̸= 1. By (3.3), we know

f(z) =
1− eδ(z)

eψ(z) − eδ(z)
=

1− eδ(z)

eδ(z)(eψ(z)−δ(z) − 1)
=

1− eδ(z)

eδ(z)(ea0−b0 − 1)
.

From (3.1), we see

g(z) = eψ(z)f(z) =
eψ(z)(1− eδ(z))

eψ(z) − eδ(z)
=

1− eδ(z)

1− eδ(z)−ψ(z)
=

1− eδ(z)

1− eb0−a0
.

So the case (iv) holds.

This completes the proof of Theorem 1.7. 2
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