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Abstract The resistance status of a vertex of a connected graph is the sum of the resistance

distance between this vertex and any other vertices of the graph. The minimum (maximum,

resp.) resistance status of a connected graph is the minimum (maximum, resp.) resistance status

of all vertices of the graph. In this paper, we determine the extremal values and corresponding

extremal graphs for the minimum (maximum, resp.) resistance status over all unicyclic graphs

of fixed order, and we also discuss the dependence of the minimum (maximum, resp.) resistance

status on the girth of unicyclic graphs.
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1. Introduction

We consider simple and undirected graphs. Let G be a connected graph of order n with vertex

set V (G). The distance between vertices u and v in G, denoted by dG(u, v), is the length of a

shortest path connecting u and v in G. The status [1,2] (the transmission [3,4], the distance [5],

or the total distance [6]) of a vertex u in G is defined as

sG(u) =
∑

v∈V (G)

dG(u, v).

The minimum status of G, denoted by s(G), is defined as [1, 7, 8]

s(G) = min{sG(u) : u ∈ V (G)}.

Similarly, the maximum status of G, denoted by S(G), is defined as [1, 4, 9]

S(G) = max{sG(u) : u ∈ V (G)}.

In the case of a communication network, sG(u) may be interpreted as the contribution of the

vertex u to the communicational cost of the network represented by the graph G (see [4]).

The minimum status may be used as a centrality measure [10], and it received much attention

[7, 8, 11–18]. The maximum status also received due attention [13–16]. We mention that, for
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a connected graph G of order n ≥ 2, 1
n−1s(G) and 1

n−1S(G) are called the proximity and the

remoteness of G, respectively, see, e.g., [13–16]. Related works may also be found in [19,20].

Let G be a connected graph. For u, v ∈ V (G), the resistance distance between u and v

in G, denoted by rG(u, v), is defined to be the effective resistance between the corresponding

nodes of the electrical network obtained so that its nodes correspond to the vertices of G and

each edge of G is replaced by a resistor of unit resistance, which is computed by the methods

of the theory of resistive electrical networks based on Ohm’s and Kirchhoff’s laws. Work on

the resistance distance dated back to Foster [21], who derived a simple sum rule for effective

resistances between nearest neighbor pairs of vertices. Klein and Randić [22] identified the

effective resistance between pairs of vertices as a distance function (or metric) on a graph. There

are various interpretations of the resistance distance based on notions of matrix, flows, least

square estimation, determinants, spanning forests, and a random walk [23, 24]. It is natural to

investigate the counterpart of the minimum (maximum, resp.) status using resistance distance.

This is what we do in this paper. The resistance status of a vertex u in G is defined as

rG(u) =
∑

v∈V (G)

rG(u, v).

The minimum resistance status of G, denoted by r(G), is defined as

r(G) = min{rG(u) : u ∈ V (G)}.

The maximum resistance status of G, denoted by R(G), is defined as

R(G) = max{rG(u) : u ∈ V (G)}.

A graph G is resistance-regular [25] if r(G) = R(G). It is well-known [22] that rG(u, v) ≤ dG(u, v)

with equality if and only if there is a unique path connecting u and v in G. So, for trees, the

resistance distance coincides to the ordinary distance. Thus, the ordinary minimum (maximum,

resp.) status and the minimum (maximum, resp.) resistance status are equal for trees. So we

study the minimum (maximum, resp.) resistance status of the connected graphs with cycles.

These parameters based on resistance distance may serve as alternate measures for complex

networks.

The rest of the paper is organized as follows. In the next section, we introduce some useful

lemmas, which are used to prove the results of the subsequent sections. We give lower and upper

bounds for minimum resistance status (maximum resistance status, resp.) of the unicyclic graphs

and characterize the extremal graphs in Section 3 (Section 4, resp.).

2. Preliminaries

A vertex of degree one in a graph is called a leaf or a pendant vertex. Denote by Sn and Pn

the star and the path of order n, respectively.

Let Cn be the cycle on n ≥ 3 vertices, whose vertices are labeled consecutively by v1, . . . , vn.
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For vi, vj ∈ V (Cn) with i < j, it is easy to see that

rCn(vi, vj) =
1

1
j−i +

1
n−(j−i)

=
(j − i)(n− (j − i))

n
,

which is strictly increasing for j − i ≤ ⌊n
2 ⌋. Evidently, Cn is resistance-regular, as for 1 ≤ i ≤ n,

we have

rCn(vi) = rCn(v1) =

n∑
j=2

rCn(v1, vj) =
n2 − 1

6
.

For a subset E1 of edges of a graph G, G − E1 denotes the subgraph obtained from G by

deleting all the edges in E1, and in particular, we write G − uv for G − {uv}. For a subset E2

of unordered vertex pairs of distinct vertices of G, if each element of E2 is not an edge of G,

then G + E2 denotes the graph obtained from G by adding all elements of E2 as edges, and in

particular, we write G+ uv for G+ {uv}. For convenience, for a tree G, we use |G| for |V (G)|.
Let G be a unicyclic graph and C the unique cycle of G. Then G − E(C) consists of |C|

components, each containing a vertex of C. If T is such a component containing vertex v of C,

then we say T is a branch of G at v. If G is a unicyclic graph on n vertices with girth g, then

we always denote by Cg = v1 . . . vgv1 the cycle of G and denote by Ti the branch of G at vi with

|Ti| = ti for i = 1, . . . , g.

Let T be a nontrivial tree. For u ∈ V (T ), denote by wT (u) the maximum number of vertices

of the components of T − u.

Let h(k) =
∑k

i=1 i =
k(k+1)

2 .

Lemma 2.1 ([12]) Let T be a tree on n ≥ 2 vertices and x a vertex of T . Then sT (x) = s(T )

if and only if wT (x) ≤ n
2 .

Lemma 2.2 ([11,13]) For a tree T on n vertices with v ∈ V (T ),

sT (v) ≤ S(T ) ≤ S(Pn) = h(n− 1)

with equalities if and only if T is a path and v is a terminal vertex.

3. Minimum resistance status

First, we consider the minimum resistance status of unicyclic graphs.

Lemma 3.1 Among all unicyclic graphs on n vertices with fixed girth g, the minimum resistance

status is minimized by a unicyclic graph G, with the following property that any branch of G is

a star with its center on the cycle.

Proof Let C be the unique cycle of G. Assume that T is any branch of G at v on C. Suppose

that T is not a star with center v. Let G′ = G − E(T ) + {vw : w ∈ V (T ) \ {v}}. It suffices to

show that r(G) > r(G′).

Let V = V (T ) \ {v} and V ′ = V (G) \ V . Obviously, |V | = |T | − 1 ≥ 2. Assume that
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r(G) = rG(u) with u ∈ V (G). If u ∈ V , then

rG(u)− rG′(v) =
∑

w∈V \{u}

dG(u,w) +
∑
w∈V ′

(dG(u, v) + rG(v, w))−
(
|V |+

∑
w∈V ′

rG(v, w)
)

≥
∑

w∈V \{u}

1 +
∑
w∈V ′

1− |V | = |V | − 1 + |V ′| − |V | = |V ′| − 1 > 0,

so rG(u) > rG′(v), implying that

r(G) = rG(u) > rG′(v) ≥ r(G′).

If u ∈ V ′, then

rG(u)− rG′(u) =
∑
w∈V

dG(v, w)− |V | > 0,

so r(G) = rG(u) > rG′(u) ≥ r(G′). 2
Denote by Sn,g the unicyclic graph obtained from a g-vertex cycle Cg by adding n− g leaves

adjacent to a common vertex. In particular, Sn,n is just Cn.

Theorem 3.2 Let G be a unicyclic graph on n vertices with fixed girth g. Then

r(G) ≥ n+
g2

6
− g − 1

6

with equality if and only if G ∼= Sn,g.

Proof It is trivial if g = n. Suppose that g < n. Suppose that G is a unicyclic graphs on n

vertices with girth g that minimizes the minimum resistance status.

By Lemma 3.1, each branch of G is a star with center on the cycle of G.

Assume that r(G) = rG(x). We claim that x lies on the cycle Cg of G. Otherwise, x is a leaf

of G in some branch T at v on Cg. Let V = V (T ) \ {v} and V ′ = V (G) \ V . Then

rG(x)− rG(v) =
∑

w∈V \{x}

2 +
∑
w∈V ′

1− |V | = 2(|V | − 1) + |V ′| − |V | = n− 2 > 0,

so rG(x) > rG(v), a contradiction to the choice of x. Thus, x lies on Cg. Assume that x = v1.

Then

r(G) =
∑

w∈V (G)\V (Cg)

rG(v1, w) + r(Cg)

=

g∑
j=1

∑
w∈V (Tj)\{vj}

(rG(v1, vj) + 1) + r(Cg)

=

g∑
j=1

(tj − 1)(rG(v1, vj) + 1) + r(Cg)

=

g∑
j=2

(tj − 1)rG(v1, vj) + n− g + r(Cg),

which is minimized if and only if t2 = · · · = tg = 1. Thus G has exactly one nontrivial branch
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that is a star with center on the cycle, and

r(G) = n− g + r(Cg) = n− g +
g2 − 1

6
= n+

g2

6
− g − 1

6
,

as desired. 2
Theorem 3.3 Let G be a unicyclic graph on n vertices, where n ≥ 3. Then

r(G) ≥ n− 5

3

with equality if and only if G ∼= Sn,3.

Proof Let g be the girth of G. By Theorem 3.2, we have

r(G) ≥ f(g) := n+
g2

6
− g − 1

6
= n+

(g − 3)2 − 10

6

with equality if and only if G ∼= Sn,g.

Since f(g) is strictly increasing for g ≥ 3, we have

r(G) ≥ f(g) ≥ f(3) = n− 5

3

with equalities if and only if G ∼= Sn,g with g = 3, i.e., G ∼= Sn,3. 2
Lemma 3.4 Among all unicyclic graphs on n vertices with fixed girth g, the minimum resistance

status is maximized by a unicyclic graph G, with the following property that each branch is a

path with a terminal vertex on the cycle.

Proof Let C be the unique cycle of G. Assume that T is any branch of G at v on C. Suppose

that T is not a path with v being a terminal vertex. Let G′ be the unicyclic graph obtained from

G by replacing T by a path T ′ such that v is a terminal vertex and V (T ′) = V (T ). It suffices to

show that r(G) < r(G′).

Let V = V (T ) and V ′ = V (G) \ V . Assume that r(G′) = rG′(u) with u ∈ V (G′).

If u ∈ V ′ ∪ {v}, then, as by comparing the structure of T and T ′ using Lemma 2.2, we have

sT (v) < h(|T | − 1) = sT ′(v),

so

rG(u)− rG′(u) =
∑
w∈V

dG(v, w)−
∑
w∈V

dG′(v, w) = sT (v)− sT ′(v) < 0,

implying that r(G) ≤ rG(u) < rG′(u) = r(G′).

Next, suppose that u ∈ V \ {v}. Then

rG′(u) =
∑
w∈V ′

(dG′(u, v) + rG′(v, w)) +
∑
w∈V

dG′(u,w)

= |V ′|dG′(u, v) +
∑
w∈V ′

rG(v, w) + sT ′(u)

≥ |V ′|dG′(u, v) +
∑
w∈V ′

rG(v, w) + s(T ′). (3.1)
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Assume that s(T ) = sT (x) with x ∈ V (T ). Then

rG(x) =
∑
w∈V ′

(dG(x, v) + rG(v, w)) +
∑
w∈V

dG(x,w)

= |V ′|dG(x, v) +
∑
w∈V ′

rG(v, w) + s(T ). (3.2)

Case 1. dG(x, v) ≤ dG′(u, v).

Note that s(T ) ≤ s(T ′) with equality if and only if T is also a path [13]. So, from (3.1) and

(3.2), we have rG′(u) ≥ rG(x). If rG′(u) > rG(x), then r(G′) > r(G).

Suppose that rG′(u) = rG(x). Then dG(x, v) = dG′(u, v), sT ′(u) = s(T ′), and s(T ′) = s(T ).

So T is a path but v is not its terminal vertex, and by Lemma 2.1, ωT (x) = ⌊ |T |
2 ⌋ = ωT ′(u). If

|T | is odd, then dG′(u, v) = |T |−1
2 > dG(x, v), which is a contradiction. So |T | is even. Then

dG′(u, v) = |T |
2 − 1, |T |

2 . So dG(x, v) =
|T |
2 − 1, |T |

2 . As v is not a terminal vertex of the path T ,

we have dG(x, v) ̸= |T |
2 , so dG(x, v) =

|T |
2 − 1. Let x′ be the neighbor of x in the path from v to

x in T . By Lemma 2.1, s(T ) = sT (x
′). As above, we have

rG(x
′) = |V ′|dG(x′, v) +

∑
w∈V ′

rG(v, w) + s(T ) < rG(x).

So rG′(u) = rG(x) > rG(x
′), implying that r(G′) > r(G).

Case 2. dG(x, v) > dG′(u, v).

Choose a vertex z in the path connecting v and x in T such that dG(z, v) = dG′(u, v) = k > 0.

Then

rG(z) =
∑
w∈V ′

(dG(z, v) + rG(v, w)) +
∑
w∈V

dG(z, w)

= |V ′|dG(z, v) +
∑
w∈V ′

rG(v, w) + sT (z).

Denote by z∗ the neighbor of z in the path connecting v and z in T . Let H and H∗ be the

components of T − zz∗ containing z and z∗, respectively. Let |H| = a and |H∗| = b. Note that

k ≤ b and a+ b = |T |.
Let B be the component of T − x containing z. Since sT (x) = s(T ), we have |B| ≤ |T |

2 by

Lemma 2.1. As H∗ is a proper subtree of B, we have b = |H∗| < |B| ≤ |T |
2 , a = |T | − b > |T |

2 ,

and k + 1 ≤ b+ 1 ≤ |T |
2 < a.

Let H∗∗ be the subtree of T induced by V (H∗) ∪ {z}. By Lemma 2.2, we have∑
w∈V (H)

dT (z, w) = sH(z) ≤ h(a− 1) and
∑

w∈V (H∗)

dT (z, w) = sH∗∗(z) ≤ h(b)

with equalities if and only if H and H∗∗ are both paths with a terminal vertex z. Thus

sT (z) =
∑

w∈V (H)

dT (z, w) +
∑

w∈V (H∗)

dT (z, w)

≤ h(a− 1) + h(b) ≤ h(a− 1) + h(k) +
a+b−k−1∑

i=a

i

= h(k) + h(|T | − k − 1) = sT ′(u),
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where equality holds in the first inequality if and only if H and H∗∗ are both paths with a

terminal vertex z, the second inequality follows as k ≤ b and k + 1 < a, and equality holds

if and only if b = k, or equivalently, H∗∗ is a path from v to z. Thus sT (z) < sT ′(u), as

sT (z) = sT ′(u) implies that T is a path with a terminal vertex v, which is a contradiction. So

r(G) ≤ rG(z) < rG′(u) = r(G′). 2
Denote by Pn,g by the n-vertex unicyclic graph obtained from the g-vertex cycle by attaching

a pendant path of length n− g to a vertex of this cycle.

Lemma 3.5 For n ≥ 4, we have r(Pn,3) = ⌊n2

4 ⌋ − 5
3 .

Proof Label the vertices of the unique branch of Pn,3 consecutively by w1, . . . , wn−2, where w1

lies on the triangle. Then, for 1 ≤ x ≤ n− 2, we have

rG(wx) = h(x− 1) + h(n− 2− x) + 2(x− 1 +
2

3
)

= x2 − (n− 3)x+
(n− 1)(n− 2)

2
− 2

3
.

Let f(x) be the above expression for rG(wx), where 1 ≤ x ≤ n − 2. Then f(x) is minimized

when x = x0 := ⌈n−3
2 ⌉. If n is odd, then f(x0) = f(n−3

2 ) = n2−5
4 − 2

3 = ⌊n2

4 ⌋ − 5
3 . If n is even,

then f(x0) = f(n−2
2 ) = n2−4

4 − 2
3 = ⌊n2

4 ⌋ − 5
3 . The result follows. 2

Lemma 3.6 Let G be a connected graph with e ∈ E(G) such that G − e is connected. Then

r(G) ≤ r(G− e).

Proof By Rayleigh’s monotonicity law [26], the pairwise resistance distance does not decrease

when edges are removed, so rG(w, z) ≤ rG−e(w, z) for all w, z ∈ V (G). Assume that r(G) =

rG(u) and r(G−e) = rG−e(v) for u, v ∈ V (G). Then r(G) = rG(u) ≤ rG(v) ≤ rG−e(v) = r(G−e),

as desired. 2
Theorem 3.7 Let G be a unicyclic graph on n vertices. If n = 3, 4, then

r(G) ≤ n2 − 1

6

with equality if and only if G ∼= Cn. If n ≥ 5, then

r(G) ≤ ⌊n
2

4
⌋ − 5

3

with equality if and only if G ∼= Pn,3.

Proof The result is trivial for n = 3. Suppose that n ≥ 4.

If G is a cycle, then r(G) = n2−1
6 .

Suppose that G is not a cycle. Let Yn be the tree of order n obtained from a path of order

n− 2 by attaching two pendant edges at an end vertex. By [18, Theorem 3.3], for any tree T of

order n that is not isomorphic to Pn or Yn, we have s(T ) ≤ ⌊n2

4 ⌋ − 2. If there is some edge e on

the unique cycle of G such that G− e ̸∼= Pn, Yn, so we have by Lemma 3.6 that

r(G) ≤ r(G− e) = s(G− e) ≤ ⌊n
2

4
⌋ − 2 < ⌊n

2

4
⌋ − 5

3
.
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Suppose that G− e ∼= Pn, Yn for any edge e on the unique cycle of G. Let g be the girth of

G. Then 3 ≤ g ≤ n− 1. Assume that dG(v1) ≥ 3. If g ≥ 5, then G− v3v4 ̸∼= Pn, Yn, which is a

contradiction. So g = 3, 4.

Case 1. g = 3.

Assume that t1 ≥ t2 ≥ t3. If t3 ≥ 2, then G − v1v2 ̸∼= Pn, Yn, which is a contradiction. So

t3 = 1. If t2 ≥ 2 and t1 ≥ 3, then G− v2v3 ̸∼= Pn, Yn, also a contradiction. We are left with two

possibilities: (i) t1 = t2 = 2, n = 5, and by a direct calculation, r(G) = 4 < ⌊n2

4 ⌋− 5
3 ; (ii) t2 = 1,

G ∼= Pn,3 and by Lemma 3.5, r(G) = ⌊n2

4 ⌋ − 5
3 .

Case 2. g = 4.

Assume that t1 ≥ t3 and t1 ≥ t2 ≥ t4. If t2, t3 ≥ 2, then G− v1v2 ̸∼= Pn, Yn, a contradiction.

So t2 = 1 or t3 = 1. Suppose that t2 = 1. Then t4 = 1. If t1 ≥ 3, then G − v2v3 ̸∼= Pn, Yn, a

contradiction. So t1 = 2. If t3 = 1, then n = 5, and r(G) = 7
2 < ⌊n2

4 ⌋ − 5
3 . If t3 = 2, then n = 6,

and r(G) = 11
2 < ⌊n2

4 ⌋− 5
3 . We are left with the case that t2 ≥ 2 and t3 = 1, so G−v2v3 ̸∼= Pn, Yn,

which is a contradiction.

Combining Cases 1 and 2, we have r(G) ≤ ⌊n2

4 ⌋ − 5
3 with equality if and only if G ∼= Pn,3.

Now the result follows by noting that ⌊n2

4 ⌋ − 5
3 < n2−1

6 for n = 4 and ⌊n2

4 ⌋ − 5
3 > n2−1

6 for

n ≥ 5. 2
4. Maximum resistance status

Now we turn to consider the maximum resistance status of unicyclic graphs.

Lemma 4.1 Among all unicyclic graphs on n vertices with fixed girth g, the maximum resistance

status is maximized by a unicyclic graph G, with the following property that each branch is a

path with a terminal vertex on the cycle.

Proof Let C be the unique cycle of G. Assume that T is any branch of G at v on C. Suppose

that T is not a path with v being a terminal vertex. Let G′ be the unicyclic graph obtained from

G by replacing T by a path T ′ such that v is a terminal vertex and V (T ′) = V (T ). It suffices to

show that R(G) < R(G′).

Let V = V (T ) \ {v} and V ′ = V (G) \ V . Assume that R(G) = rG(u) with u ∈ V (G).

If u ∈ V ′, then

rG(u)− rG′(u) =
∑
w∈V

dG(v, w)−
∑
w∈V

dG′(v, w) = sT (v)− h(|T | − 1) < 0,

so R(G) = rG(u) < rG′(u) ≤ R(G′).

If u ∈ V , then, denoting by z the leaf of G′ in T ′, we have dG(u, v) < dG′(z, v), so

rG(u)− rG′(z) =
∑

w∈V ′\{v}

(dG(u, v) + rG(v, w)) +
∑

w∈V (T )

dG(u,w)−

∑
w∈V ′\{v}

(dG′(z, v) + rG(v, w))−
∑

w∈V (T )

dG′(z, w)
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=
∑

w∈V ′\{v}

(dG(u, v)− dG′(z, v)) +
∑

w∈V (T )

dG(u,w)− h(|T | − 1)

<
∑

w∈V (T )

dG(u,w)− h(|T | − 1) ≤ 0,

implying that R(G) = rG(u) < rG′(z) ≤ R(G′). 2
Theorem 4.2 Let G be a unicyclic graph on n vertices with girth g. Then

R(G) ≤ n2 − n

2
− g2

3
+

g

2
− 1

6

with equality if and only if G ∼= Pn,g.

Proof The result is trivial if g = n, n−1. Suppose that g ≤ n−2. Suppose that G is a unicyclic

graph on n vertices with girth g that maximizes the maximum resistance status.

By Lemma 4.1, Ti is a path with a terminal vertex vi for each i = 1, . . . , g. Assume that

R(G) = rG(x) with x ∈ V (Ti) for some i. It is easy to see that if Ti is nontrivial, then x is a leaf

of G.

Assume that R(G) = rG(x) with x ∈ V (T1). If T1 is trivial, then x = v1, and if T1 is not

trivial, then it is easy to see that x is the leaf of G in T1. So

R(G) = h(t1 − 1) +

g∑
j=2

∑
w∈V (Tj)

(t1 − 1 + rG(v1, w))

= h(t1 − 1) +

g∑
j=2

∑
w∈V (Tj)

(t1 − 1 + rG(v1, vj) + dG(vj , w))

= h(t1 − 1) +

g∑
j=2

((t1 − 1 + rG(v1, vj))tj + h(tj − 1))

= h(t1 − 1) +

g∑
j=2

(t1 − 1)tj +

g∑
j=2

rG(v1, vj)tj +

g∑
j=2

h(tj − 1)

= h(t1 − 1) + (t1 − 1)(n− t1) +

g∑
j=2

rG(v1, vj)tj +

g∑
j=2

h(tj − 1).

We view the above expression for R(G) as a function of t1, . . . , tg. Suppose that ti ≥ 2 for

some i = 2, . . . , g. Denote by f(t1, ti) the expression for R(G). For any j = 2, . . . , g, we have

rG(v1, vj) =
(j−1)(g−j+1)

g ≤ g
4 . Then

f(t1 + 1, ti − 1)− f(t1, ti) = t1 + t1(n− t1 − 1)− (t1 − 1)(n− t1)− rG(v1, vi)− (ti − 1)

= n− t1 − (ti − 1)− rG(v1, vi) ≥ g − 1− rG(v1, vi)

≥ g − 1− g

4
> 0,

so f(t1+1, ti−1) > f(t1, ti), which is a contradiction to our choice of G. Thus, t2 = · · · = tg = 1

and t1 = n− g + 1. Moreover,

R(G) = h(n− g) + (n− g)(g − 1) + r(Cg)
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=
(n− g)(n+ g − 1)

2
+

g2 − 1

6

=
n2 − n

2
− g2

3
+

g

2
− 1

6
,

as desired. 2
Theorem 4.3 Let G be a unicyclic graph on n vertices, where n ≥ 3. Then

R(G) ≤ n2 − n

2
− 5

3

with equality if and only if G ∼= Pn,3.

Proof Denote by g the girth of G. By Theorem 4.2, we have

R(G) ≤ f(g) :=
n2 − n

2
− g2

3
+

g

2
− 1

6
=

n2 − n

2
− 1

3
(g − 3

4
)2 +

1

48

with equality if and only if G ∼= Pn,g. The result follows by noting that f(g) is strictly decreasing

for g ≥ 3. 2
Finally we consider lower bounds for the maximum resistance status.

Lemma 4.4 Among all unicyclic graphs on n vertices with fixed girth g, the maximum resistance

status is minimized by a unicyclic graph G, with the property that any branch of G is a star

with its center on the cycle.

Proof Let C be the unique cycle of G. Assume that T is any branch of G at v on C. Suppose

that T is not a star with center v. Let G′ = G − E(T ) + {vw : w ∈ V (T ) \ {v}}. It suffices to

show that R(G) > R(G′).

Let V = V (T ) \ {v} and V ′ = V (G) \ V . Obviously, |V | = |T | − 1 ≥ 2. Let z be a vertex in

T that is farthest from v. Evidently, z is a leaf of T . Then

rG(z) =
∑

w∈V \{z}

dG(z, w) +
∑
w∈V ′

(dG(z, v) + rG(v, w))

≥ 1 + 2(|V | − 2) +
∑
w∈V ′

(2 + rG(v, w))

= 2|V | − 3 + 2|V ′|+
∑
w∈V ′

rG(v, w).

Assume that R(G′) = rG′(u) with u ∈ V (G). If u ∈ V , then

rG′(u) =
∑

w∈V \{u}

dG′(u,w) +
∑
w∈V ′

(dG′(u, v) + rG′(v, w))

= 2(|V | − 1) + |V ′|+
∑
w∈V ′

rG(v, w),

so rG(z)− rG′(u) ≥ |V ′| − 1 > 0, implying that R(G) ≥ rG(z) > rG′(u) = R(G′). Suppose that

u ∈ V ′. Observe that dG(v, w) > 1 for some w ∈ V and rG(u,w) = rG′(u,w) for w ∈ V ′ \ {u}.



Minimum and maximum resistance status of unicyclic graphs 473

Then

rG(u)− rG′(u) =
∑
w∈V

(rG(u,w)− rG′(u,w)) +
∑

w∈V ′\{u}

(rG(u,w)− rG′(u,w))

=
∑
w∈V

(dG(v, w)− dG′(v, w)) =
∑
w∈V

(dG(v, w)− 1) > 0,

so R(G) ≥ rG(u) > rG′(u) = R(G′). 2
Lemma 4.5 Let G be a unicyclic graph on n vertices with girth 3, where n ≥ 4. Then

R(G) ≥ 2n− 11

3

with equality if and only if G ∼= Sn,3.

Proof Let G be a unicyclic graph on n vertices with girth 3 that minimizes the maximum

resistance status. By Lemma 4.4, each Ti is a star with center vi on the triangle of G for

i = 1, 2, 3. Assume that T1 is nontrivial. Let z be a leaf of G in T1. Then

rG(z) =
∑

w∈V (T1)

dG(z, w) +
∑

w∈V (T2)∪V (T3)

rG(z, w)

= 1 + 2(t1 − 2) + (1 +
2

3
) · 2 + (2 +

2

3
) · (t2 + t3 − 2)

= 2(t1 + t2 + t3)− 5 +
2

3
(t2 + t3)

= 2n− 5 +
2

3
(t2 + t3) ≥ 2n− 11

3

with equality if and only if t2 = t3 = 1, i.e., G ∼= Sn,3. It is easy to see that rG(v1) < rG(z). By

direct calculation, we have

rG(v2) =
32 − 1

6
+ t2 − 1 + (1 +

2

3
)(t1 + t3 − 2) = n− 3 +

2

3
(t1 + t3).

Then

rG(z)− rG(v2) = 2n− 5− (n− 3) +
2

3
(t2 + t3 − t1 − t3) = n− 2 +

2

3
(t2 − t1)

≥ n− 2 +
2

3
(1− (n− 2)) =

n

3
> 0,

i.e., rG(v2) < rG(z). Similarly, rG(v3) < rG(z). So R(G) cannot be achieved by v1, v2, v3. Thus

R(G) ≥ rG(z) ≥ 2n− 11
3 with equality if and only if G ∼= Sn,3. 2

Lemma 4.6 Let G be a non-cycle unicyclic graph on n vertices with girth at least four. Then

R(G) > 2n− 11
3 .

Proof Let G be a non-cycle unicyclic graph on n vertices with girth at least four that minimizes

the maximum resistance status. Let g be the girth of G. By Lemma 4.4, each branch Ti is a star

with center vi for i = 1, . . . , g. Assume that T1 is nontrivial. Let z be a leaf of T1. Observe that
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g−1
g > 2

3 and (j−1)(g−j+1)
g + dG(vj , w) ≥ 1 for 3 ≤ j ≤ g − 1 and w ∈ V (Tj). Then

rG(z) =
∑

w∈V (T1)

dG(z, w) +
∑

w∈V (T2)∪V (Tg)

rG(z, w) +

g−1∑
j=3

∑
w∈V (Tj)

rG(z, w)

=1 + 2(t1 − 2) + (1 +
g − 1

g
) · 2 + (2 +

g − 1

g
) · (t2 + tg − 2)+

g−1∑
j=3

∑
w∈V (Tj)

(
1 +

(j − 1)(g − j + 1)

g
+ dG(vj , w)

)
>1 + 2(t1 − 2) + (1 +

2

3
) · 2 + 2(t2 + tg − 2) + 2

g−1∑
j=3

tj

=1 +
10

3
+ 2(n− 4) = 2n− 11

3
,

as desired. 2
Theorem 4.7 Let G be a unicyclic graph on n ≥ 3 vertices. If n ≤ 9, then

R(G) ≥ n2 − 1

6

with equality if and only if G ∼= Cn. If n ≥ 10, then

R(G) ≥ 2n− 11

3

with equality if and only if G ∼= Sn,3.

Proof If G is a cycle, then R(G) = n2−1
6 . Otherwise, by Lemmas 4.5 and 4.6, R(G) ≥ 2n− 11

3

with equality if and only if G ∼= Sn,3. The result follows by noting that n2−1
6 < 2n− 11

3 for n ≤ 9

and n2−1
6 > 2n− 11

3 for n ≥ 10. 2
5. Concluding remarks

Aouchiche and Hansen studied in [14] the relationship between minimum (maximum, resp.)

status and the girth of connected graphs. This paper extends the results in [14] by exploring the

unicyclic graphs with given order and girth that minimize/maximize the minimum (maximum,

resp.) resistance status. As consequences, we determine the minimum and maximum for the

minimum (maximum, resp.) resistance status among unicyclic graphs of given order and char-

acterize the extremal graphs.
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