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Abstract In this paper, we introduce a class of the univalent sense-preserving harmonic func-

tions associated with Ruscheweyh derivatives. By establishing the extremal theory, we obtain

the sharp coefficients bounds, sharp growth theorems and sharp distortion theorems for the class.

The radius equation between this class and a known class of harmonic functions is given. Also,

we investigate the results of modified-Hadamard product for this class.
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1. Introduction

A complex valued continuous function f = u+ iv is harmonic in a simply connected domain

D ⊂ C if both u and v are harmonic in D. In fact, any complex-valued harmonic function f in

D can be uniquely represented as f = h + g, where h and g are analytic in D. We call h the

analytic part and g the co-analytic part of f . Moreover, Lewy [1] showed that harmonic function

f is locally univalent and sense-preserving in the open unit disk U = {z ∈ C : |z| < 1} if and

only if |h′(z)| > |g′(z)|, z ∈ U. Let S be the class of univalent analytic function in U and let H
be the family of continuous complex valued functions which are harmonic in U, where

H =
{
f : f = h+ g, f = z +

∞∑
k=2

akz
k +

∞∑
k=1

bkzk, h(0) = fz(0) − 1 = 0
}
. (1.1)

In particular, if b1 = g′(0) = 0, then H ≡ H0. It is obvious that H0 ⊂ H. Denote by SH, the

subclass of H consisting of univalent and sense-preserving harmonic mappings f = h + g in U.

Also, let SH0 = {f ∈ SH : g′(0) = fz(0) = 0}. The family SH0 is known to be compact.

If f and g are analytic in U, we say that f is subordinate to g, written f(z) ≺ g(z), provided

there exists an analytic function w(z) defined on U with w(0) = 0 and |w(z)| < 1 satisfying

f(z) = g(w(z)) .
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In [2], Ruscheweyh introduced an operator Dm
S : S → S as

Dm
S (f)(z) =

z(zm−1f(z))(m)

m!
, m ∈ N = {0, 1, 2, . . .}, z ∈ U.

Comparing with the Ruscheweyh operator in analytic functions case, Dziok-Darus-Sokó l-Bulboaca

[3] constructed a new linear operator Dm
H0

: H0 → H0 by [4]

Dm
H0

(f)(z) = Dm
H0

(h)(z) + (−1)mDm
H0

(g)(z). (1.2)

Using (1.1) and (1.2), it is easy to see

Dm
H0

(f)(z) = z +
∞∑
k=2

U(k,m)akz
k + (−1)m

∞∑
k=2

U(k,m)bkzk, z ∈ U, (1.3)

where

U(k, 0) = 1, U(k,m) =
k(k + 1) · · · (k +m− 1)

m!
, m ∈ N− {0}. (1.4)

Recently, Dziok [4] extended some results with respect to harmonic starlike functions and convex

functions by the operator Dm
H0

.

Motivated by Dziok [4] and Yaguchi-Sekine-Saitoh-Owa et al. [5], we introduce the following

subclass of H.

Definition 1.1 If −1 ≤ A < B ≤ 1, 0 ≤ α ≤ 1, m1,m2 ∈ N− {0} and f = h+ g ∈ SH0 , then

f ∈ Gm1,m2

H0
(A,B) ⇔

αDm1

H0
(f)(z) + (1 − α)Dm2

H0
(f)(z)

z
≺ 1 +Az

1 +Bz
, z ∈ U.

Remark 1.2 (i) We note that the m1 and m2 can be adjusted arbitrarily in Definition 1.1, e.g.,

choosing m1 = 1, m2 = 2, we have f = h+ g ∈ G1,2
H0

(A,B)

⇔ α(zh′(z) − zg′(z)) + (1 − α)(zh′(z) + z2h′′(z) + zg′(z) + z2g′′(z)

z
≺ 1 +Az

1 +Bz
, z ∈ U.

(ii) Let φ = U + iV be the subclass of H, where

U(z) =
∞∑
k=0

ukz
k, V(z) =

∞∑
k=1

vkz
k, z ∈ U.

A function f ∈ H of the form (1.1) has coefficients correlated with the function φ, if

akuk = −|ak||uk|, bkvk = −|bk||vk|, k ∈ N. (1.5)

Let T m be the class of functions f ∈ H with coefficients correlated with respect to the function

φ(z) =
z

(1 − z)m+1
+ (−1)m

z

(1 − z)m+1
, m ∈ {0, 1, 2, . . .}, z ∈ U. (1.6)

We define the class Gm1,m2

HT
(A,B) = Gm1,m2

H0
(A,B)

∩
T m.

(iii) In particular, if taking α = 1 and m1 = m, then the class Gm,m2

H0
(A,B) ≡ Rm

H(A,B)

was defined by Dziok [4].

Let the topology on H be given by a metric ρ which is equivalent to the topological of uniform

convergence on compact subsets, where the ρ is determined as

ρ(f, g) =
∞∑
k=1

1

2k
∥f − g∥k

1 − ∥f − g∥k
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whenever f and g belong to H, and ∥f∥k = max{|f(z)| : |z| = rk, 0 < rn < 1, limk→∞ rk = 1}.

It follows from theorems of Weierstrass and Montel that this topology space is complete [6]. If

F ∈ H, then F is called locally uniformly bounded if there is a positive constant M such that

|f(z)| ≤M whenever f ∈ F (see [7]). Further, F ⊂ H is compact if and only if F is closed and

locally uniformly bounded. Denote by HF the closed convex hull of F , where

HF =
{ ∞∑

k=1

tkfk, fk ∈ F , tk ≥ 0,
∞∑
k=1

tk = 1
}
.

Let F be a nonempty subset of SH0 . A point f ∈ F is called an extreme point of F provided

that f = tg + (1 − t)h, where t ∈ (0, 1), g, h ∈ F , implies f = g = h. A point g ∈ F is called a

support point of F if there exists a continuous linear functional L : SH0 → C such that ℜL is

nonconstant on F and

ℜL(g) = max{ℜL(h) : h ∈ F}.

We denote by EF and suppF the subsets of F consisting of extreme points of F and support

points of F , respectively [6, 8].

Establishing various properties of classes of harmonic functions has attracted the attention of

many mathematicians [9–11], and interest in the study of univalent harmonic functions prompted

the publication of the articles [12–20]. In this paper, we organize the contents as follows. In

Section 2, two important lemmas are given, which help to investigate our main results. In Section

3.1, we get the extreme points set of the class Gm1,m2

HT
(A,B), and apply the extremal theory to

discuss some geometric properties. In Section 3.2, we obtain the radius equation from the class

R1
H(A,B) to the class G1,2

HT
(A,B). In Section 3.3, we shall give the result of modified-Hadamard

product associated with Gm1,m2

HT
(A,B).

2. Preliminaries

The following lemmas are needed.

Lemma 2.1([6]) Let X be a locally convex linear topological space and let F be a compact

subset of X.
(1) If F is non-empty, then EF is non-empty.

(2) HEF=HF .

(3) If HF is compact, then EHF ⊂ F .
(4) If J is a real-valued, continuous, convex functional on HF , then

max{J(f) : f ∈ HF} = max{J(f) : f ∈ F} = max{J(f) : f ∈ EHF}.

Lemma 2.2 Let f ∈ T m. Then f ∈ Gm1,m2

HT
(A,B) if and only if the condition

∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|) ≤
B −A

1 +B
(2.1)

holds true, where U(k,m1) and U(k,m2) are defined by (1.4).
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Proof With the similar approach as in [4, Theorem 7], we can obtain the necessary condition.

Here, we only need to prove the sufficient condition. Since f ∈ Gm1,m2

HT
(A,B), by (1.3) and

Definition 1.1, then it is easy to see

|G1(z)

G2(z)
| < 1, (2.2)

where

G1(z) = −
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)]akz
k−

∞∑
k=2

[(−1)m1αU(k,m1) + (−1)m2(1 − α)U(k,m2)]bkz
k,

G2(z) =(B −A)z +B
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)]akz
k+

B

∞∑
k=2

[(−1)m1αU(k,m1) + (−1)m2(1 − α)U(k,m2)]bkz
k.

Now, taking 0 < z = r < 1 in (2.2) and using the (1.5), (1.6), then we have

∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|)rk−1

(B −A) −B
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|)rk−1

< 1. (2.3)

For 0 < r < 1, setting

G3(r) = (B −A) −B
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|)rk−1,

then we can know that the function G3(r) is increasing in r, thus,

G3(r) > G3(0) = B −A > 0.

By (2.3), we have

∞∑
k=2

(1 +B)[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|)rk−1 < B −A. (2.4)

Taking r → 1 in (2.4), we complete the proof. 2
3. Main results

In these sections from 3.1 to 3.3, we give the main results for the class Gm1,m2

HT
(A,B).

3.1. Applications to extremal theory

In this section, using Lemmas 2.1 and 2.2, we discuss the sharp coefficients bounds, sharp

growth theorems and distortion theorems for the subclass Gm1,m2

HT
(A,B) by using the extremal

theory.

Theorem 3.1 EGm1,m2

HT
(A,B) = W = S1 ∪ S2, where S1 = {h1(z), h2(z), . . . , hk(z), . . .}, S2 =
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{g2(z), g3(z), . . . , gk(z), . . .}, z ∈ U and
hk(z) = z, k = 1,

hk(z) = z − B −A

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
zk, k ∈ {2, 3, . . .},

gk(z) = z − B −A

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
zk, k ∈ {2, 3, . . .}.

Proof To complete the proof, we divide the process into three steps:

Step 1. First, we show that the class Gm1,m2

HT
(A,B) is convex subset of H0. Suppose that

fi ∈ Gm1,m2

HT
(A,B), 0 ≤ λ ≤ 1 and

fi(z) = z +
∞∑
k=2

ak,iz
k +

∞∑
k=2

bk,iz
k, i = 1, 2, z ∈ U.

Then we can know

λf1(z) + (1−λ)f2(z) = z+
∞∑
k=2

[λak,1 + (1−λ)ak,2]zk +
∞∑
k=2

[λbk,1 + (1−λ)bk,2]zk, z ∈ U. (3.1)

In the view of Lemma 2.2 and (3.1), we have

∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)][|λak,1 + (1 − λ)ak,2| + |λbk,1 + (1 − λ)bk,2|]

≤ λ
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak,1| + |bk,1|)+

(1 − λ)
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak,2| + |bk,2|)

≤ λ
B −A

1 +B
+ (1 − λ)

B −A

1 +B
=
B −A

1 +B
, (3.2)

Eq. (3.2) makes sure that the function λf1 + (1 − λ)f2 ∈ Gm1,m2

HT
(A,B). Hence, the class

Gm1,m2

HT
(A,B) is convex.

Step 2. Next, we show that the class Gm1,m2

HT
(A,B) is compact subset of H0. Suppose that

f ∈ Gm1,m2

HT
(A,B), 0 < |z| = r < 1, and

f(z) = z +

∞∑
k=2

akz
k +

∞∑
k=2

bkz
k, z ∈ U.

Then we conclude that

|f(z)| =
∣∣∣z +

∞∑
k=2

akz
k +

∞∑
k=2

bkz
k
∣∣∣ ≤ r +

∞∑
k=2

(|ak| + |bk|)rk

≤ r +

∞∑
k=2

[αk + (1 − α)k)](|ak| + |bk|)rk

≤ r +
∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|) ≤ r +
B −A

1 +B
. (3.3)

Thus, (3.3) implies that the class Gm1,m2

HT
(A,B) is locally uniformly bounded. Thus, we need to

prove it is closed.
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If {fj}∞j=1 ⊂ Gm1,m2

HT
(A,B), fj(z) → f(z), j → ∞, where

fj(z) = z +

∞∑
k=2

ak,jz
k +

∞∑
k=2

bk,jz
k, z ∈ U (3.4)

and

f(z) = z +
∞∑
k=2

akz
k +

∞∑
k=2

bkz
k, z ∈ U. (3.5)

Hence using (3.4) and (3.5), we have ak,j → ak, bk,j → bk, j → ∞. Since fj ∈ Gm1,m2

HT
(A,B),

following Lemma 2.2, we obtain

∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak,j | + |bk,j |) ≤
B −A

1 +B
. (3.6)

Taking j → ∞ in (3.6), it gives that

∞∑
k=2

[αU(k,m1) + (1 − α)U(k,m2)](|ak| + |bk|) ≤
B −A

1 +B
. (3.7)

Eq. (3.7) implies f ∈ Gm1,m2

HT
(A,B). Therefore, the class Gm1,m2

HT
(A,B) is closed.

Step 3. Finally, we shall give the extreme points for Gm1,m2

HT
(A,B). Let any gk(z) ∈ W,

k ∈ {2, 3, . . .} and define the following equality

gk = tG1(z) + (1 − t)G2(z), 0 < t < 1, (3.8)

where

gk(z) = z − B −A

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
zk ∈ W (3.9)

and

Gj(z) =z +
∞∑
k=2

ak,iz
k +

∞∑
k=2

bk,iz
k

=z −
∞∑
k=2

|ak,i|zk −
∞∑
k=2

|bk,i|zk ∈ Gm1,m2

HT
(A,B), i = 1, 2. (3.10)

By (3.8)–(3.10), it is easy to know that

B −A

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
= t|bk,1| + (1 − t)|bk,2|. (3.11)

Therefore, (3.11) and Lemma 2.2 imply that

bk,1 = bk,2 =
B −A

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
, k ∈ {2, 3, . . .}.

Moreover, we can note that ak,1 = ak,2 = 0, this gives us gk ∈ EGm1,m2

HT
(A,B). Similarly, we can

verify that the functions hk(z) ∈ EGm1,m2

HT
(A,B). Thus, W ⊂ EGm1,m2

HT
(A,B).

On the other hand, it is easy to see W is compact and Gm1,m2

HT
(A,B) = HW. Thus, by

Lemma 2.1, we have EGm1,m2

HT
(A,B) = EHW ⊂ W. So EGm1,m2

HT
(A,B) = W. 2
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Corollary 3.2 Let the function f(z) ∈ Gm1,m2

HT
(A,B) be given by (ii) in Remark 1.2. Then

|ak| ≤
B −A

(1 +B)α(m1 + 1) + (1 − α)(m2 + 1)
, k ∈ {2, 3, . . .},

|bk| ≤
B −A

(1 +B)α(m1 + 1) + (1 − α)(m2 + 1)
, k ∈ {2, 3, . . .}.

The result are sharp, and the extremal functions are defined by h2 and g2 as Theorem 3.1.

Proof For each fixed k ∈ {2, 3, . . .}, define the following real-valued continuous functionals

J(f) = |ak|, J̃(f) = |bk|, f ∈ Gm1,m2

HT
(A,B). (3.12)

It is easy to know that J and J̃ are convex on Gm1,m2

HT
(A,B). Thus, in view of Lemma 2.1 and

Theorem 3.1, we have

max{J(f) : f ∈ Gm1,m2

HT
(A,B)} = max{|ak| : f ∈ HW} = max{|ak| : f ∈ W} (3.13)

and

max{J̃(f) : f ∈ Gm1,m2

HT
(A,B)} = max{|bk| : f ∈ HW} = max{|bk| : f ∈ W}. (3.14)

By (3.13) and (3.14), then

J(f)f∈W = J̃(f)f∈W = |ak| = |bk| =
B −A

(1 +B)αU(k,m1) + (1 − α)U(k,m2)

≤ B −A

(1 +B)αU(2,m1) + (1 − α)U(2,m2)
=

B −A

(1 +B)α(m1 + 1) + (1 − α)(m2 + 1)
.

This completes the proof of Corollary 3.2. 2
Corollary 3.3 If the function f(z) ∈ Gm1,m2

HT
(A,B), |z| = r < 1, z ∈ U, then

Y1 ≤ |f(z)| ≤ Y2,

where

Y1 = r − B −A

(1 +B)α(m1 + 1) + (1 − α)(m2 + 1)
r2,

Y2 = r +
B −A

(1 +B)α(m1 + 1) + (1 − α)(m2 + 1)
r2.

The results are sharp, and the extremal functions are defined by h2 and g2 as Theorem 3.1.

Proof The proof is similar to the case in Corollary 3.2, we omit it. 2
Corollary 3.4 If the function f(z) ∈ Gm1,m2

HT
(A,B), |z| = r < 1, z ∈ U, and N ∋ m ≤

max{m1,m2}, then
Y3 ≤ |Dm

H(f)(z)| ≤ Y4,

where

Y3 = r − (B −A)U(k̂,m)

(1 +B)αU(k̂,m1) + (1 − α)U(k̂,m2)
rk̂,
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Y4 = r +
(B −A)U(k̂,m)

(1 +B)αU(k̂,m1) + (1 − α)U(k̂,m2)
rk̂.

The results are sharp, and the extremal functions are defined by hk̂ and gk̂ as Theorem 3.1. The

k̂ is given by the following (3.16).

Proof Define the following real-valued continuous functionals

J(f) = |Dm
H0

(f)(z)|, f ∈ Gm1,m2

HT
(A,B), z ∈ U.

It is easy to know that J is convex on Gm1,m2

HT
(A,B). Thus, in view of Lemma 2.1 and Theorem

3.1, we have

max{J(f) : f ∈ Gm1,m2

HT
(A,B)} = max{|Dm

H0
(f)(z)| : f ∈ HW}

= max{|Dm
H0

(f)(z)| : f ∈ W}. (3.15)

By (3.15), then

M1 ≤ J(f)f∈W = |Dm
H0

(hk)(z)| = |Dm
H0

(gk)(z)| ≤ M2,

where

M1 = r − (B −A)U(k,m)

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
rk,

M2 = r +
(B −A)U(k,m)

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
rk.

We define the sequence {ζmk } as follows:

ζmk =
(B −A)U(k,m)

(1 +B)αU(k,m1) + (1 − α)U(k,m2)
rk, k ∈ {2, 3, . . .}.

Since m ≤ max{m1,m2} and 0 ≤ r < 1, it is easy to prove that ζmk → 0 as k → ∞, which

implies that there is a k̂ ∈ {2, 3, . . .} such that

ζm
k̂

= max{ζmk : k = 2, 3, . . .}. (3.16)

This completes the proof of Corollary 3.4. 2
3.2. Radius equation

In this section, we discuss the radius equation between R1
H(A1, B1) and G1,2

HT
(A2, B2).

Theorem 3.5 Let 0 ≤ α ≤ 1, −1 ≤ Ai < Bi ≤ 1 (i = 1, 2). If f ∈ R1
H(A1, B1) and x are some

complex numbers with 0 < |x| < 1, then 1
xf(xz) ∈ G1,2

HT
(A2, B2) for 0 < |x| ≤ |x0|, where |x0| is

the smallest positive root of the equation

F (|x|) =

√
B1 −A1

1 +B1

α|x|
√

2 − |x|2
1 − |x|2

− B2 −A2

1 +B2
+√

B1 −A1

1 +B1

(1 − α)|x|
√

18 − 24|x|2 + 16|x|4 − 4|x|6
2(1 − |x|2)2

= 0.
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Proof Suppose that f(z) = z +
∑∞

k=2 akz
k +

∑∞
k=2 bkz

k ∈ R1
H(A1, B1). Then for complex

numbers x (0 < |x| < 1), we may write

1

x
f(xz) = z +

∞∑
k=2

akx
k−1zk +

∞∑
k=2

bkx
k−1zk, z ∈ U.

In order to prove that 1
xf(xz) ∈ G1,2

HT
(A2, B2), by applying the Lemma 2.2, it needs to show that

W =

∞∑
k=2

[
αk +

1 − α

2
k(k + 1)

]
|x|k−1(|ak| + |bk|) ≤

B2 −A2

1 +B2
. (3.17)

With the aid of the Cauchy-Schwarz inequality, we have

W =
∞∑
k=2

[
αk +

1 − α

2
k(k + 1)

]
|x|k−1(|ak| + |bk|)

=α
∞∑
k=2

k|x|k−1(|ak| + |bk|) +
1 − α

2

∞∑
k=2

k(k + 1)|x|k−1(|ak| + |bk|)

≤ α

|x|

( ∞∑
k=2

k|x|2k
) 1

2
( ∞∑

k=2

k(|ak| + |bk|)2
) 1

2

+

1 − α

2|x|

( ∞∑
k=2

k(k + 1)2|x|2k
) 1

2
( ∞∑

k=2

k(|ak| + |bk|)2
) 1

2

(3.18)

Putting y = |x|2, then we have the following important computations:

(i) Let
∞∑
k=2

k|x|2k =
∞∑
k=2

kyk ≡ S1(y).

Then

S1(y) = y
d

dy

( ∞∑
k=2

yk
)

= y
d

dy
(
y2

1 − y
) =

y2(2 − y)

(1 − y)2
. (3.19)

(ii) Let
∞∑
k=2

k(k + 1)2|x|2k =
∞∑
k=2

k(k + 1)2yk ≡ S2(y).

Because
∞∑
k=2

(k + 1)yk =
∞∑
k=2

kyk +
∞∑
k=2

yk =
y2(2 − y)

(1 − y)2
+

y2

1 − y
=
y2(3 − 2y)

(1 − y)2
,

so, we can know that

S2(y) =
d

dy

[
y2

d

dy

( ∞∑
k=2

(k + 1)yk
)]

=
d

dy

(6y3 − 6y4 + 2y5

(1 − y)3
)

=
y2(18 − 24y + 16y2 − 4y3)

(1 − y)4
. (3.20)

Furthermore, since f ∈ R1
H(A1, B1), by [4, Theorem 9], we have

∞∑
k=2

k(|ak| + |bk|) ≤
B1 −A1

1 +B1
. (3.21)
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Thus, following (3.18)–(3.21), we can obtain that

W =
∞∑
k=2

[
αk +

1 − α

2
k(k + 1)

]
|x|k−1(|ak| + |bk|) ≤

√
B1 −A1

1 +B1
α
|x|

√
2 − |x|2

1 − |x|2
+√

B1 −A1

1 +B1

1 − α

2

|x|
√

18 − 24|x|2 + 16|x|4 − 4|x|6
(1 − |x|2)2

. (3.22)

In order to prove (3.17), then one needs to consider the complex number x (0 < |x| < 1) such

that√
B1 −A1

1 +B1
α
|x|

√
2 − |x|2

1 − |x|2
+

√
B1 −A1

1 +B1

1 − α

2

|x|
√

18 − 24|x|2 + 16|x|4 − 4|x|6
(1 − |x|2)2

=
B2 −A2

1 +B2
.

Hence, we define the following function with |x| by

F (|x|) =

√
B1 −A1

1 +B1
α
|x|

√
2 − |x|2

1 − |x|2
− B2 −A2

1 +B2
+√

B1 −A1

1 +B1

1 − α

2

|x|
√

18 − 24|x|2 + 16|x|4 − 4|x|6
(1 − |x|2)2

.

It is easy to see that F (0) = −B2−A2

1+B2
< 0 and F (1) → +∞ as |x| → 1−, which implies that there

is some x0 such that F (|x0|) = 0 (0 < |x0| < 1). The proof of the theorem is completed. 2
3.3. Modified-Hadamard product

Suppose that the functions fj(z) = hj(z) + gj(z), j = 1, 2, . . . , κ, where

hj(z) = z +
∞∑
k=2

ak,jz
k, gj(z) =

∞∑
k=2

bk,jz
k, z ∈ U.

For κ ∈ N, J > 1, we introduce the modified-Hadamard product of fj by

FJ
κ (z) = z −

∞∑
k=2

( κ∑
j=1

|ak,j |J
)
zk −

∞∑
k=2

( κ∑
j=1

|bk,j |J
)
zk. (3.23)

In particular, if the parameters A = 1 − 2γ (0 ≤ γ ≤ 1), B = 1, then the class

Gm1,m2

HT
(1 − 2γ, 1) ≡ Gm1,m2

HT
(γ).

We shall discuss the modified-Hadamard product with the subclass Gm1,m2

HT
(γ) in the following

Theorem 3.6.

Theorem 3.6 If the functions fj(z) ∈ Gm1,m2

HT
(γj), 0 ≤ γj < 1, j = 1, 2, . . . , κ, z ∈ U and

γ = min1≤j≤κ{γj}, then when

κ(1 − γ)J < [α(1 +m1) + (1 − α)(1 +m2)]J−1, J > 1, (3.24)

we have FJ
κ (z) ∈ Gm1,m2

HT
(ϵκ), where

ϵκ = 1 − κ(1 − γ)J

[α(m1 + 1) + (1 − α)(m2 + 1)]J−1
.
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The results are sharp for the functions fj(z) given by

fj(z) = z −
∞∑
k=2

N(γj)z
k −

∞∑
k=2

N(γj)z
k, j = 1, 2, . . . , κ,

where

N(γj) =
1 − γj

α(m1 + 1) + (1 − α)(m2 + 1)
.

Proof Since the functions fj(z) ∈ Gm1,m2

HT
(γj), j = 1, 2, . . . , κ, then from Lemma 2.2, we have

∞∑
k=2

αU(k,m1) + (1 − α)U(k,m2)

1 − γj
(|ak,j | + |bk,j |) ≤ 1, j = 1, 2, . . . , κ. (3.25)

Using Cauchy-Schwarz inequality with (3.25), we can get

∞∑
k=2

{ψ(γj)}J (|ak,j |J + |bk,j |J ) ≤
∞∑
k=2

{ψ(γj)}J (|ak,j | + |bk,j |)J

≤
{ ∞∑

k=2

ψ(γj)(|ak,j | + |bk,j |)
}J

≤ 1, j = 1, 2, . . . , κ, (3.26)

where

ψ(χ) =
αU(k,m1) + (1 − α)U(k,m2)

1 − χ
, 0 ≤ χ ≤ 1.

Therefore, (3.26) gives that

∞∑
k=2

{ 1

κ

κ∑
j=1

[ψ(γj)]
J (|ak,j |J + |bk,j |J )

}
≤ 1. (3.27)

In order to complete the proof, from (3.23) and Lemma 2.2, we must find the largest ϵκ such

that
∞∑
k=2

ψ(ϵκ)
[ κ∑
j=1

(|ak,j |r + |bk,j |r)
]
≤ 1. (3.28)

By (3.27), for any k ≥ 2, we can see that (3.28) holds true if

ψ(ϵκ)
[ κ∑
j=1

(|ak,j |J + |bk,j |J )
]
≤ 1

κ

κ∑
j=1

[ψ(γj)]
J (|ak,j |J + |bk,j |J ). (3.29)

Let γ = min1≤j≤κ{γj}. Then we have

1

κ

κ∑
j=1

[ψ(γj)]
J (|ak,j |J + |bk,j |J ) ≥ 1

κ
[ψ(γ)]J

κ∑
j=1

(|ak,j |J + |bk,j |J ). (3.30)

From (3.30), the (3.29) is equivalent to

ψ(ϵκ) ≤ 1

κ
[ψ(γ)]J , k ≥ 2. (3.31)

We can know that (3.31) is true if

ϵκ ≤ 1 − κ(1 − γ)J

[αU(k,m1) + (1 − α)U(k,m2)]J−1
, k ≥ 2.
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Now let

g(k) = 1 − κ(1 − γ)J

[αU(k,m1) + (1 − α)U(k,m2)]J−1
.

It is clear that g(k) is increasing in k, which gives that

g(k) ≥ g(2) = 1 − κ(1 − γ)J

[α(m1 + 1) + (1 − α)(m2 + 1)]J−1
.

Furthermore, from (3.24), we can see that 0 ≤ ϵκ ≤ 1, which completes the proof of Theorem

3.6. 2
Acknowledgements We thank the referees for their time and comments.
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