Journal of Mathematical Research with Applications Jul., 2022, Vol. 42, No. 4, pp. 363–373 DOI:10.3770/j.issn:2095-2651.2022.04.003 Http://jmre.dlut.edu.cn

On Starlike Meromorphic Functions of Order α

Lei LIU, Jinhua FAN*

Department of Mathematics, Nanjing University of Science and Technology, Jiangsu 210094, P. R. China

Abstract Let S(p) be the class of all univalent meromorphic functions f on the unit disk \mathbb{D} with a simple pole at $p \in (0, 1)$. For $\alpha \in [0, 1)$, we denote by $\Sigma^*(p, \omega_0, \alpha)$ the class of $f \in S(p)$ such that $\hat{\mathbb{C}} \setminus f(\mathbb{D})$ is a starlike domain of order α with respect to fixed point $\omega_0 \neq 0, \infty$. In this paper, some analytic characterizations and coefficient estimates of $f \in \Sigma^*(p, \omega_0, \alpha)$ are considered.

Keywords meromorphic function; starlike function; Taylor coefficient; Laurent coefficient

MR(2020) Subject Classification 30C45; 30C50

1. Introduction

Let S be the class of analytic univalent functions f on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ with the normalization f(0) = f'(0) - 1 = 0. For $f \in S$, it has the following Taylor expansion

$$f(z) = z + \sum_{n=2}^{\infty} a_n(f) z^n, \ z \in \mathbb{D}$$

The famous Bieberbach Conjecture, which was proposed by Bieberbach [1] in 1916, claimed that $|a_n(f)| \leq n$ for $n \in \mathbb{N}$, strict inequality holds for all n unless f is the Koebe function or one of its rotation. Since then, many mathematicians have devoted to this conjecture [2–4]. As we know, in 1984, the conjecture was finally proved by de Branges [5].

During the study of Bieberbach Conjecture, many important subclasses of S have been considered, such as convex functions, starlike functions, close-to-convex functions and so on. For the definitions, basic properties and more details about these subclasses, we refer to the monograph of Duren [6] and Pommerenke [7]. Other properties of these subclasses can be seen in [8–10] and so on. By [6] or [7], a function $f \in S$ is called starlike if the image $f(\mathbb{D})$ is starlike domain with respect to the origin. The class of starlike function is denoted by S^* . It is well-known that $f \in S^*$ if and only if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0, \quad z \in \mathbb{D}.$$
(1.1)

Let $\alpha \in [0, 1)$. A function $f \in S$ is called starlike of order α if it satisfies

$$\operatorname{Re}(\frac{zf'(z)}{f(z)}) > \alpha, \quad z \in \mathbb{D}.$$
(1.2)

* Corresponding author

Received May 4, 2021; Accepted February 18, 2022

Supported by the National Natural Science Foundation of China (Grant No. 11871215).

E-mail address: liulei970205@njust.edu.cn (Lei LIU); jinhuafan@hotmail.com (Jinhua FAN)

The class of starlike function of order α is denoted by $S^*(\alpha)$. Let $f \in S^*(\alpha)$. Robertson [11] studied the Taylor coefficient $a_n(f)$ and proved that

$$|a_n(f)| \le \frac{\prod_{k=2}^n (k-2\alpha)}{(n-1)!}, \ n \ge 2$$

We call Ω starlike domain of order α with respect to ω_0 , if there exist $f \in S^*(\alpha)$ and a suitable constant a such that $\Omega = \tilde{f}(\mathbb{D})$, where $\tilde{f} = af + \omega_0$. Since

$$\operatorname{Re}(\frac{z\tilde{f}'(z)}{\tilde{f}(z)-\omega_0}) = \operatorname{Re}(\frac{zf'(z)}{f(z)}),$$

then Ω is a starlike domain of order α with respect to ω_0 if and only if there exists an analytic univalent function $\tilde{f}: \mathbb{D} \to \Omega$ with $\tilde{f}(0) = \omega_0$ and $\operatorname{Re}(\frac{z\tilde{f}'(z)}{\tilde{f}(z)-\omega_0}) > \alpha$.

The class Σ is the counterpart to the class S, which maps the outside of the unit circle conformally onto a simply connected domain in $\hat{\mathbb{C}}$. The subclasses of Σ with especial geometry were considered, such as starlike meromorphic functions and concave functions. Originally starlike meromorphic functions map the the outside of the unit circle conformally to the outside of a starlike domain and fix the point at infinity. Later, it turned out to be more convenient to analyze univalent meromorphic functions defined in \mathbb{D} with a simple at some point in \mathbb{D} . In the early time, Miller [12,13] and other scholors considered the geometry of a function being starlike meromorphic and deduced several analytic characterizations.

When 0 , let <math>S(p) be the class of univalent meromorphic function in \mathbb{D} with a simple pole at p and the standard normalization f(0) = f'(0) - 1 = 0. The class S(p) and its subclasses have been investigated by many scholars [12–14]. When $\omega_0 \neq 0, \infty$, a function $f \in S(p)$ is called starlike meromorphic function with respect to ω_0 , if $\hat{\mathbb{C}} \setminus f(\mathbb{D})$ is starlike domain with respect to ω_0 . Following [15–17], we let $\Sigma^*(p, \omega_0)$ be the class of starlike meromorphic function with respect to ω_0 .

In 1994, Livingston gave analytic characterization for functions in $\Sigma^*(p, \omega_0)$.

Theorem 1.1 ([18]) Let $f \in S(p)$. Then $f \in \Sigma^*(p, \omega_0)$ if and only if

$$\operatorname{Re}(\frac{(z-p)(1-zp)f'(z)}{f(z)-\omega_0}) < 0, \ z \in \mathbb{D}$$

Theorem 1.2 ([18]) Let $f \in S(p)$. Then $f \in \Sigma^*(p, \omega_0)$ if and only if

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)-\omega_0} + \frac{p}{z-p} - \frac{pz}{1-pz}\right) < 0, \ z \in \mathbb{D}.$$

In 1988, Zhang gave an equivalent integral representation to characterize $f \in \Sigma^*(p, \omega_0)$.

Theorem 1.3 ([19]) Let $f \in S(p)$. Then $f \in \Sigma^*(p, \omega_0)$ if and only if there exists a probability measure $\mu(x)$ on $\partial \mathbb{D}$ such that

$$f(z) = \omega_0 + \frac{p\omega_0}{(z-p)(1-zp)} \exp \int_{\partial \mathbb{D}} 2\log(1-xz) \mathrm{d}\mu(x),$$

where ω_0 and μ satisfy the equation $\omega_0 = -\frac{1}{p + \frac{1}{p} - 2\int_{\partial \mathbb{D}} x d\mu(x)}$.

On starlike meromorphic functions of order α

When $f \in \Sigma^*(p, \omega_0)$, it has the Laurent expansion at p

$$f(z) = \sum_{n=-1}^{\infty} b_n (z-p)^n, \quad |z-p| < 1-p$$
(1.3)

and the Taylor expansion at the origin

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad |z| < p.$$
(1.4)

Some estimation results of the Laurent coefficient in (1.3) and the Taylor coefficient in (1.4) were obtained.

Theorem 1.4 ([14]) Let $f \in \Sigma^*(p, \omega_0)$ with the expansion (1.3). Then

$$|b_0 - \omega_0| \le \frac{2+p}{1-p^2} |b_{-1}| \tag{1.5}$$

and

$$|b_1| \le \frac{|b_{-1}|}{(1-p^2)^2}.$$
(1.6)

Theorem 1.5 ([20]) Let $f \in \Sigma^*(p, \omega_0)$ with the expansion (1.4). Then the second Taylor coefficient a_2 is determined by

$$\left|a_{2}-(p+\frac{1}{p}+\omega_{0})+\frac{1}{4}\omega_{0}(p+\frac{1}{p}+\omega_{0})^{2}\right| \leq |\omega_{0}|(1-\frac{1}{4}|p+\frac{1}{p}+\omega_{0}|^{2}).$$
(1.7)

Other coefficient estimates of $f \in \Sigma^*(p, \omega_0)$ can be found in [14, 16, 21] and so on.

In the whole paper, we restrict $\alpha \in [0,1)$ and $p \in (0,1)$, parallel to the consideration of $S^*(\alpha)$, we call $f \in S(p)$ starlike meromorphic function of order α with respect to ω_0 , if $\hat{\mathbb{C}} \setminus f(\mathbb{D})$ is starlike domain of order α with respect to ω_0 ($\neq 0, \infty$). The class of starlike meromorphic function of order α respect to ω_0 is denoted by $\Sigma^*(p, \omega_0, \alpha)$. In this paper, we will give analytic characterizations and the coefficient estimates of $f \in \Sigma^*(p, \omega_0, \alpha)$.

2. Characterizations for starlike meromorphic functions of order α

In this section, similar to Theorems 1.1–1.3, we will give characterizations for $\Sigma^*(p, \omega_0, \alpha)$ as following Theorems 2.1–2.3.

Theorem 2.1 Let $f \in S(p)$. Then $f \in \Sigma^*(p, \omega_0, \alpha)$ if and only if

$$\operatorname{Re}(\frac{(z-p)(1-zp)f'(z)}{f(z)-\omega_0}) < -\alpha(1-p^2), \ z \in \mathbb{D}.$$
(2.1)

Theorem 2.2 Let $f \in \Sigma^*(p, \omega_0, \alpha)$. Then

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)-\omega_0} + \frac{p}{z-p} - \frac{pz}{1-pz}\right) < -\frac{\alpha(1-p)}{1+p}, \ z \in \mathbb{D}.$$
(2.2)

Theorem 2.3 Let $f \in \Sigma^*(p, \omega_0, \alpha)$. Then there exists an analytic function $\varphi(z)$ in \mathbb{D} such that

$$f(z) = \omega_0 + \frac{p\omega_0}{(z-p)(1-zp)} \exp \int_0^z -\frac{2[1 - \frac{\alpha(1-p)}{1+p}]\varphi(\zeta)}{1 - \zeta\varphi(\zeta)} d\zeta.$$
 (2.3)

In order to prove Theorem 2.1, we introduce the following lemmas.

Lemma 2.4 ([22]) Let $\mathbb{D}^* = \{z \in \hat{\mathbb{C}} : |z| > 1\}$ and $f \colon \mathbb{D}^* \to \hat{\mathbb{C}}$ be a univalent meromorphic function which maps \mathbb{D}^* onto the outside of a bounded Jordan curve Γ and $f(\infty) = \infty$. Then the curve Γ is analytic if and only if f is analytic univalent in $\{z \in \hat{\mathbb{C}} : |z| > r\}$ for some r < 1.

Lemma 2.5 ([23]) Let h map \mathbb{D} conformally onto the inner domain of the Jordan curve $\Gamma \cap \mathbb{C}$. Then Γ is an analytic curve if and only if h is analytic and univalent in $\{z \in \mathbb{C} : |z| < r\}$ for some r > 1.

Proof of Theorem 2.1 We denote by $\Omega^* = f(\mathbb{D})$, $\Omega = \hat{\mathbb{C}} \setminus \overline{\Omega}^*$, $\Gamma = \partial \Omega = \partial \Omega^*$. For $r \in (0, \infty)$, we let $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$, $\mathbb{D}_r^* = \{z \in \mathbb{C} : |z| > r\}$. We divide the proof of Theorem 2.1 into two parts.

Sufficient part. Let $f \in \Sigma^*(p, \omega_0, \alpha)$. Then (2.1) is satisfied.

Let $u(z) = \frac{1+zp}{z+p}$ map \mathbb{D}^* onto \mathbb{D} , $g = f \circ u$ map \mathbb{D}^* onto Ω^* with $g(\infty) = \infty$. By the Riemann mapping theorem, we let h(z) map \mathbb{D} onto Ω and denote by $\Gamma_{1-\frac{1}{k}} = \{h(z) : |z| = 1 - \frac{1}{k}\}, k = 2, 3, 4, \ldots, \Omega_{1-\frac{1}{k}}$ and $\Omega_{1-\frac{1}{k}}^*$ are the interior domain and exterior domain of $\Gamma_{1-\frac{1}{k}}$, respectively, and we know $\Gamma_{1-\frac{1}{k}}$ are analytic curves. Let $g_{1-\frac{1}{k}}$ map \mathbb{D}^* onto $\Omega_{1-\frac{1}{k}}^*$ with $g'_{1-\frac{1}{k}}(\infty) > 0$, $g_{1-\frac{1}{k}}(\infty) = \infty$.

Due to the definition of $\Gamma_{1-\frac{1}{k}}$ and Lemma 2.4, each curve can be expressed as $g_{1-\frac{1}{k}}(e^{i\theta})$, $\theta \in [0, 2\pi)$. Since the interior of the curve $\Gamma_{1-\frac{1}{k}}$ is starlike domain of order α with respect to ω_0 , then by the geometric property of $\Gamma_{1-\frac{1}{k}}$, we have $\frac{\partial}{\partial \theta} \arg(g_{1-\frac{1}{k}}(e^{i\theta}) - \omega_0) > \alpha$. Therefore,

$$\operatorname{Re}\left(\frac{zg_{1-\frac{1}{k}}'(z)}{g_{1-\frac{1}{k}}(z)-\omega_{0}}\right) = \frac{\partial}{\partial\theta}\operatorname{arg}\left(g_{1-\frac{1}{k}}(e^{i\theta})-\omega_{0}\right) > \alpha, \quad |z| = 1.$$

$$(2.4)$$

Since $g_{1-\frac{1}{k}}(\mathbb{D}^*) = \Omega^*_{1-\frac{1}{k}}$, $g_{1-\frac{1}{k}}(\infty) = \infty$ and $g_{1-\frac{1}{k}}(z) = r_{-1}z + r_0 + \sum_{n=1}^{\infty} r_n z^{-n}$, straightforward computation gives

$$\lim_{z \to \infty} \operatorname{Re}\left(\frac{zg_{1-\frac{1}{k}}'(z)}{g_{1-\frac{1}{k}}(z) - \omega_0}\right) = 1 > \alpha.$$
(2.5)

By (2.4), (2.5) and the maximum principle of harmonic function $\operatorname{Re}\left(\frac{zg'_{1-\frac{1}{k}}(z)}{g_{1-\frac{1}{k}}(z)-\omega_{0}}\right)$, we have

$$\operatorname{Re}\left(\frac{zg_{1-\frac{1}{k}}'(z)}{g_{1-\frac{1}{k}}(z)-\omega_{0}}\right) > \alpha, \quad |z| > 1.$$

Since $\Gamma_{1-\frac{1}{k}}$ converges to Γ in the sense of kernel convergence for $k \to \infty$, $g_{1-\frac{1}{k}}$ converges locally uniformly to g due to the Carathéodory kernel theorem [7]. Therefore,

$$\operatorname{Re}(\frac{zg'(z)}{g(z) - \omega_0}) > \alpha, \quad |z| > 1.$$
(2.6)

Considering $u(z) = \frac{1+zp}{z+p}$, $g = f \circ u$, simple calculations give

$$g'(z) = -\frac{(u-p)^2}{1-p^2} f'(u), \quad u \in \mathbb{D},$$
(2.7)

On starlike meromorphic functions of order $\boldsymbol{\alpha}$

and

$$\alpha < \operatorname{Re}(\frac{zg'(z)}{g'(z) - \omega_0}) = -\operatorname{Re}(\frac{(1 - up)(u - p)f'(u)}{(1 - p^2)(f(u) - \omega_0)}), \quad u \in \mathbb{D}.$$
(2.8)

Then (2.1) is satisfied.

Necessary part. Let $f \in S(p)$. If (2.1) is satisfied, then $f \in \Sigma^*(p, \omega_0, \alpha)$.

Let $u(z) = \frac{1+zp}{z+p} \mod \mathbb{D}^*$ onto \mathbb{D} and $g = f \circ u \mod \mathbb{D}^*$ onto Ω^* with $g(\infty) = \infty$. We denote by $\Gamma_{1+\frac{1}{k}} = \{g(z) : |z| = 1 + \frac{1}{k}\}, \ k = 2, 3, 4...$ and we know $\Gamma_{1+\frac{1}{k}}$ are analytic curves. Let h(z)map \mathbb{D} onto Ω , $h_{1+\frac{1}{k}} \mod \mathbb{D}$ onto $\Omega_{1+\frac{1}{k}}$, where $\Omega_{1+\frac{1}{k}}$ is the interior domain of $\Gamma_{1+\frac{1}{k}}$. If (2.1) is satisfied, by the same computation as (2.7) and (2.8), we have

$$\operatorname{Re}(\frac{zg'(z)}{g(z)-\omega_0}) > \alpha, \quad |z| > 1.$$

By the definition of $\Gamma_{1+\frac{1}{k}}$ and Lemma 2.5, we know each curve can be described by $h_{1+\frac{1}{k}}(e^{i\theta}), \theta \in [0, 2\pi)$. Since the interior of $\Gamma_{1+\frac{1}{k}}$ is starlike domain of order α with respect to ω_0 , then by the geometric property of $\Gamma_{1+\frac{1}{k}}$, we have $\frac{\partial}{\partial \theta} arg(h_{1+\frac{1}{k}}(e^{i\theta}) - \omega_0) > \alpha$. Therefore,

$$\operatorname{Re}(\frac{zh'_{1+\frac{1}{k}}(z)}{h_{1+\frac{1}{k}}(z)-\omega_0}) = \frac{\partial}{\partial\theta} \arg(h_{1+\frac{1}{k}}(e^{i\theta})-\omega_0) > \alpha, |z| = 1.$$

By the maximum principle of harmonic function $\operatorname{Re}(\frac{zh'_{1+\frac{1}{k}}(z)}{h_{1+\frac{1}{k}}(z)-\omega_0})$, we have

$$\operatorname{Re}(\frac{zh'_{1+\frac{1}{k}}(z)}{h_{1+\frac{1}{k}}(z)-\omega_0}) > \alpha, \quad |z| < 1.$$

Since $\Gamma_{1+\frac{1}{k}}$ converges to Γ in the sense of kernel convergence for $k \to \infty$, $h_{1+\frac{1}{k}}$ converges locally uniformly to h due to the Carathéodory kernel theorem. Therefore,

$$\operatorname{Re}(\frac{zh'(z)}{h(z)-\omega_0}) > \alpha, \quad |z| < 1.$$

Hence, we have Ω is starlike domain of order α with respect to ω_0 and $f \in \Sigma^*(p, \omega_0, \alpha)$, which completes the proof of Theorem 2.1. \Box

Using the methods in [18], we give the proof of Theorem 2.2.

Proof of Theorem 2.2 When p < r < 1, we let $\sigma = (r-1)p/(r-p^2)$ and $L_r(z) = r(z-\sigma)/(1-z\overline{\sigma})$. Direct computations give $L_r(p) = p$ and $L_r(\mathbb{D}) = \{z : |z| < r\}$.

For $f \in \Sigma^*(p, \omega_0, \alpha)$, we let

$$P(z) = -\frac{(z-p)(1-pz)f'(z)}{(1-p^2)(f(z)-\omega_0)}$$
(2.9)

and

$$Q_r(z) = \frac{z(1-p^2)P(L_r(z)) - p(1-z^2)}{(z-p)(1-zp)}.$$
(2.10)

When |z| = 1, we have

$$\operatorname{Re}\left(\frac{-p(1-z^2)}{(z-p)(1-pz)}\right) = \operatorname{Re}\left(\frac{-p(\bar{z}-z)}{|1-pz|^2}\right) = 0$$
(2.11)

Lei LIU and Jinhua FAN

and

368

$$\frac{z}{z-p} = \frac{1}{1-zp}.$$
 (2.12)

Since $L_r(z) \in \mathbb{D}$, by (2.11), (2.12) and Theorem 2.1, when |z| = 1, we have

$$\begin{aligned} \operatorname{Re}(Q_r(z)) = &\operatorname{Re}(\frac{z(1-p^2)P(L_r(z))}{(z-p)(1-pz)}) + \operatorname{Re}(\frac{-p(1-z^2)}{(z-p)(1-pz)}) \\ = &\operatorname{Re}(\frac{(1-p^2)P(L_r(z))}{|1-pz|^2}) > \frac{\alpha(1-p)}{1+p}. \end{aligned}$$

Since $Q_r(z)$ is analytic for $|z| \leq 1$, $L_r(z) \to z$ as $r \to 1$, letting $r \to 1$, we have

$$\operatorname{Re}\left(\frac{z(1-p^2)P(z)-p(1-z^2)}{(z-p)(1-zp)}\right) > \frac{\alpha(1-p)}{(1+p)}, \quad |z| = 1.$$
(2.13)

By the maximum principle of harmonic function $\mathrm{Re}(\frac{z(1-p^2)P(z)-p(1-z^2)}{(z-p)(1-zp)}),$ we have

$$\operatorname{Re}\left(\frac{z(1-p^2)P(z)-p(1-z^2)}{(z-p)(1-zp)}\right) > \frac{\alpha(1-p)}{(1+p)}, \quad |z| < 1.$$
(2.14)

A straightforward computation gives

$$-\frac{zf'(z)}{f(z)-\omega_0} - \frac{p}{z-p} + \frac{zp}{1-zp} = \frac{z(1-p^2)P(z)-p(1-z^2)}{(z-p)(1-zp)}.$$
(2.15)

Then (2.2) follows by (2.14) and (2.15), which completes the proof of Theorem 2.2. \Box

Proof of Theorem 2.3 It is well-known fact that for an analytic function p(z) in \mathbb{D} with $\operatorname{Re}(p(z)) > 0$ and p(0) = 1, then there exists an analytic function $\varphi : \mathbb{D} \to \mathbb{D}$ such that $p(z) = \frac{1+z\varphi(z)}{1-z\varphi(z)}$. We combine this fact with Theorem 2.2, for $f \in \Sigma^*(p, \omega_0, \alpha)$ and

$$p(z) = -\frac{1}{1 - \frac{\alpha(1-p)}{1+p}} \left\{ \frac{zf'(z)}{f(z) - \omega_0} + \frac{p}{z-p} - \frac{pz}{1-pz} + \frac{\alpha(1-p)}{1+p} \right\},$$

then there exists

$$-\frac{1}{1-\frac{\alpha(1-p)}{1+p}}\left\{\frac{zf'(z)}{f(z)-\omega_0} + \frac{p}{z-p} - \frac{pz}{1-pz} + \frac{\alpha(1-p)}{1+p}\right\} = \frac{1+z\varphi(z)}{1-z\varphi(z)}.$$
 (2.16)

Simplifying (2.16), we have

$$\frac{zf'(z)}{f(z) - \omega_0} + \frac{p}{z - p} - \frac{pz}{1 - pz} + \frac{\alpha(1 - p)}{1 + p}$$
$$= \left[-1 + \frac{\alpha(1 - p)}{1 + p}\right] \frac{1 - z\varphi(z) + 2z\varphi(z)}{1 - z\varphi(z)}.$$
(2.17)

It is easy to check (2.17) is equivalent to

$$\frac{zf'(z)}{f(z) - \omega_0} + \frac{z}{z - p} - \frac{pz}{1 - pz} = -\frac{2z[1 - \frac{\alpha(1 - p)}{1 + p}]\varphi(z)}{1 - z\varphi(z)}.$$
(2.18)

Dividing by z and then integrating from 0 to z on both sides of (2.18), we obtain

$$\log(f(z) - \omega_0)(z - p)(1 - zp) - \log p\omega_0 = \int_0^z -\frac{2[1 - \frac{\alpha(1 - p)}{1 + p}]\varphi(\zeta)}{1 - \zeta\varphi(\zeta)} d\zeta.$$
 (2.19)

It is easy to check (2.19) is equivalent to

$$f(z) = \omega_0 + \frac{p\omega_0}{(z-p)(1-zp)} \exp \int_0^z -\frac{2\left[1 - \frac{\alpha(1-p)}{1+p}\right]\varphi(\zeta)}{1 - \zeta\varphi(\zeta)} d\zeta$$

which completes the proof of Theorem 2.3. \square

3. The Laurent coefficient and Taylor coefficient estimates of $f \in \Sigma^*(p, \omega_0, \alpha)$

In this section, let $f \in \Sigma^*(p, \omega_0, \alpha)$. We will estimate the Laurent coefficient in (1.3) and the Taylor coefficient in (1.4). Our main results are Theorems 3.1 and 3.2.

Theorem 3.1 Let $f \in \Sigma^*(p, \omega_0, \alpha)$ have the Laurent expansion (1.3). Then

$$|b_1| \le \frac{1-\alpha}{(1-p^2)^2} |b_{-1}| \tag{3.1}$$

and

$$|b_0 - \omega_0| \le \frac{p + 2(1 - \alpha)}{1 - p^2} |b_{-1}|.$$
(3.2)

Theorem 3.2 Let $f \in \Sigma^*(p, \omega_0, \alpha)$ have the Taylor expansion (1.4). Then the second coefficient a_2 is determined by

$$\begin{aligned} \left| a_2 + \left(\frac{1}{2} - \frac{1}{4\lambda}\right) \omega_0 \left(\frac{1}{\omega_0} + \frac{1}{p} + p\right)^2 - \left(\omega_0 + p + \frac{1}{p}\right) \right| \\ &\leq |\omega_0|\lambda| 1 - \frac{1}{4\lambda^2} \left(\frac{1}{\omega_0} + \frac{1}{p} + p\right)^2|, \end{aligned}$$
(3.3)

where $\lambda = 1 - \frac{\alpha(1-p)}{1+p}$.

Remark 3.3 When $\alpha = 0$, Theorems 3.1 and 3.2 correspond to Theorems 1.4 and 1.5, respectively.

In order to prove Theorems 3.1 and 3.2, we need the following lemmas.

Lemma 3.4 ([6]) Let $q(z) = 1 + \sum_{n=1}^{\infty} q_n z^n$, |z| < 1 be analytic and satisfy the condition $\operatorname{Re}(q(z)) > 0$. Then $|q_n| \leq 2, n \geq 1$.

Lemma 3.5 ([24]) Let $q(z) = 1 + \sum_{n=1}^{\infty} q_n z^n$, |z| < 1 be analytic and satisfy the condition $\operatorname{Re}(q(z)) > 0$. Then

$$|q_2 - \nu q_1^2| \le 2, \quad 0 \le \nu \le 1.$$

Lemma 3.6 ([25]) Let $\omega(z) = s_1 z + s_2 z^2 + \cdots, |z| < 1$ be analytic with $|\omega(z)| \le 1$. Then

$$|s_1| \le 1, |s_2| \le 1 - |s_1^2|.$$

Proof of Theorem 3.1 For $f \in \Sigma^*(p, \omega_0, \alpha)$, we let

$$P(z) = -\frac{(z-p)(1-zp)f'(z)}{(1-p^2)(f(z)-\omega_0)} - \alpha.$$
(3.4)

We know P(z) is analytic and $\operatorname{Re}(P(z)) > 0$ by Theorem 2.1.

When f has the expansion (1.3), by (3.4), we have

$$P(z) = \frac{-(1-zp)\sum_{n=-1}^{\infty} nb_n(z-p)^n}{(1-p^2)(\sum_{n=-1}^{\infty} b_n(z-p)^n - \omega_0)} - \alpha$$

= $\frac{-(1-zp)[-b_{-1}(z-p)^{-1} + b_1(z-p) + 2b_2(z-p)^2 + \cdots]}{(1-p^2)[b_{-1}(z-p)^{-1} + b_0 + b_1(z-p) + \cdots - \omega_0]} - \alpha$
= $\frac{-(1-zp)[-b_{-1} + b_1(z-p)^2 + 2b_2(z-p)^3 + \cdots]}{(1-p^2)[b_{-1} + b_0(z-p) + b_1(z-p)^2 + \cdots - \omega_0(z-p)]} - \alpha.$ (3.5)

Then, we obtain $P(p) = 1 - \alpha$. Furthermore, we have the following expansion of P(z)

$$P(z) = 1 - \alpha + \sum_{n=1}^{\infty} c_n (z-p)^n, \quad |z-p| < 1-p.$$
(3.6)

By (1.3), (3.4) and (3.6), we obtain

$$(1-p^2)(1+\sum_{n=1}^{\infty}c_n(z-p)^n)(\sum_{n=-1}^{\infty}b_n(z-p)^n-\omega_0)$$

= $-(1-p^2)\sum_{n=-1}^{\infty}nb_n(z-p)^n+p\sum_{n=-1}^{\infty}nb_n(z-p)^{n+1}.$ (3.7)

Comparing the constant term and the coefficient of (z - p) in (3.7), we obtain the relations

$$(1 - p^2)b_0 - \omega_0(1 - p^2) + (1 - p^2)c_1b_{-1} = -pb_{-1}, \qquad (3.8)$$

$$(1-p^2)b_1 + (1-p^2)c_1b_0 + (1-p^2)c_2b_{-1} - \omega_0(1-p^2)c_1 = -(1-p^2)b_1.$$
(3.9)

Further, by (3.8) and (3.9), we have

$$\frac{b_1}{b_{-1}} = \frac{pc_1 + (1 - p^2)(c_1^2 - c_2)}{2(1 - p^2)}.$$
(3.10)

Let

$$Q(z) = \frac{1}{1-\alpha} P(\frac{z+p}{1+zp}).$$

Then $\operatorname{Re}(Q(z)) > 0$ and Q(0) = 1. By the Herglotz representation [7] of Q(z), we have

$$\frac{1}{1-\alpha}P(\frac{z+p}{1+zp}) = Q(z) = \int_0^{2\pi} \frac{1+e^{it}z}{1-e^{it}z} \mathrm{d}m(t), \tag{3.11}$$

where m(t) is an increasing function with $\int_0^{2\pi} dm(t) = 1$. By (3.11), it is easy to check

$$P(z) = (1 - \alpha) \int_0^{2\pi} \frac{1 - pz + e^{it}(z - p)}{1 - pz - e^{it}(z - p)} \mathrm{d}m(t).$$
(3.12)

By (3.6) and (3.12), we have

$$c_1 = (1 - \alpha) \int_0^{2\pi} \frac{2e^{it}}{1 - p^2} \mathrm{d}m(t)$$
(3.13)

and

$$c_2 = (1 - \alpha) \int_0^{2\pi} \frac{2e^{it}(p + e^{it})}{(1 - p^2)^2} \mathrm{d}m(t).$$
(3.14)

On starlike meromorphic functions of order α

Let

$$T(z) = \int_0^{2\pi} \frac{1 + e^{it}z}{1 - e^{it}z} \mathrm{d}m(t).$$

Then $\operatorname{Re}(T(z)) > 0$, T(0) = 1. Hence, T(z) has the expansion $T(z) = 1 + p_1 z + p_2 z^2 + \cdots$, |z| < 1. Direct computation gives

$$p_1 = 2 \int_0^{2\pi} e^{it} \mathrm{d}m(t), \qquad (3.15)$$

$$p_2 = 2 \int_0^{2\pi} e^{2it} \mathrm{d}m(t). \tag{3.16}$$

From (3.13) to (3.16), we have

$$pc_1 + (1 - p^2)(c_1^2 - c_2) = \frac{1 - \alpha}{1 - p^2}(p_1^2(1 - \alpha) - p_2).$$

By Lemma 3.5, we have $|p_1^2(1-\alpha) - p_2| \le 2$. Hence

$$|pc_1 + (1-p^2)(c_1^2 - c_2)| \le \frac{2(1-\alpha)}{1-p^2}.$$

Following this fact with (3.10), we obtain (3.1).

By (3.8), (3.13) and (3.15), we have

$$|b_0 - \omega_0| = \frac{|p + (1 - p^2)c_1|}{1 - p^2} |b_{-1}| = \frac{|p + (1 - \alpha)p_1|}{1 - p^2} |b_{-1}|.$$

Then by Lemma 3.4, we have

$$\frac{|p + (1 - \alpha)p_1|}{1 - p^2} |b_{-1}| \le \frac{p + 2(1 - \alpha)}{1 - p^2} |b_{-1}|.$$

Hence, (3.2) is obtained. \Box

Proof of Theorem 3.2 Let

$$P(z) = -\frac{1}{1 - \frac{\alpha(1-p)}{1+p}} \left\{ \frac{zf'(z)}{f(z) - \omega_0} + \frac{p}{z-p} - \frac{pz}{1-pz} + \frac{\alpha(1-p)}{1+p} \right\}.$$
 (3.17)

Then P(z) is analytic and P(0) = 1. By Theorem 2.2, we know $\operatorname{Re}(P(z)) > 0$.

In order to compute conveniently, we write

$$P(z) = \frac{1 + \omega(z)}{1 - \omega(z)}, \quad z \in \mathbb{D},$$
(3.18)

where $\omega(z) : \mathbb{D} \to \mathbb{D}$ is analytic function with $\omega(0) = 0$.

We write

$$P(z) = 1 + d_1 z + d_2 z^2 + \cdots$$
(3.19)

and

$$\omega(z) = s_1 z + s_2 z^2 + \cdots . (3.20)$$

Noting (1.4) and (3.19), comparing the coefficients of z^n of (3.17) for n = 1, 2, we obtain

$$\begin{cases} d_1 = \frac{1}{1 - \frac{\alpha(1-p)}{1+p}} (\frac{1}{\omega_0} + \frac{1}{p} + p), \\ d_2 = \frac{1}{1 - \frac{\alpha(1-p)}{1+p}} (\frac{2a_2}{\omega_0} + \frac{1}{\omega_0^2} + \frac{1}{p^2} + p^2). \end{cases}$$
(3.21)

Eliminating ω_0 from (3.21), we get

$$d_{2} = \frac{1}{1 - \frac{\alpha(1-p)}{1+p}} \left\{ \frac{1}{p^{2}} + p^{2} + \left[\left(1 - \frac{\alpha(1-p)}{1+p}\right)d_{1} - p - \frac{1}{p}\right]^{2} \right\} + \frac{1}{1 - \frac{\alpha(1-p)}{1+p}} \left\{ 2a_{2}\left[\left(1 - \frac{\alpha(1-p)}{1+p}\right)d_{1} - p - \frac{1}{p}\right] \right\}.$$
(3.22)

From (3.18) to (3.20), we have

$$d_1 = 2s_1 \tag{3.23}$$

and

$$d_2 = 2(s_1^2 + s_2). \tag{3.24}$$

Let $\lambda = 1 - \frac{\alpha(1-p)}{1+p}$, by (3.22) to (3.24). We obtain

$$a_{2} = \frac{2(s_{2} + s_{1}^{2}) - \frac{1}{\lambda}(p^{2} + \frac{1}{p^{2}}) - \frac{1}{\lambda}(2s_{1}\lambda - \frac{1}{p} - p)^{2}}{\frac{2}{\lambda}(2s_{1}\lambda - \frac{1}{p} - p)}$$
$$= \frac{1}{p} + p\frac{2s_{1}^{2}\lambda^{2} - s_{1}^{2}\lambda - s_{2}\lambda + p^{2} - 2s_{1}p\lambda}{1 + p^{2} - 2ps_{1}\lambda}.$$
(3.25)

By Lemma 3.6, we obtain

$$|a_{2} - \frac{1}{p} - p \frac{2s_{1}^{2}\lambda^{2} - s_{1}^{2}\lambda + p^{2} - 2s_{1}p\lambda}{1 + p^{2} - 2ps_{1}\lambda}| = |\frac{s_{2}p\lambda}{1 + p^{2} - 2ps_{1}\lambda}|$$

$$\leq \frac{p\lambda(1 - |s_{1}|^{2})}{|1 + p^{2} - 2ps_{1}\lambda|}.$$
(3.26)

By (3.21), (3.23) and (3.26), we have

$$|a_{2} + (\frac{1}{2} - \frac{1}{4\lambda})\omega_{0}(\frac{1}{\omega_{0}} + \frac{1}{p} + p)^{2} - (\omega_{0} + p + \frac{1}{p})|$$

$$\leq |\omega_{0}|\lambda|1 - \frac{1}{4\lambda^{2}}(\frac{1}{\omega_{0}} + \frac{1}{p} + p)^{2}|,$$

which completes the proof of Theorem 3.2. \Box

Acknowledgements We would like to thank the referees for carefully reading the paper and for the suggestions that greatly improved the presentation of the paper.

References

- L. BIEBERBACH. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreis vermitteln. Sitz. Ber. Preuss. Akad. Wiss., 1916, 38: 940-955.
- P. GARABEDIAN, M. SCHIFFER. A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal., 1955, 4: 427–465.
- [3] C. LÖWNER. Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises I. Math. Ann., 1923, 176: 61–94.
- [4] R. N. PEDERSON. A proof of the Bieberbach conjecture for the sixth coefficient. Arch. Rational Mech. Anal., 1968, 31: 331–351.
- [5] L. DEBRANGES. A proof of the Bieberbach conjecture. Acta Math., 1985, 154(1-2): 137–152.
- [6] P. L. DUREN. Univalent Functions. Springer, New York, 1983.
- [7] CH. POMMERENKE. Univalent Functions. Vandenhoeck & Ruprecht, Goettingen, 1975.

- [8] T. KATO, T. SUGAWA, Limei WANG. Variability regions of close-to-covnex functions. Ann. Polon. Math., 2014, 111(1): 89–105.
- [9] Y. C. KIM, J. H. CHOE, T. SUGAWA. Coefficient bounds and convolution properties for certain classes of close-to-convex functions. Proc. Japan Acad. Ser. A Math. Sci., 2000, 76(6): 95–98.
- [10] Ming LI, T. SUGAWA. A note on successive coefficients of convex functions. Comput. Methods Funct. Theory, 2017, 17(2): 179–193.
- [11] M. S. ROBERTSON. On the theory of univalent functions. Ann. Math., 1936, 37(2): 374-408.
- [12] J. MILLER. Convex meromorphic mappings and related functions. Proc. Amer. Math. Soc., 1970, 25: 220– 228.
- [13] J. MILLER. Convex and starlike meromorphic functions. Proc. Amer. Math. Soc., 1980, 80(4): 607-613.
- [14] J. MILLER. Starlike meromorphic functions. Proc. Amer. Math. Soc., 1972, **31**: 446–452.
- [15] M. ARIF. On sufficient conditions of starlike meromorphic functions. Bol. Soc. Parana. Mat., 2014, 32(3): 229–236.
- [16] Yong SUN, Yueping JIANG, A. RASILA, et al. Integral representations and coefficient estimates for a subclass of meromorphic starlike functions. Complex Anal. Oper. Theory, 2017, 11(1): 1–19.
- [17] Zhigang WANG, Yong SUN, Zhihua ZHANG. Certain classes of meromorphic multivalent functions. Comput. Math. Appl., 2009, 58(7): 1408–1417.
- [18] A. E. LIVINGSTON. Convex meromorphic mappings. Ann. Polo. Math., 1994, 59(3): 275-291.
- [19] Yulin ZHANG. On the representation formula for the functions in the class $\Sigma^*(p, \omega_0)$. Proc. Amer. Math. Soc., 1988, **103**(2): 517–520.
- [20] B. BHOWMIK, S. PONNUSAMY, K. J. WIRTHS. On some problems of James Miller. Cubo. A. Math. J., 2010, 12(1): 15–21.
- [21] B. BHOWMIK, K. J. WIRTHS. Inequalities for the coefficients of starlike meromorphic functions with nonzero pole. Results Math., 2014, 65(1-2): 1–8.
- [22] R. OHNO. Characterizations for Concave Functions and Integral Representations. Tohoku University Press, Sendai, 2013.
- [23] CH. POMMERENKE. Boundary Behaviour of Conformal Maps. Springer, Berlin, 1992.
- [24] Wancang MA, D. MINDA. A Unified Treatment of Some Special Classes of Univalent Functions. Int. Press, Cambridge, MA, 1994.
- [25] Daoxing XIA, Kaiming CHANG. Some inequalities in the theory of subordination. Acta Math. Sinica, 1958, 8(3): 408–412.