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Abstract Let S(p) be the class of all univalent meromorphic functions f on the unit disk D with
a simple pole at p € (0,1). For a € [0,1), we denote by X*(p,wo, &) the class of f € S(p) such
that C\f(D) is a starlike domain of order a with respect to fixed point wo # 0, co. In this paper,
some analytic characterizations and coefficient estimates of f € ¥*(p, wo, ) are considered.
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1. Introduction

Let S be the class of analytic univalent functions f on the unit disk D = {z € C: |z| < 1}
with the normalization f(0) = f/(0) — 1 =0. For f € S, it has the following Taylor expansion

fR) =2+ an(f)z", z€D.
n=2

The famous Bieberbach Conjecture, which was proposed by Bieberbach [1] in 1916, claimed
that |a,(f)| < n for n € N, strict inequality holds for all n unless f is the Koebe function or one
of its rotation. Since then, many mathematicians have devoted to this conjecture [2-4]. As we
know, in 1984, the conjecture was finally proved by de Branges [5].

During the study of Bieberbach Conjecture, many important subclasses of S have been
considered, such as convex functions, starlike functions, close-to-convex functions and so on.
For the definitions, basic properties and more details about these subclasses, we refer to the
monograph of Duren [6] and Pommerenke [7]. Other properties of these subclasses can be seen
in [8-10] and so on. By [6] or [7], a function f € S is called starlike if the image f(D) is
starlike domain with respect to the origin. The class of starlike function is denoted by S*. It is
well-known that f € S* if and only if

2f'(2)
Re >0, zeD. 1.1
( B ) (L.1)
Let ae € [0,1). A function f € S is called starlike of order « if it satisfies
2f'(2)
Re >a, z€D. 1.2
( B ) (1.2)
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The class of starlike function of order « is denoted by S*(«). Let f € S*(«). Robertson [11]
studied the Taylor coefficient a,(f) and proved that

Ak =20)

- (n=1! 7

We call Q starlike domain of order o with respect to wy, if there exist f € S*(«) and a suitable
constant a such that Q = f(]D)), where f = af + wp. Since
P )
f(z) —wo f(2)
then € is a starlike domain of order o with respect to wy if and only if there exists an analytic
univalent function f: D — Q with f(0) = wy and Re(w) >«

f(z)—wo
The class ¥ is the counterpart to the class S, which maps the outside of the unit circle

|an ()]

Re( )7

conformally onto a simply connected domain in C. The subclasses of ¥ with especial geometry
were considered, such as starlike meromorphic functions and concave functions. Originally star-
like meromorphic functions map the the outside of the unit circle conformally to the outside of
a starlike domain and fix the point at infinity. Later, it turned out to be more convenient to
analyze univalent meromorphic functions defined in D with a simple at some point in . In the
early time, Miller [12,13] and other scholors considered the geometry of a function being starlike
meromorphic and deduced several analytic characterizations.

When 0 < p < 1, let S(p) be the class of univalent meromorphic function in I with a simple
pole at p and the standard normalization f(0) = f’(0) —1 = 0. The class S(p) and its subclasses
have been investigated by many scholars [12-14]. When wq # 0, 00, a function f € S(p) is called
starlike meromorphic function with respect to wy, if C\ f(D) is starlike domain with respect to
wo. Following [15-17], we let ¥*(p, wp) be the class of starlike meromorphic function with respect
to wg.

In 1994, Livingston gave analytic characterization for functions in X*(p, wp).

Theorem 1.1 ([18]) Let f € S(p). Then f € ¥*(p,wo) if and only if

(z—p)(1 = 2p) f'(2)
f(z) —wo
Theorem 1.2 ([18]) Let f € S(p). Then f € ¥*(p,wo) if and only if

Re(

) <0, ze€D.

zf'(z) P pz
f(z)—wo  z—p 1-pz

Re( ) <0, zeD.

In 1988, Zhang gave an equivalent integral representation to characterize f € X*(p, wp).

Theorem 1.3 ([19]) Let f € S(p). Then f € ¥*(p,wo) if and only if there exists a probability

measure p(x) on 0D such that

12) =+ =B e /8 2log(1 - a2)d(a),

where wy and u satisfy the equation wy = —m.
P oD
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When f € ¥*(p,wp), it has the Laurent expansion at p

f)=> balz—p)", lz—pl<1-p (1.3)

n=-—1

and the Taylor expansion at the origin
f(z)=z+ Zanz", |z] < p. (1.4)
n=2

Some estimation results of the Laurent coefficient in (1.3) and the Taylor coefficient in (1.4) were

obtained.

Theorem 1.4 ([14]) Let f € ¥*(p,wo) with the expansion (1.3). Then

24p
by — wp| < b_ 1.5
|bo — wol 1_p2| 1 (1.5)
and bl
by < ——H . 1.
|1|— (1_p2)2 ( 6)

Theorem 1.5 ([20]) Let f € ¥*(p,wo) with the expansion (1.4). Then the second Taylor coe-
flicient ay is determined by

1 1 1 ) 1, 1 )
- - - - <|wol(l = =lp+ - . 1.7
a2 = (p+  wo) + qwo(p+ — + o)’ < fwol(L = glp+  +wol”) (17)

Other coefficient estimates of f € ¥*(p,wp) can be found in [14,16,21] and so on.

In the whole paper, we restrict & € [0,1) and p € (0,1), parallel to the consideration of
S*(a), we call f € S(p) starlike meromorphic function of order o with respect to wp, if C\ f(ID)
is starlike domain of order « with respect to wg (# 0,00). The class of starlike meromorphic
function of order « respect to wp is denoted by X*(p,wp, «). In this paper, we will give analytic

characterizations and the coefficient estimates of f € ¥*(p, wq, a).

2. Characterizations for starlike meromorphic functions of order o

In this section, similar to Theorems 1.1-1.3, we will give characterizations for ¥*(p, wp, @) as

following Theorems 2.1-2.3.

Theorem 2.1 Let f € S(p). Then f € ¥*(p,wo, ) if and only if
(z—p)(1 —2p)f'(2)
f(z) —wo

Theorem 2.2 Let f € ¥*(p,wp, ). Then

Re( )< —a(l—p*), z€D. (2.1)

zf'(2) p_ pz _a(l-p) s
T —wo T 77 17pz)< , z€D. (2.2)

1+p
Theorem 2.3 Let f € ¥*(p,wo, ). Then there exists an analytic function ¢(z) in D such that

a(l-p)

DUy # _2[1 - ﬁ]‘ﬂ(o
(z—p)(1—2p) eXp/o 1-Cp(0)

Re(

f(z) = wo + dc. (2.3)
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In order to prove Theorem 2.1, we introduce the following lemmas.

Lemma 2.4 ([22]) Let D* = {z € C:|z| > 1} and f: D* — C be a univalent meromorphic
function which maps D* onto the outside of a bounded Jordan curve I and f(oco) = co. Then

the curve T' is analytic if and only if f is analytic univalent in {z € C : |2| > r} for some r < 1.

Lemma 2.5 ([23]) Let h map D conformally onto the inner domain of the Jordan curve I' N C.
Then T is an analytic curve if and only if h is analytic and univalent in {z € C : |z| < r} for some
r> 1.

Proof of Theorem 2.1 We denote by Q* = f(D), Q = C\Q*, I' = 9Q = Q*. For r € (0,00),
welet D, ={z€C:|z| <r}, D ={ze€C:|z| >r}. Wedivide the proof of Theorem 2.1 into
two parts.

Sufficient part. Let f € ¥*(p,wo, ). Then (2.1) is satisfied.

Let u(z) = I;FTZ;’ map D* onto D, g = f ou map D* onto Q* with g(cc) = co. By the
Riemann mapping theorem, we let h(z) map D onto 2 and denote by I'y_1 = {h(2) : || =1— +},
k=23,4,..., Ql_% and QL% are the interior domain and exterior domain of Fl_%, respectively,
and we know I'; . are analytic curves. Let g, 1 map D* onto Q’l‘_% with gi_%(oo) > 0,
917%(00) = 0.

Due to the definition of Fl_% and Lemma 2.4, each curve can be expressed as gl_%(ew),
6 € [0,27). Since the interior of the curve I'; 1 is starlike domain of order o with respect to wo,
then by the geometric property of 1"17%, we have % arg(gk% (€?) — wp) > a. Therefore,

zg’k%(z) )

Re(——F—) = —ar (€ —wo) >, |z|=1. 2.4
(G o) = el ) — ) > a1 (24)

Since g; 1 (D*) = Q7 1, 9,_1(00) =occand g;_1(z) = T_1z+ro+Y o rnz ", straightforward
k

computation gives

29/1_; (2)
lim Re(————)=1>a. (2.5)
A G
. . . . 29;7; (2)
By (2.4), (2.5) and the maximum principle of harmonic function Re(m), we have
-z
Zgll_;(z)
Re(———-—)>a, |z2|>1

91-1 (2) — wo
Since I'; _ 1 converges to I in the sense of kernel convergence for k — oo, g;_ 1 converges locally

uniformly to g due to the Carathéodory kernel theorem [7]. Therefore,

/
Re(—2 )y S o o> 1. (2.6)
9(z) —wo
Considering u(z) = lszpp , g = f owu, simple calculations give
2
g(z) = - iy e, (2.7)

1—p2
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and
29'() ) __polowe-pf@, (2.8)

Rl —w) T T T - )

Then (2.1) is satisfied.

Necessary part. Let f € S(p). If (2.1) is satisfied, then f € X*(p,wp, @).

Let u(z) = 1;;2; map D* onto D and g = f o u map D* onto Q* with g(c0) = co. We denote

by F1+% ={g(z):|]z| =1+ %}, k=2,3,4... and we know F1+% are analytic curves. Let h(z)

map D onto €, h1+% map D onto Ql-s—%v where Ql-s—% is the interior domain of INFEE If (2.1) is
satisfied, by the same computation as (2.7) and (2.8), we have
29'(2)

e —

)>a, |z > 1

By the definition of I') ; 1 and Lemma 2.5, we know each curve can be described by 1 (e'9),0 €
[0,27). Since the interior of Dyypris starlike domain of order o with respect to wp, then by the

geometric property of I'; ; 1, we have %arg(hpr% (€") — wg) > a. Therefore,

Zh/1+% (2)

P A
—F Y= —arg(hy 1(?) —wy) > a, |z = 1.
hl_,’_%(Z)_UJO) g( 1+k( ) 0) | |

Re( 50

’
zhl+%(z)

W), we have

By the maximum principle of harmonic function Re(

2 (2)

hyy1(2) = wo

Re(

)>a, |zl <1

Since I'y . 1 converges to I' in the sense of kernel convergence for k — oo, hy 1 converges locally
uniformly to ~ due to the Carathéodory kernel theorem. Therefore,
zh (2)

Re( h(z) — wo

)>a, |zl <1

Hence, we have 2 is starlike domain of order « with respect to wy and f € X*(p, wp, @), which
completes the proof of Theorem 2.1. O
Using the methods in [18], we give the proof of Theorem 2.2.

Proof of Theorem 2.2 When p < r < 1, we let ¢ = (r — 1)p/(r — p?) and L,(z) = r(z —
0)/(1 — za). Direct computations give L.(p) = p and L. (D) = {z : |z| < r}.
For f € ¥*(p,wo, ), we let

_ (-p)d-p2)f'(z)
PO = (e - ) 29
and
_ z(1=p*)P(L(2)) —p(1 = 2°)
Qr(z) = R : (2.10)
When |z| = 1, we have
Re(~ P~ ) ) = Re(Z2E=2)y _ (2.11)
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and
z 1

Z—Dp - 1-— zp'
Since L,(z) € D, by (2.11), (2.12) and Theorem 2.1, when |z| = 1, we have
_p2 _ .2
z1-p )P(Lr(z))) + Re( p(l—2%)
(z = p)(1 = p2) (z = p)(1 = p2)
(1 _pQ)P(Lr(Z))) L ad-p)
1 —pz[? I+p
Since Q. (z) is analytic for |z| <1, L.(2) = z as r — 1, letting » — 1, we have
d1=p)P) —p( =27, a(l—p)
(= =p)(1 = zp) 1+p)’

By the maximum principle of harmonic function Re(z(l_zj:l];gfi:’z’ S_22)
2(1-p°)P(z) —p(1—2%), _a(l—p)

(z—p)(1 = zp) (1+p)
A straightforward computation gives

) p o, A1 p)PR)p(l -2
7f(2)—woiz’—p+1—zp7 (z—p)(1 — zp) . (2.15)

Then (2.2) follows by (2.14) and (2.15), which completes the proof of Theorem 2.2. O

(2.12)

Re(Qr(z)) =Re( )

=Re(

Re( |z| = 1. (2.13)

), we have

Re(

) > .zl < 1. (2.14)

Proof of Theorem 2.3 It is well-known fact that for an analytic function p(z) in D with

Re(p(z)) > 0 and p(0) = 1, then there exists an analytic function ¢ : D — D such that p(z) =

ifiﬁgig We combine this fact with Theorem 2.2, for f € X*(p,wo, &) and
1 2f'(2) p pz_ a(l-p)
p(Z) - - a(1—p) { — ., 1— 1 }a
1-2G  f(z) —wo  2—p pz +p
then there exists
1 ! 1-— 1
- zf'(2) A o p)} _ 1+ zgo(z). (2.16)
1-o=p f(z) w0 z—p l-pz  1+4p 1= zp(2)
Simplifying (2.16), we have
zf'(2) T N a(l —p)
f(z)—wo z—=p 1-pz  1+4p
1-— 1-— 2
g ol - () + 20(e) .
1+p 1—zp(2)
It is easy to check (2.17) is equivalent to
z2f'(2) . pr _22[1 - a(%_pp)]‘ﬁ(z) (2.18)
fl2)—wo z—p 1—pz 1—zp(2) ' '
Dividing by z and then integrating from 0 to z on both sides of (2.18), we obtain
¢ 20 - 2E2p(0)
log(f(2) — wo)(z — p)(1 — zp) — log pw :/— el d¢. 2.19
(f(2) = wo)(z — p)( ) o=/ = Co0) (2.19)
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It is easy to check (2.19) is equivalent to

o / 201 - 2FPe()
(z = p)(1—2p) 0 1 —Cp(C)
which completes the proof of Theorem 2.3. O

f(z) =wo + dc,

3. The Laurent coefficient and Taylor coefficient estimates of f €
E*(pa WOJOé)

In this section, let f € ¥*(p,wp, «). We will estimate the Laurent coefficient in (1.3) and the

Taylor coefficient in (1.4). Our main results are Theorems 3.1 and 3.2.
Theorem 3.1 Let f € ¥*(p,wo, ) have the Laurent expansion (1.3). Then

1
51| (3.1)

—
byl < ———
|1|_(1—p2)

and
p+2(1—a)

by — <
|bo — wol < T

lb_1]. (3.2)

Theorem 3.2 Let f € ¥*(p,wp, @) have the Taylor expansion (1.4). Then the second coefficient

as is determined by

11 11, 1
‘a2+(§——4)\)w0(fw0+5+p) —(w0+p+};)|
< w |)\|1——1 (—1 Ly )| (3.3)
—_ 0 4)\2 (,UO p p I N
_ a(l—p)
Where)\—l—w.

Remark 3.3 When a = 0, Theorems 3.1 and 3.2 correspond to Theorems 1.4 and 1.5, respec-
tively.

In order to prove Theorems 3.1 and 3.2, we need the following lemmas.

Lemma 3.4 ([6]) Let q(z) = 1+ > 7", ¢n2", |z| < 1 be analytic and satisfy the condition
Re(q(z)) > 0. Then |g,| < 2,n > 1.

Lemma 3.5 ([24]) Let q(z) = 1+ Y02, ¢»2™, |2| < 1 be analytic and satisfy the condition
Re(q(z)) > 0. Then
lgz —vgl| <2, 0<v <1,

Lemma 3.6 ([25]) Let w(z) = s12 + s222 + -+, |z] < 1 be analytic with |w(z)| < 1. Then
511 <1, [s2] <1 s3].

Proof of Theorem 3.1 For f € ¥*(p,wp, a), we let

__=p-2p)f'(z)
PO =~ e —wn) 34)

We know P(z) is analytic and Re(P(z)) > 0 by Theorem 2.1.
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When f has the expansion (1.3), by (3.4), we have

—(1—2p) 322y nbu(z —p)"
(1= p*) (a1 bz — )" — wo)
:—(1 —z2p)[=b_1(z —p)" L+ b1(z —p) +2b2(z — p)® + - - -]

(1 =p?)b-1(z = p)~" +bo +bi(z —p) + -+ = w]
 —(1=z2p)[~b_1 +bi1(z —p)® +2by(z — p)> + -]
C(L=p)[bo1 +bo(z —p) +bi(z = p)? + - = wol(z — p)]

Then, we obtain P(p) = 1 — o. Furthermore, we have the following expansion of P(z)

P(z) = -«

—a. (3.5)

P(z)zl—onchn(zfp)", |z —p|l <1-—p. (3.6)
n=1
By (1.3), (3.4) and (3.6), we obtain

(=)L + Y ealz =2)")( Y bulz —p)" = wo)
n=1

n=-—1
0

=—(1=p) Y nba(z—p)"+p > nba(z—p)"*. (3.7)

n=—1 n=—1

Comparing the constant term and the coefficient of (z — p) in (3.7), we obtain the relations
(1= p*)bo — wo(1 = p*) + (1 = p*)erboy = —pb_1, (38)
(1=p*)b1 + (1 = p*)erbo + (1 = p*)eab-1 — wo(l = p*)er = —(1 = p*)br. (3.9)
Further, by (3.8) and (3.9), we have
b per+(1L=p°)(f —ca)

— = . 3.10
b_y 2(1—-p?) (3.10)
Let
1 z+p
= P .
Q) = = PL)
Then Re(Q(z)) > 0 and Q(0) = 1. By the Herglotz representation [7] of Q(z), we have
1 Z+p T ety
P = = ——dm(t 3.11
PR Qe = [ am), (3.11)
where m(t) is an increasing function with fozﬁ dm(t) = 1. By (3.11), it is easy to check
™1 —pz+et(z—p)
Pzzl—a/ . dm(t). 3.12
@) =(-a) [ TS (312)
By (3.6) and (3.12), we have
2m it
2e
c=01- a)/o T2 dm(t) (3.13)

and

co=(1- a)/o i Qe(zl(f;')e;)dm(t). (3.14)
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Let ) .
Tl4ez
- t).
o l—eitz m(t)
Then Re(T(z)) > 0, T(0) = 1. Hence, T(z) has the expansion T(z) = 1+ p1z + paz? + -+,

|z| < 1. Direct computation gives

T(z) =

n=zf 7 eitam() (3.15)
027r
pfzz/ e*tdmi(t). (3.16)
From (3.13) to (3.16), we have 0
per+ (1= 7)(ch = e2) = T 71— ) = o).
By Lemma 3.5, we have |[p?(1 — a) — p2| < 2. Hence
e+ (1= ) — e < 222,

Following this fact with (3.10), we obtain (3.1).
By (3.8), (3.13) and (3.15), we have

_lp+ (A=)

lp+ (1 — a)pi]
2 2 [b—1]-
1-p

|bo — wol 1

lb_1| =

Then by Lemma 3.4, we have

+(1—-« +2(1 -«

|p ( 2)p1||b_1|§p ( > )‘b—l‘

L=p L=p
Hence, (3.2) is obtained. O

Proof of Theorem 3.2 Let
1 zf'(2) L P pz a(l—p)

1_&(17p){f(z)—w0 z—p_l—pz+ 14+p
1+p

Then P(z) is analytic and P(0) = 1. By Theorem 2.2, we know Re(P(z)) > 0.

In order to compute conveniently, we write

P(z) = — 3. (3.17)

P@)ijzﬁg,zeD, (3.18)
where w(z) : D — D is analytic function with w(0) = 0.
We write
P(2) =1+diz+do2® + --- (3.19)
and
w(z) = $12 + 8222 + -+ . (3.20)

Noting (1.4) and (3.19), comparing the coefficients of z™ of (3.17) for n = 1,2, we obtain
dy = 1_0(%14?13) (WLD + 1% +p)a
1+p
dy = —st=7 (32 + L + 55 + 7).

a(l—p) \ (, w2
1= 1+p © 0

(3.21)
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Eliminating wy from (3.21), we get

_ 1 2 a(l —p) 1.,
de =y e TP+ 0= = P —p— P )
1+p
1 a(l —p) 1
1 (1=p) {2@2[(1 — W)dl e ;]} (322)
+p
From (3.18) to (3.20), we have
dl = 281 (323)
and
do = 2(8% + 52). (324)

Let A\=1-— a(ll_;pp), by (3.22) to (3.24). We obtain

2(s2 +57) = 3(0° + 32) — 3 (2510 — 5§ = p)?
2(2s1) — % -p)
1 . 25202 — s7X — 59\ + p? — 251pA

ag =

== 3.25
p 7 1+p? —2psiA (3.25)
By Lemma 3.6, we obtain
laz — 1 252N% — sIN+p? — 231p/\‘ | SapA |
2 P p 14+ p2—2psiA 14+ p2—2psiA
pA(1 — \81|2) (3.26)
T 1+ p? —2ps1 A '
By (3.21), (3.23) and (3.26), we have
11 11 1
laz + (5 - ﬁ)wo(;o + » +p)° = (wo+p+ 5)|
1 1 1
<wol Al = =5 (—+ = +p)?,
ol = (5 + 5+

which completes the proof of Theorem 3.2. O
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