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Abstract In this paper, we propose a modified two-subgradient extragradient algorithm (MT-

SEGA) for solving monotone and Lipschitz continuous variational inequalities with the feasible

set being a level set of a smooth convex function in Hilbert space. The advantage of MTSEGA is

that all the projections are computed onto a half-space per iteration. Moreover, MTSEGA only

needs one computation of the underlying mapping per iteration. Under the same assumptions

with the known algorithm, we show that the sequence generated by this algorithm is weakly

convergent to a solution of the concerned problem.
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1. Introduction

Let H be a real Hilbert space and C ⊆ H be a nonempty closed and convex set. We consider

the following classical variational inequality problem: find vector x∗ ∈ C such that

⟨F (x∗), y − x∗⟩ ≥ 0, ∀y ∈ C, (1.1)

where F : H → H is a continuous mapping and ⟨·, ·⟩ is the usual inner product in H. We let S

denote the solution set of Problem (1.1).

Denote by PC(x) the metric projection of vector x onto nonempty closed and convex set C.

PC(x) := argmin{∥x− y∥ : y ∈ C}.

In this paper, we focus on the projection based algorithm for solving variational inequality

problems. The simplest projection based algorithm is Goldstein-Levitin-Polyak algorithm, in

which new iterate point xn+1 is updated by the following formula:

xn+1 = PC(xn − λF (xn)). (1.2)
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However, the global convergence of this algorithm is established on the conditions that F is

L-Lipschitz continuous on C and strongly monotone with modulus γ, when H reduces to a

Euclidean space [1, 2].

To weaken the strong monotonicity of F , Korpelevich [3] proposed an extragradient algorithm

(EGA for short) as follows: {
yn = PC(xn − λF (xn)),

xn+1 = PC(xn − λF (yn)).
(1.3)

Under the assumption that F is pseudomonotone on C, the global convergence is obtained by

taking the step-size λ ∈ (0, 1
L ) with L being the Lipschitz modulus of F . In recent years, EGA

was generalized in various ways; see, for example, [4–7] and the references therein. From (1.3),

we see that EGA needs to compute two projections onto C.

Note that the projection onto a half-space is easy to implement (see Lemma 2.4 below). In

2011, Censor et al. [8] proposed the subgradient extragradient algorithm (SEGA for short) for

variational inequality problems, where the new iterate point xn+1 is computed by projecting a

vector onto a specific half-space. SEGA can be considered as an improvement of EGA when the

projection onto C is difficult to compute. The iterative scheme of SEGA is as follows:{
yn = PC(xn − λF (xn)),

xn+1 = PTn(xn − λF (yn)),
(1.4)

where Tn = {ω ∈ H : ⟨xn − λF (xn)− yn, ω − yn⟩ ≤ 0} is a half-space and λ ∈ (0, 1
L ).

In 2017, He and Wu in [9] proposed a modified subgradient extragradient algorithm (MSEGA

for short) for solving Lipschitz continuous and monotone variational inequalities with

C = {x ∈ H : c(x) ≤ 0}, (1.5)

where c : H → R is a smooth and convex function and the Slater’s condition holds, i.e.,

{x ∈ C : c(x) < 0} ≠ ∅.

In MSEGA, the first projection in (1.4) is replaced by computing the projection onto a specially

constructed half-space Cn (The idea of replacing the projection onto C with a projection onto

a half-space was first suggested by Fukushima [10]). Hence, all the projections of MSEGA are

implemented onto the half-space, respectively. Recently, He et al. [11] generalized MSEGA to

solve variational inequalities when C is an intersection of finitely many level sets. Cao and

Guo [12] proposed an inertial MSEGA for solving variational inequalities. The iterative scheme

of MSEGA is as follows: {
yn = PCn(xn − λnF (xn)),

xn+1 = PTn
(xn − λnF (yn)),

(1.6)

where

Cn := {ω ∈ H : c(xn) + ⟨c′(xn), ω − xn⟩ ≤ 0}

and

Tn = {ω ∈ H : ⟨xn − λnF (xn)− yn, ω − yn⟩ ≤ 0}.
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The step-size λn is chosen by using the following line-search; i.e., λn = σρmn , σ > 0, ρ ∈ (0, 1)

and mn is the smallest nonnegative integer, such that

λ2
n∥F (xn)− F (yn)∥2 + 2Mλn∥xn − yn∥2 ≤ ν2∥xn − yn∥2,

where ν ∈ (0, 1) and M = M1M2 > 0 (M1 is the Lipschitz modulus of c′(·) and M2 is a positive

constant such that ∥F (x)∥ ≤ M2∥c′(x)∥, ∀x ∈ ∂C). In this paper, under the same assumption

that there exists M2 > 0 such that ∥F (x)∥ ≤M2∥c′(x)∥ for any x belonging to the boundary of

C, we explore the new algorithm for Problem (1.1), see Assumption 2.10 (H4) below.

However, all the algorithms in [3, 8, 9] require two evaluations of mapping F per iteration.

This may be a disadvantage when the value of F is complicated to compute.

In this paper, we modify MSEGA to solve variational inequalities by using Popov method.

This method was suggested by Popov [13], and further studied by Malitsky and Semenov [14].

We present a new modified two-subgradient extragradient algorithm (MTSEGA for short) for

solving the monotone and Lipschitz continuous variational inequalities with C defined in (1.5).

In MTSEGA, all the projections are implemented onto a half-space, respectively. Moreover,

MTSEGA needs only one evaluation of F per iteration. The weak convergence of MTSEGA is

established under the suitable assumptions.

The remainder of this paper is organized as follows. Some basic definitions and preliminary

materials of projection operator are introduced in Section 2. MTSEGA and its convergence

analysis is introduced in Section 3. Some concluding remarks are presented in Section 4.

2. Preliminaries

Let H be a real Hilbert space equipped with the inner product ⟨·, ·⟩ and the induced norm

∥ · ∥. We use the notations xn → x and xn ⇀ x to indicate that the sequence {xn} converges

strongly and weakly to x, respectively.

In this section, we first recall some basic definitions and well-known lemmas.

Definition 2.1 Let C ⊆ H be a nonempty closed and convex set and F : H → H be a mapping.

Then

(i) F is monotone on C, if ⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x, y ∈ C;

(ii) F is L-Lipschitz continuous on C, if L > 0 and ∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ C.

Lemma 2.2 ([15, Theorem 3.16 and Proposition 4.16]) Let C ⊆ H be a nonempty closed and

convex set. Then, for each x ∈ H, the following inequalities hold:

(i) ⟨PC(x)− x, y − PC(x)⟩ ≥ 0, ∀y ∈ C;

(ii) ∥y − PC(x)∥2 ≤ ∥y − x∥2 − ∥PC(x)− x∥2, ∀y ∈ C.

Lemma 2.3 ([16, Lemma 1]) For any sequence {xn} in H such that xn ⇀ x, then

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, ∀y ̸= x.

Lemma 2.4 ([17, Lemma 2.7]) Let u ∈ H, a ∈ R and T = {v ∈ H : ⟨u, v⟩ − a ≤ 0}. If x /∈ T
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and u ̸= 0, then

PT (x) = x− ⟨u, x⟩ − a

∥u∥2
u.

Lemma 2.5 ( [18, Theorem 4.1]) Consider the variational inequality problem (1.1), assume

its solution set S is nonempty and C is defined by (1.5), where c : H → R is a continuously

differentiable convex function and {x ∈ C : c(x) < 0} ̸= ∅. If u ∈ C, then u ∈ S if and only if

either

(i) F (u) = 0, or

(ii) u ∈ ∂C and there exists a positive constant η such that F (u) = −ηc′(u).

Lemma 2.6 ( [15, Theorem 9.1]) Let f : H → (−∞,+∞] be convex. Then the following

statements are equivalent:

(i) f is weakly sequential lower semicontinuous;

(ii) f is lower semicontinuous.

Definition 2.7 ([15, P35]) Let f : H → (−∞,+∞] and x ∈ H. Then f is weakly sequential

lower semicontinuous at x, if for every sequence {xn} in H,

xn ⇀ x⇒ f(x) ≤ lim inf
n→∞

f(xn).

Definition 2.8 ([15, Definition 20.1]) Let A : H → 2H be a set-valued mapping. Then A is

monotone if for all (x, u) ∈ graA and (y, v) ∈ graA, it holds that ⟨x− y, u− v⟩ ≥ 0, where

graA = {(x, u) ∈ H ×H : u ∈ A(x)}.

Definition 2.9 ([15, Definition 20.20]) Let A : H → 2H be monotone. Then A is maximally

monotone if there exists no monotone operator B : H → 2H such that graB properly contains

graA, i.e., for every (x, u) ∈ H ×H,

(x, u) ∈ graA ⇐⇒ ⟨x− y, u− v⟩ ≥ 0, ∀ (y, v) ∈ graA.

Throughout this paper, we need the following assumptions.

Assumption 2.10 (H1) The solution set S of Problem (1.1) is nonempty.

(H2) The mapping F is monotone and Lipschitz continuous on H with modulus L > 0.

(H3) The feasible set C = {x ∈ H : c(x) ≤ 0} is nonempty with c : H → R being K1 smooth

convex on H (i.e., c is convex on H and its derivative function c′(·) is K1-Lipschitz continuous

on H). Moreover, {x ∈ C : c(x) < 0} ̸= ∅.
(H4) There exists a positive constant K2 such that ∥F (x)∥ ≤ K2∥c′(x)∥ for any x ∈ ∂C,

where ∂C denotes the boundary of C.

3. Algorithm and its convergence

In this section, we present MTSEGA for solving the monotone and Lipschitz continuous vari-

ational inequalities with C defined in (1.5). We will introduce the well-definedness of MTSEGA

and analyze its convergence.



406 Jiaxin CHEN and Minglu YE

Algorithm 3.1 Initialization: choose x0, y0 ∈ H and λ > 0. Compute

x1 = PC(x0 − λF (y0)), y1 = PC(x1 − λF (y0)).

Iterative Steps: Starting from xn, yn, yn−1 ∈ H, calculate xn+1, yn+1 for each n ≥ 1 as follows:

Step 1. Compute xn+1 = PTn(xn − λF (yn)), where

Tn = {x ∈ H : ⟨xn − λF (yn−1)− yn, x− yn⟩ ≤ 0}.

Step 2. Compute yn+1 = PCn+1(xn+1 − λF (yn)), where

Cn+1 = {ω ∈ H : c(xn+1) + ⟨c′(xn+1), ω − xn+1⟩ ≤ 0}.

Step 3. If xn+1 = yn+1 = yn, then stop. Otherwise, let n← n+ 1 and go to Step 1.

Lemma 3.2 Let {Cn} and {Tn} be two sequences generated by Algorithm 3.1 and C be the

set defined by (1.5). Then, C ⊆ Cn and C ⊆ Tn for each n.

Proof From the fact that c is convex and smooth, we conclude that, for any x ∈ C and for each

n,

c(xn) + ⟨c′(xn), x− xn⟩ ≤ c(x) ≤ 0,

where the second inequality follows from the definition of set C. Using this together with the

definition of Cn, we obtain that x ∈ Cn. So we assert that C ⊆ Cn for each n.

Next, we show that C ⊆ Tn for each n. To this end, we take an arbitrary x ∈ C. By using

the facts yn = PCn(xn − λF (yn−1)) and C ⊆ Cn, together with Lemma 2.2 (i), we obtain that

⟨xn − λF (yn−1)− yn, x− yn⟩ ≤ 0. 2
Lemma 3.3 If xn+1 = yn+1 = yn in Algorithm 3.1, then yn ∈ S.

Proof Assume that xn+1 = yn+1 = yn, we have

yn+1 = PCn+1(yn+1 − λF (yn+1)).

We firstly show that yn ∈ C. By using the definition of Cn+1, we have

c(yn+1) + ⟨c′(yn+1), yn+1 − yn+1⟩ ≤ 0,

which implies that c(yn+1) ≤ 0. Hence, yn = yn+1 ∈ C.

Next, we show that yn ∈ S. By using Lemma 2.2 (i), we have

⟨yn+1 − λF (yn+1)− yn+1, y − yn+1⟩ ≤ 0, ∀y ∈ C.

This implies that

λ⟨F (yn+1), y − yn+1⟩ ≥ 0, ∀y ∈ C.

Using this together with the fact that λ > 0, we also assert that yn = yn+1 ∈ S. 2
The following conclusions are crucial in the subsequent convergence analysis.

Lemma 3.4 Assume that Assumption 2.10 holds. Let {xn} and {yn} be two sequences generated
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by Algorithm 3.1. For any fixed u ∈ S, we have

Φn+1(u) ≤ Φn(u)− [1− λ(L+ 2K)]∥xn − yn∥2 − (1− 3λL)∥xn+1 − yn∥2, (3.1)

where

Φn(u) = ∥xn − u∥2 + λL∥xn − yn−1∥2 and K = K1K2 > 0.

Proof For any fixed u ∈ S, by the definition of xn+1, the fact that u ∈ C ⊆ Tn and Lemma

2.2 (ii), it follows that

∥xn+1 − u∥2 ≤∥xn − λF (yn)− u∥2 − ∥xn − λF (yn)− xn+1∥2

=∥xn − u∥2 − ∥xn − xn+1∥2 + 2λ⟨F (yn), u− xn+1⟩

=∥xn − u∥2 − ∥xn − xn+1∥2 + 2λ[⟨F (yn)− F (u), u− yn⟩+ ⟨F (u), u− yn⟩+

⟨F (yn), yn − xn+1⟩]

≤∥xn − u∥2 − ∥xn − xn+1∥2 + 2λ[⟨F (u), u− yn⟩+ ⟨F (yn), yn − xn+1⟩]

=∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − xn+1∥2 − 2⟨xn − yn, yn − xn+1⟩+

2λ[⟨F (u), u− yn⟩+ ⟨F (yn), yn − xn+1⟩]

=∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − xn+1∥2 + 2λ⟨F (u), u− yn⟩+

2⟨xn − λF (yn)− yn, xn+1 − yn⟩

=∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − xn+1∥2 + 2λ⟨F (u), u− yn⟩+

2⟨xn − λF (yn−1)− yn, xn+1 − yn⟩+ 2λ⟨F (yn−1)− F (yn), xn+1 − yn⟩, (3.2)

where the second inequality holds from the monotonicity of F .

From the definition of Tn and the fact xn+1 ∈ Tn, we get that

⟨xn − λF (yn−1)− yn, xn+1 − yn⟩ ≤ 0. (3.3)

Next, we estimate the value of ⟨F (yn−1) − F (yn), xn+1 − yn⟩. By using Cauchy-Schwartz

inequality and the fact λ > 0, we have

2λ⟨F (yn−1)− F (yn), xn+1 − yn⟩ ≤ 2λ∥F (yn−1)− F (yn)∥∥xn+1 − yn∥

≤ 2λL∥yn−1 − yn∥∥xn+1 − yn∥

≤ 2λL(∥yn−1 − xn∥+ ∥xn − yn∥)∥xn+1 − yn∥

≤ λL(∥yn−1 − xn∥2 + 2∥xn+1 − yn∥2 + ∥xn − yn∥2), (3.4)

where the second inequality holds from the fact that the mapping F is Lipschitz continuous with

modulus L > 0, and the last inequality holds from the fact that a2 + b2 ≥ 2ab for all a, b ∈ R.

Substituting (3.3) and (3.4) into the inequality (3.2), we get that

∥xn+1 − u∥2 ≤∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − xn+1∥2 + 2λ⟨F (u), u− yn⟩+

λL∥yn−1 − xn∥2 + 2λL∥xn+1 − yn∥2 + λL∥xn − yn∥2

=∥xn − u∥2 + λL∥xn − yn−1∥2 − (1− λL)∥xn − yn∥2−

(1− 2λL)∥xn+1 − yn∥2 + 2λ⟨F (u), u− yn⟩. (3.5)
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Adding λL∥xn+1 − yn∥2 to the both sides of (3.5), we have

∥xn+1 − u∥2 + λL∥xn+1 − yn∥2 ≤∥xn − u∥2 + λL∥xn − yn−1∥2 − (1− λL)∥xn − yn∥2−

(1− 3λL)∥xn+1 − yn∥2 + 2λ⟨F (u), u− yn⟩.

Using this together with the definition of Φn(u) in Lemma 3.4 gives

Φn+1(u) ≤ Φn(u)− (1− λL)∥xn − yn∥2 − (1− 3λL)∥xn+1 − yn∥2 + 2λ⟨F (u), u− yn⟩. (3.6)

If F (u) = 0, then (3.1) holds immediately. So, we assume that F (u) ̸= 0. In this case, from

Lemma 2.5, we know that u ∈ ∂C and there exists a constant ηu > 0 such that F (u) = −ηuc′(u).
Since u ∈ ∂C and c(·) is continuous, we have c(u) = 0. Using this together with the convexity

of c(·), we have

c(yn) ≥ c(u) + ⟨c′(u), yn − u⟩ = − 1

ηu
⟨F (u), yn − u⟩.

By rearranging the terms of the above inequality, we obtain that

⟨F (u), u− yn⟩ ≤ ηuc(yn). (3.7)

From the definition of Cn and the fact that yn ∈ Cn, we have

c(xn) + ⟨c′(xn), yn − xn⟩ ≤ 0.

It follows from the fact c(·) is convex that

⟨c′(yn), xn − yn⟩+ c(yn) ≤ c(xn).

Hence, by adding the above two inequalities, we obtain that

c(yn) ≤ ⟨c′(xn)− c′(yn), xn − yn⟩. (3.8)

Combining (3.7) and (3.8), by using Cauchy-Schwartz inequality and Assumption 2.10 (H3), we

get that

⟨F (u), u− yn⟩ ≤ ηuc(yn) ≤ ηu⟨c′(xn)− c′(yn), xn − yn⟩

≤ ηu∥c′(xn)− c′(yn)∥∥xn − yn∥ ≤ ηuK1∥xn − yn∥2.

On the other hand, from Lemma 2.5 (ii) and Assumption 2.10 (H4), we see that K2 is an upper

bound of ηu. Hence, it follows that

⟨F (u), u− yn⟩ ≤ ηuK1∥xn − yn∥2 ≤ K1K2∥xn − yn∥2. (3.9)

Let K = K1K2 > 0. Then, from (3.9) and (3.6), we get (3.1). 2
Lemma 3.5 Assume that Assumption 2.10 holds. Let S ̸= ∅ and λ ∈ (0,min{ 1

L+2K , 1
3L}),

where K = K1K2 > 0. Let {xn} and {yn} be two sequences generated by Algorithm 3.1. Then,

we have

lim
n→∞

∥xn − yn∥ = lim
n→∞

∥xn+1 − yn∥ = lim
n→∞

∥yn − yn−1∥ = 0.

Moreover, the sequences {xn},{yn} and {c′(xn)} are all bounded.
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Proof From Lemma 3.4, we know that

[1− λ(L+ 2K)]∥xn − yn∥2 + (1− 3λL)∥xn+1 − yn∥2 ≤ Φn(u)− Φn+1(u), ∀u ∈ S, (3.10)

where

Φn(u) = ∥xn − u∥2 + λL∥xn − yn−1∥2 and K = K1K2 > 0.

Using this together with the fact that λ ∈ (0,min{ 1
L+2K , 1

3L}), we get that the sequence {Φn(u)}
is nonincreasing and has a lower bound zero. Hence, the limit of {Φn(u)} exists. Passing to the

limit in (3.10), together with the fact λ ∈ (0,min{ 1
L+2K , 1

3L}), we have

lim
n→∞

∥xn − yn∥ = lim
n→∞

∥xn+1 − yn∥ = 0. (3.11)

This together with the fact ∥yn − yn−1∥ ≤ ∥yn − xn∥+ ∥xn − yn−1∥ gives

lim
n→∞

∥yn − yn−1∥ = 0.

Moreover, together with the fact the limit of {Φn(u)} exists, we get that limn→∞ ∥xn−u∥ exists
and further {xn} is bounded. Using this together with the fact that limn→∞ ∥xn − yn∥ = 0, we

see that {yn} is bounded. This together with the Lipschitz continuity of c′(·) and the fact that

{xn} is bounded deduces that {c′(xn)} is also bounded. 2
Now, we are in the position to establish the convergence of the Algorithm 3.1.

Theorem 3.6 Assume that Assumption 2.10 holds. Let S ̸= ∅, λ ∈ (0,min{ 1
L+2K , 1

3L}) with

K = K1K2 > 0 and {xn} and {yn} be the sequences generated by Algorithm 3.1. Then {xn}
weakly converges to a vector in S.

Proof From Lemma 3.5, we see that the sequence {xn} is bounded. Hence, there exists a

subsequence {xnk
} that weakly converges to x∗ ∈ H. Then, from the fact that limn→∞ ∥xn −

yn∥ = 0, we know that ynk
⇀ x∗, k → ∞. By using the definition of Cnk

and the fact that

ynk
∈ Cnk

, we obtain that

c(xnk
) + ⟨c′(xnk

), ynk
− xnk

⟩ ≤ 0.

From the fact {c′(xnk
)} is bounded, there exists M > 0 such that ∥c′(xnk

)∥ ≤ M . By using

Cauchy-Schwartz inequality, we have

c(xnk
) ≤ ∥c′(xnk

)∥∥ynk
− xnk

∥ ≤M · ∥ynk
− xnk

∥. (3.12)

Recall that c(·) is smooth. By using this together with the fact that c(·) is convex and Lemma

2.6, we get that c(·) is weakly sequential lower semicontinuous. It follows from (3.12) and the

facts that xnk
⇀ x∗ and limk→∞ ∥xnk

− ynk
∥ = 0, combining Definition 2.7, we have

c(x∗) ≤ lim inf
k→∞

c(xnk
) ≤ lim inf

k→∞
M · ∥ynk

− xnk
∥ = 0.

Hence, one has x∗ ∈ C.

Next, we show that x∗ ∈ S. Let

T (x) :=

{
F (x) +NC(x) x ∈ C;

∅ x ̸∈ C,
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with NC(x) being the normal cone of C at x; i.e.,

NC(x) := {ε ∈ H : ⟨ε, z − x⟩ ≤ 0, ∀z ∈ C}. (3.13)

It is well-known that NC is maximal monotone [15, Example 20.26]. Since F is monotone

and continuous, we know that F is also maximal monotone [15, Corollary 20.28]. Using this

together with the fact that the domain of F is H, from [15, Corollary 25.5], we obtain that T is

maximal monotone. For arbitrary (x, y) ∈ graT , by the definition of graT in Definition 2.8, we

have y ∈ T (x) = F (x) +NC(x), or equivalently, y − F (x) ∈ NC(x).

It follows from (3.13) and the fact x∗ ∈ C, we have

⟨y − F (x), x∗ − x⟩ ≤ 0, ∀(x, y) ∈ graT.

Hence, we see that

⟨y, x− x∗⟩ ≥ ⟨F (x), x− x∗⟩, ∀(x, y) ∈ graT. (3.14)

By using the definition of Tn and the fact x ∈ C ⊆ Tn, we obtain that

⟨xn − λF (yn−1)− yn, x− yn⟩ ≤ 0.

From the fact λ > 0, by rearranging the inequality above, we have

⟨F (yn−1), x− yn⟩ ≥
1

λ
⟨xn − yn, x− yn⟩. (3.15)

On the other hand, we have

⟨F (x), x− x∗⟩ =⟨F (x), x− yn⟩+ ⟨F (x), yn − x∗⟩

=⟨F (x)− F (yn), x− yn⟩+ ⟨F (yn)− F (yn−1), x− yn⟩+

⟨F (yn−1), x− yn⟩+ ⟨F (x), yn − x∗⟩

≥⟨F (yn)− F (yn−1), x− yn⟩+
1

λ
⟨xn − yn, x− yn⟩+ ⟨F (x), yn − x∗⟩, (3.16)

where the last inequality follows from the monotonicity of mapping F and the inequality (3.15).

Combining (3.14) and (3.16), for any (x, y) ∈ graT , we get that

⟨y, x− x∗⟩ ≥ ⟨F (yn)− F (yn−1), x− yn⟩+
1

λ
⟨xn − yn, x− yn⟩+ ⟨F (x), yn − x∗⟩. (3.17)

From the facts that the mapping F is Lipschitz continuous, limn→∞ ∥yn − yn−1∥ = 0 and

{yn} is bounded, we obtain that

⟨F (yn)− F (yn−1), x− yn⟩ → 0, n→∞. (3.18)

Similarly, from the facts that limn→∞ ∥xn − yn∥ = 0 and {yn} is bounded, we obtain that

⟨xn − yn, x− yn⟩ → 0, n→∞. (3.19)

Moreover, from the fact that ynk
⇀ x∗, we have

⟨F (x), ynk
− x∗⟩ → 0, k →∞. (3.20)
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Hence, from (3.18), (3.19) and (3.20), by passing limits in (3.17) along the subsequences, for any

fixed (x, y) ∈ graT , we see that

⟨y, x− x∗⟩ ≥ 0. (3.21)

Since T is a maximal monotone operator, (3.21) implies that 0 ∈ T (x∗). Consequently, one has

x∗ ∈ T−1(0) = S.

Finally, we show that {xn} has only one weak cluster point. To this end, supposing to the

contrary that x∗ ∈ S and x̄ ∈ S are two different weak cluster points of {xn}. Hence, there

exist two subsequences {xnk
} and {xmk

} weakly converging to x∗ and x̄, respectively. It follows

from the fact that the limit of {Φn(x
∗)} exists for any fixed x∗ ∈ S. Using this together with

the fact limn→∞ ∥xn − yn−1∥ = 0 and the definition of Φn(·), we get that for any fixed x∗ ∈ S,

limn→∞ ∥xn − x∗∥ exists. Moreover, together with Lemma 2.3, it follows that

lim
n→∞

∥xn − x∗∥ = lim
k→∞

∥xnk
− x∗∥ = lim inf

k→∞
∥xnk

− x∗∥

< lim inf
k→∞

∥xnk
− x̄∥ = lim

k→∞
∥xnk

− x̄∥

= lim
n→∞

∥xn − x̄∥ = lim
k→∞

∥xmk
− x̄∥

= lim inf
k→∞

∥xmk
− x̄∥ < lim inf

k→∞
∥xmk

− x∗∥

= lim
k→∞

∥xmk
− x∗∥ = lim

n→∞
∥xn − x∗∥.

We obtain an inconsistent inequality. Therefore, we have x∗ = x̄. 2
4. Concluding remarks

In this paper, we present a modified two-subgradient extragradient algorithm for solving

monotone and Lipschitz continuous variational inequalities with the feasible set being a level set

of a convex and smooth function. Under Assumption 2.10 (H1)–(H4), we show that the sequence

generated by MTSEGA is weakly convergent to the solution of Problem (1.1). The proposed

algorithm requires only one evaluation of F and two projections onto two different half-spaces

per iteration, respectively. Hence, we generalize some recent results in the literature. However,

how to ensure Assumption 2.10 (H4) is unknown. This is an interesting future research direction.
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