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Abstract Let G be simple graph with vertex set V and edge set E. In this paper, we

establish an interlacing inequality between the Aα eigenvalues of G and its subgraph G − U ,

where U ⊆ V . Moreover, as an application, this interlacing property can be used to deduce

some Aα spectral conditions concerning the independence number, cover number, Hamiltonian

property and spanning tree of a graph, respectively.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph

with vertex set V (G) and edge set E(G). For any vertex v ∈ V (G), let dG(v) and NG(v) (or

d(v) and N(v) for short) be the degree and the set of neighbors of v, respectively. Clearly,

dG(v) = |NG(v)|. We use G − v to denote the graph obtained by deleting v from G. Similarly,

for any subset U of V (G), G− U is the graph obtained by deleting the vertices in U from G. A

cycle C (or a path P ) in a graph G is called a Hamiltonian cycle (or a Hamiltonian path) of G

if C (or P ) contains all the vertices of G. A graph G is called Hamiltonian (or traceable) if G

has a Hamiltonian cycle (or path). A graph G is called Hamilton-connected if for each pair of

vertices in G there is a Hamiltonian path between them. A cycle C in G is said to be dominating

if V (G)− V (C) is independent. The connectivity, independence number and cover number of G

are denoted by κ(G), α′(G) and β(G), respectively. For any undefined notions, see Bondy and

Murty [1].

Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of vertex degrees

of G, respectively. The Laplacian and signless Laplacian matrices of G are defined as L(G) =

D(G) − A(G) and Q(G) = D(G) + A(G), respectively. For any α ∈ [0, 1], Nikiforov [2] defined

the Aα(G)-matrix of G as Aα(G) = αD(G) + (1 − α)A(G). In particular, A0(G) = A(G),

A 1
2
(G) = 1

2Q(G) and A1(G) = D(G). The eigenvalues, Laplacian eigenvalues, signless Laplacian
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and Aα eigenvalues of G are the eigenvalues of A(G), L(G), Q(G) and Aα(G), denoted by

ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G), µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0, q1(G) ≥ q2(G) ≥
· · · ≥ qn(G) and σ1(G) ≥ σ2(G) ≥ · · · ≥ σn(G), respectively. When only one graph G is under

consideration, we sometimes write ρi, µi, qi and σi instead of ρi(G), µi(G), qi(G) and σi(G) for

1 ≤ i ≤ n, respectively. The eigenvalues of A(G), L(G), Q(G) and Aα(G) have been studied

extensively. We refer the reader to Brouwer and Haemers [3] and Cvetković et al. [4] for literature

in this area.

The eigenvalues of an n×n real symmetric matrixM are denoted by λi(M), where we always

assume the eigenvalues to be arranged in nonincreasing order: λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M).

The following is a classical result.

Theorem 1.1 ([3]) Let M be an n×n real symmetric matrix. For an integer m with 1 ≤ m ≤ n,

let N be an m×m principal submatrix of M . Then for i = 1, 2, . . . ,m,

λi(M) ≥ λi(N) ≥ λi+n−m(M).

Let G be a graph of order n, and let H = G − U , where U ⊂ V (G) with |U | = k. Theorem

1.1 gives an interlacing property of the eigenvalues of G and the eigenvalues of G − U , that is

ρi(G) ≥ ρi(H) ≥ ρi+k(G) for i = 1, 2, . . . , n − k. In particular, when k = 1, then ρ1(G) ≥
ρ1(H) ≥ ρ2(G) ≥ · · · ≥ ρn−1(H) ≥ ρn(G). Theorem 1.1 does not directly apply to the (signless)

Laplacian matrix (or Aα-matrix) of G and H since the principal submatrices of a (signless)

Laplacian matrix (or Aα-matrix) may no longer be the (signless) Laplacian matrix (or Aα-

matrix) of a subgraph. However, the following result due to Wu et al. [5] reflects an interlacing

property for the Laplacian eigenvalues of G and H.

µi(G)− ω1 ≥ µi(H) ≥ µi+k(G)− ω2, i = 1, 2, . . . , n− k, (1.1)

where ω1 = minv∈V \U |NG(v) ∩ U | and ω2 = maxv∈V \U |NG(v) ∩ U |.
In particular, when k = 1, then

ω1 = min
v∈V \U

|NG(v) ∩ U | = 0

and

ω2 = max
v∈V \U

|NG(v) ∩ U | = 1.

(1.1) implies that

µi(G) ≥ µi(H) ≥ µi+1(G)− 1, i = 1, 2, . . . , n− 1,

which was obtained by Lotker in [6]. Moreover, for signless Laplacian eigenvalues, Wang and

Belardo [7] also established the interlacing property for signless Laplacian eigenvalues of G and

H when k = 1 as follows.

qi(G) ≥ qi(H) ≥ qi+1(G)− 1, i = 1, 2, . . . , n− 1. (1.2)

Motivated by the above mentioned recent results, in this paper, we further study the inter-

lacing property for Aα(G) eigenvalues of G and H, and establish the following result.
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Theorem 1.2 Let G be a graph of order n. For any U ⊆ V (G) with |U | = k, let H = G− U .

Then we have

σi(G)− αω1 ≥ σi(H) ≥ σi+k(G)− αω2, i = 1, 2, . . . , n− k, (1.3)

where ω1 = minv∈V \U |NG(v) ∩ U | and ω2 = maxv∈V \U |NG(v) ∩ U |.

Remark 1.3 For α = 0, Theorem 1.2 becomes the interlacing property for the adjacency matrix;

for k = 1, note that ω1 = minv∈V \U |NG(v)∩U | = 0 and ω2 = maxv∈V \U |NG(v)∩U | = 1. Then

Theorem 1.2 becomes

σi(G) ≥ σi(H) ≥ σi+1(G)− α, i = 1, 2, . . . , n− 1.

Recall that A 1
2
(G) = 1

2Q(G). We then have the following interlacing property for the signless

Laplacian eigenvalues of G and H, which is a direct consequence of Theorem 1.2.

Corollary 1.4 Let G be a graph of order n. For any U ⊆ V (G) with |U | = k, let H = G− U .

Then we have

qi(G)− ω1 ≥ qi(H) ≥ qi+k(G)− ω2, i = 1, 2, . . . , n− k, (1.4)

where ω1 = minv∈V \U |NG(v) ∩ U | and ω2 = maxv∈V \U |NG(v) ∩ U |.
Clearly, (1.2) is a special case of Corollary 1.4 when k = 1.

The rest of this paper is organized as follows: The proof of Theorem 1.2 is presented in

Section 2. In Section 3, as an application of Theorem 1.2, we use Theorem 1.2 to deduce

some Aα spectral conditions concerning the independence number, cover number, Hamiltonian

property and spanning tree of a graph, respectively.

2. Proof of Theorem 1.2

In order to give the proof of Theorem 1.2, the following preliminary results on real symmetric

matrices are needed. The following corollary immediately follows from Theorem 1.1.

Corollary 2.1 Let G be a graph of order n. For any v ∈ V (G), let Wv(G) be the principal

submatrix of Aα(G) obtained by deleting the row and the column corresponding to the vertex

v. Then

σ1(G) ≥ λ1(Wv(G)) ≥ σ2(G) ≥ · · · ≥ λn−1(Wv(G)) ≥ σn(G).

Lemma 2.2 ([8]) Let K = M +N , where K,M and N are three Hermitian matrices of order

n. Let λ1 ≥ λ2 ≥ · · · ≥ λn and η1 ≥ η2 ≥ · · · ≥ ηn be the eigenvalues of K and M , γ1 and γn be

the largest and smallest eigenvalues of N , respectively. Then for each i = 1, 2, . . . , n, we have

ηi + γn ≤ λi ≤ ηi + γ1.

Lemma 2.3 ( [8]) Let M , N be two n × n real symmetric matrices. Then for each integer

i = 1, 2, . . . , n, we have

max
r+s=n+i

{λr(M) + λs(N)} ≤ λi(M +N) ≤ min
r+s=1+i

{λr(M) + λs(N)}.
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We now give the proof of Theorem 1.2.

Proof of Theorem 1.2 For any U ⊆ V (G) with |U | = k, let WU (G), LU (G) and AU (G)

be the principal submatrices of Aα(G), L(G) and A(G) obtained by removing the rows and

columns of Aα(G), L(G) and A(G) that correspond to the vertices in U , respectively. Note that

Aα(G) = αD(G) + (1 − α)A(G) = αL(G) + A(G). Then we have WU (G) = αLU (G) + AU (G)

and Aα(G− U) = αL(G− U) + A(G− U). Let DU (G) = WU (G)− Aα(G− U). Then we have

DU (G) = WU (G) − Aα(G − U) = α[LU (G) − L(G − U)] since AU (G) = A(G − U). Note that

DU (G) is a diagonal matrix whose diagonal entry corresponding to v is α|NG(v) ∩ U |. Then by

Theorem 1.1, Lemmas 2.2 and 2.3, for each i = 1, 2, . . . , n− k, we have that

λi(Aα(G− U)) = λi(WU (G)−DU (G))

≤ min
r+s=1+i

{λr(WU (G)) + λs(−DU (G))}

≤ λi(WU (G)) + λ1(−DU (G))

= λi(WU (G))− λn−k(DU (G))

≤ σi(G)− min
v∈V \U

α|NG(v) ∩ U | = σi(G)− αω1,

λi(Aα(G− U)) = λi(WU (G)−DU (G))

≥ max
r+s=n−k+i

{λr(WU (G)) + λs(−DU (G))}

≥ λi(WU (G)) + λn−k(−DU (G))

= λi(WU (G))− λ1(DU (G))

≥ σi+k(G)− max
v∈V \U

α|NG(v) ∩ U | = σi+k(G)− αω2.

This completes the proof of Theorem 1.2. 2
3. Applications

As an application of Theorem 1.2, in this section, we present some results concerning the

Aα(G) eigenvalues of a graph and its structural parameters. We begin with the following result.

Theorem 3.1 Let G be a connected graph of order n with cover number β(G). Then

(1) For i = 1, 2, . . . , n− β(G), we have σi(G) ≥ α;

(2) For i = β(G) + 1, . . . , n, we have σi(G) ≤ αβ(G).

Proof Let U be a minimum vertex cover of G with |U | = β(G) = k. Note that σi(G− U) = 0

for i = 1, 2, . . . , n − k, ω1 = minv∈V \U |NG(v) ∩ U | ≥ 1 and ω2 = maxv∈V \U |NG(v) ∩ U | ≤ k.

Then Theorem 1.2 implies that

σi(G) ≥ αω1 = α min
v∈V \U

|NG(v) ∩ U | ≥ α and

σi+k(G) ≤ αω2 = α max
v∈V \U

|NG(v) ∩ U | ≤ kα.

This completes the proof. 2
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Recall that A 1
2
(G) = 1

2Q(G). The following corollary immediately follows from Theorem

3.1.

Corollary 3.2 Let G be a connected graph of order n with cover number β(G). Then

(1) For i = 1, 2, . . . , n− β(G), we have qi(G) ≥ 1;

(2) For i = β(G) + 1, . . . , n, we have qi(G) ≤ β(G).

Recall that A0(G) = A(G) when α = 0. In what follows, we consider the case 0 < α ≤ 1. We

begin with the following relation between the Aα eigenvalues of G and its independence number.

Theorem 3.3 Let G be a graph of order n with independence number α′. Then

α′ +
1

α
σn−α′+1 ≤ n.

Proof Suppose that I = {v1, v2, . . . , vα′} be an independent set of G and N = V (G) \ I =

{u1, u2, . . . , us}, where s = n− α′. Then by Theorem 1.2, we have

σs(G− u1) ≥ σs+1(G)− α,

σs−1(G− u1 − u2) ≥ σs(G− u1)− α,

σs−2(G− u1 − u2 − u3) ≥ σs−1(G− u1 − u2)− α,

...

σs−(s−1)(G− u1 − u2 − · · · − us) ≥ σs−(s−2)(G− u1 − u2 − · · · − us−1)− α.

Summing up the inequalities above, we then have

σ1(G− u1 − u2 − · · · − us) ≥ σs+1(G)− sα = σs+1(G)− (n− α′)α.

Note that σ1(G−u1−u2−· · ·−us) = 0 since there is no edge in the graph G−u1−u2−· · ·−us.

Thus σs+1(G) ≤ (n− α′)α. Namely, α′ + 1
ασn−α′+1 ≤ n, as desired. 2

Similarly, we have the following.

Corollary 3.4 Let G be a graph of order n with independence number α′. Then

α′ + qn−α′+1 ≤ n.

We now continue to use Theorem 3.3 to establish the following results on the Hamiltonian

properties and spanning trees of graphs, respectively.

Theorem 3.5 Let G be a graph of order n with connectivity κ.

(1) If n ≤ κ+ 1
ασn−κ, then G is Hamiltonian;

(2) If n ≤ κ+ 1
ασn−κ−1 + 1, then G is traceable;

(3) If n ≤ κ+ 1
ασn−κ+1 − 1, then G is Hamilton-connected.

Similarly, we have the following on the signless Laplacian eigenvalues of a graph.

Corollary 3.6 Let G be a graph of order n with connectivity κ.

(1) If n ≤ κ+ qn−κ, then G is Hamiltonian;

(2) If n ≤ κ+ qn−κ−1 + 1, then G is traceable;
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(3) If n ≤ κ+ qn−κ+1 − 1, then G is Hamilton-connected.

We now give an example to illustrate that our results in Theorem 3.5 are best possible.

Example 3.7 Recall that A 1
2
(G) = 1

2Q(G). We now consider α = 1
2 in the following.

(i) Let G be the non-Hamiltonian complete bipartite graph Kr,r+1 (r ≥ 2). Notice that

κ(G) = r and 1
ασn−κ = qn−κ = µn−κ = r. Thus n − 1 = 2r ≤ κ + 1

ασn−κ. Therefore (1) in

Theorem 3.5 is best possible.

(ii) Let G be the non-traceable complete bipartite graph Kr,r+2 (r ≥ 1). Notice that

κ(G) = r and 1
ασn−κ−1 = qn−κ−1 = µn−κ−1 = r. Thus n − 1 = 2r + 1 ≤ κ + 1

ασn−κ−1 + 1.

Therefore (2) in Theorem 3.5 is best possible.

(iii) Let G be the non-Hamiltonian complete bipartite graph Kr,r (r ≥ 3). Notice that

κ(G) = r and 1
ασn−κ+1 = qn−κ+1 = µn−κ+1 = r. Thus n − 1 = 2r − 1 ≤ κ + 1

ασn−κ+1 − 1.

Therefore (3) in Theorem 3.5 is best possible.

Theorem 3.8 Let G be a 2-connected triangle-free graph of order n with connectivity κ. If

n ≤ 2κ+ 1
ασn−2κ+2 − 2, then every longest cycle in G is dominating.

Theorem 3.9 Let G be a graph of order n with connectivity κ, where n ≥ κ+ k and k ≥ 2 is

an integer. If n ≤ (κ+ k− 1) + 1
ασn−(κ+k−1), then G has a spanning tree with at most k leaves.

Similarly, we have the following corollaries.

Corollary 3.10 Let G be a 2-connected triangle-free graph of order n with connectivity κ. If

n ≤ 2κ+ qn−2κ+2 − 2, then every longest cycle in G is dominating.

Corollary 3.11 Let G be a graph of order n with connectivity κ, where n ≥ κ+ k and k ≥ 2 is

an integer. If n ≤ (κ+ k − 1) + qn−(κ+k−1), then G has a spanning tree with at most k leaves.

In order to prove Theorems 3.5, 3.8 and 3.9, we need the following results.

Theorem 3.12 ([9]) Let G be a graph of order n with connectivity κ and independence number

α′.

(1) If α′ ≤ κ, then G is Hamiltonian;

(2) If α′ ≤ κ+ 1, then G is traceable;

(3) If α′ ≤ κ− 1, then G is Hamilton-connected.

Theorem 3.13 ([10]) Let G be a 2-connected triangle-free graph of order n with connectivity

κ and independence number α′. If α′ ≤ 2κ− 2, then every longest cycle in G is dominating.

Theorem 3.14 ([11]) Let G be a graph of order n with independence number α′ and k ≥ 2 be

an integer. If α′ ≤ k + κ− 1, then G has a spanning tree with at most k leaves.

Now we give the proofs of Theorems 3.5, 3.8 and 3.9, respectively.

Proof of Theorem 3.5 Let G be a graph satisfying the conditions in Theorem 3.5.

(1) If α′ ≤ κ, then Theorem 3.12 (1) implies that G is Hamiltonian. So we assume that

α′ ≥ κ+1, then there exists an independent set S in G such that |S| = κ+1. Applying Theorem



Deleting vertices and interlacing of Aα eigenvalues of a graph 461

3.3, we have that κ + 1 + 1
ασn−κ = κ + 1 + 1

ασn−(κ+1)+1 = |S| + 1
ασn−|S|+1 ≤ n, which is a

contradiction.

(2) If α′ ≤ κ + 1, then Theorem 3.12 (2) implies that G is traceable. So we assume that

α′ ≥ κ+2, then there exists an independent set S in G such that |S| = κ+2. Applying Theorem

3.3, we have that κ + 2 + 1
ασn−κ−1 = κ + 2 + 1

ασn−(κ+2)+1 = |S| + 1
ασn−|S|+1 ≤ n, which is a

contradiction.

(3) If α′ ≤ κ − 1, then Theorem 3.12 (3) implies that G is Hamilton-connected. So we

assume that α′ ≥ κ, then there exists an independent set S in G such that |S| = κ. Applying

Theorem 3.3, we have that κ+ 1
ασn−κ+1 = |S|+ 1

ασn−|S|+1 ≤ n, which is a contradiction. 2
Proof of Theorem 3.8 LetG be a graph satisfying the conditions in Theorem 3.8. If α′ ≤ 2κ−2,

then Theorem 3.13 implies that every longest cycle in G is dominating. So we assume that

α′ ≥ 2κ − 1, then there exists an independent set S in G such that |S| = 2κ − 1. Applying

Theorem 3.3, we have that 2κ− 1+ 1
ασn−2κ+2 = 2κ− 1+ 1

ασn−(2κ−1)+1 = |S|+ 1
ασn−|S|+1 ≤ n,

which is a contradiction. 2
Proof of Theorem 3.9 Let G be a graph satisfying the conditions in Theorem 3.9. If α′ ≤ κ+

k−1, then Theorem 3.14 implies that G has a spanning tree with at most k leaves. So we assume

that α′ ≥ κ + k, then there exists an independent set S in G such that |S| = κ + k. Applying

Theorem 3.3, we have that κ+ k+ 1
ασn−(κ+k−1) = κ+ k+ 1

ασn−(κ+k)+1 = |S|+ 1
ασn−|S|+1 ≤ n,

which is a contradiction. 2
4. Concluding remarks

Let G be a graph of order n, and let H = G − U , where U ⊂ V (G) with |U | = k. In this

paper, we deduce an interlacing inequality between the Aα eigenvalues of G and H, which we

refer to as the vertex version of the interlacing property. In fact, the following results due to

Mohar [12] and Chen et al. [13] reflect an edge version of the interlacing property.

Theorem 4.1 ([12,13]) Let G be a graph of order n, and let G′ = G−e, where e ∈ E(G). Then

µi(G) ≥ µi(G
′) ≥ µi+1(G), for each i = 1, 2, . . . , (n− 1).

θi−1(G) ≥ θi(G
′) ≥ θi+1(G), for each i = 1, 2, . . . , (n− 1),

where θ0(G) = 2, θn+1(G) = 0 and θ1(G) ≥ θ2(G) ≥ · · · ≥ θn−1(G) ≥ θn(G) = 0 are the

normalized Laplacian eigenvalues of G.

More generally, for any graph G of order n and F ⊂ E(G) with |F | = k, we would like to

know there is an edge version of the interlacing property on Aα eigenvalues of G and its subgraph

G− F .
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