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Abstract In this paper, we investigate the uniqueness of the derivatives of meromorphic func-

tions sharing two different sets, and obtain the result that if two transcendental meromorphic

functions f and g satisfy Ef(k)(S) = Eg(k)(T ), then f (k) = Ag(k), where S, T are two finite sets

and A is a nonzero constant. In particular, k = 0 implies f = Ag.
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1. Introduction

In this paper, the term “meromorphic” means that a function is meromorphic in the complex

plane C. It is assumed that the readers are familiar with the notations of Nevanlinna theory that

can be found, for instance, in [1]. Let S be the subset of distinct elements in C∪{∞}, we define

Ef (S) =
⋃

a∈S

{z|f(z)− a = 0, counting multiplicities},

Ef (S) =
⋃

a∈S

{z|f(z)− a = 0, ignoring multiplicities}.

Let f and g be two non-constant meromorphic functions. If Ef (S) = Eg(S), then we say f and

g share the set S CM (counting multiplicities). Similarly, we say f and g share the set S IM

(ignoring multiplicities) if Ef (S) = Eg(S).

During the last few decades, the uniqueness theory of entire or meromorphic functions has

been grown up as an important subfield of the value distribution theory. The main intention

of the uniqueness theory is to determine an entire or meromorphic function uniquely satisfying

some prescribed condition. The remarkable Five-Value Theorem and Four-Value Theorem by

Nevanlinna [2] can be considered as the inception of this extensive theory. Later, research became

more interesting when Gross [3] transferred the study of uniqueness theory to a more general

setup, namely sets of distinct elements instead of values. For instance, he proved that there

exist three finite sets Sj (j = 1, 2, 3) such that any two entire functions f and g satisfying

Ef (Sj) = Eg(Sj) for j = 1, 2, 3 must be identical. In the same paper, Gross proposed the
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following question:

Question 1.1 ([3]) Can one find two (or possible even one) finite sets Sj (j = 1, 2) such that

any two entire functions f and g satisfying Ef (Sj) = Eg(Sj) (j = 1, 2) must be identical?

This problem has been investigated by many mathematicians and lots of remarkable works

have been obtained in this aspect [4–9]. In 1995, Yi proved the following result.

Theorem 1.2 ([10]) Let zj , j = 1, 2, . . . , n be n distinct roots of algebraic equation zn+azn−m+

b = 0, where n and m are relatively prime positive integers with n ≥ 15 and n > m ≥ 5, and let

a and b be nonzero constants satisfying

bn−m

an
6=

(−1)nmm(n−m)n−m

nn
.

Suppose that S = {c + dz1, . . . , c + dzn}, where d 6= 0 and c are constants. If f and g are

non-constant entire functions such that Ef (S) = Eg(S), then f = g.

At the same time, Yi further posed a question: Is the condition n ≥ 15 sharp in Theorem 1.2?

To answer this question, Li and Yang [11] showed that the set S = {z9− z8+1 = 0} with only 9

elements is a unique range set of entire functions. Afterwards, Li and Yang [12] also proved that

there exists a set with 15 elements such that any two meromorphic functions f and g satisfying

Ef (S) = Eg(S) must be identical. Further, Yi [13] and Mues [14] independently improved the

above results in the following manner.

Theorem 1.3 ([13, 14]) Let S = {z|zn + azn−m + b = 0}, where n and m are two positive

integers such that n and m have no common factor, m ≥ 2 and n > 2m+ 8, let a and b be two

nonzero constants such that the algebraic equation zn + azn−m + b = 0 has no multiple root. If

f and g are two non-constant meromorphic functions satisfying Ef (S) = Eg(S), then f = g.

In 1998, Qiu did further study on what happens when the k-th derivatives of two meromorphic

functions share values [15]. From then on, many mathematicians have obtained lots of elegant

results related to the k-th derivatives [16–21]. In this direction, Yi and the second authors [22]

proved the following theorem.

Theorem 1.4 ([22]) Let S = {z|zn+azn−1+b = 0}, where n (≥ 7) and k are two positive integers

and let a and b be two nonzero constants such that the algebraic equation zn+azn−1+b = 0 has

no multiple root. If f and g are two non-constant entire functions satisfying Ef(k)(S) = Eg(k)(S),

then f (k) = g(k).

On the other hand, there is an extensive literature on entire or meromorphic functions con-

cerning sharing sets without counting multiplicity [23–26]. And by Yi’s polynomial, he [27] has

also proved

Theorem 1.5 ([27]) Let S = {z|zn + azn−m + b = 0}, where n and m are two positive integers

such that n and m have no common factor, m ≥ 2 and n > 2m + 14, a and b are two nonzero

constants such that the algebraic equation zn + azn−m + b = 0 has no multiple root. If f and g

are two non-constant meromorphic functions satisfying Ef (S) = Eg(S), then f = g.
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Theorem 1.6 ([27]) Let S = {z|zn + azn−m + b = 0}, where n and m are two positive integers

such that n and m have no common factor and n > 2m + 7, and let a and b be two nonzero

constants such that the algebraic equation zn + azn−m + b = 0 has no multiple root. If f and g

are two non-constant entire functions satisfying Ef (S) = Eg(S), then f = g.

Note that the results mentioned above are based on the functions sharing common sets, but

the uniqueness of two meromorphic functions sharing two different sets is seldom studied.

Here, we assume that S and T are zero sets of Yi’s polynomials P and Q respectively of the

following forms

P (z) = azn + bzn−m + d, Q(z) = uzn + vzn−m + t, (1.1)

where n and m are two positive integers, and a, b, d, u, v, t are nonzero complex numbers such

that P and Q have no multiple zero.

For two meromorphic functions f and g, does there exist Ef (S) = Eg(T )? The purpose of

this paper is to seek the possible answer of the above question. Indeed, we obtained the following

results.

Theorem 1.7 Let f and g be two meromorphic functions and let k be a non-negative integer

such that f (k) is not constant. P and Q are defined as (1.1). If Ef(k)(S) = Eg(k)(T ) and

n > 2m + 7 + 7
k+1 , where either (n,m) = 1, m ≥ 2, or m ≥ 4, then f (k) = Ag(k) for some

constant A such that An = du
at
, An−m = dv

bt
.

As instant consequence of Theorem 1.7, we have the following corollary when k = 0.

Corollary 1.8 Let f and g be two non-constant meromorphic functions and let P and Q be

defined as (1.1). If Ef (S) = Eg(T ) and n > 2m+14, where either (n,m) = 1, m ≥ 2, or m ≥ 4,

then f = Ag for some constant A such that An = du
at
, An−m = dv

bt
.

Remark 1.9 Under the condition of Corollary 1.8, when S = T , that is, Ef (S) = Eg(S) and

An = An−m = 1, we can obtain that f = g. Therefore, Theorem 1.7 and Corollary 1.8 improve

Theorem 1.5.

When k ≥ 1, there is 2m + 7 + 7
k+1 ≥ 2m + 10.5. Therefore, n > 2m + 10 implies that

n > 2m+ 7 + 7
k+1 , and hence, it can be inferred from Theorem 1.7 that the following corollary

holds.

Corollary 1.10 Let f and g be two meromorphic functions and let k be a positive integer such

that f (k) is not constant. Suppose P and Q are defined as (1.1). If Ef(k)(S) = Eg(k)(T ) and

n > 2m+ 10, where either (n,m) = 1, m ≥ 2, or m ≥ 4, then f (k) = Ag(k) for some constant A

such that An = du
at
, An−m = dv

bt
.

Furthermore, for the case that f and g are two entire functions, we have

Theorem 1.11 Let f and g be two entire functions and let k be a non-negative integer such

that f (k) is not constant. P and Q are defined as (1.1). If Ef(k)(S) = Eg(k)(T ) and n > 2m+ 7

with (n,m) = 1, then f (k) = Ag(k) for some constant A such that An = du
at
, An−m = dv

bt
.
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Similarly, we have the following corollary when k = 0.

Corollary 1.12 Let f and g be two non-constant entire functions and let P and Q be defined

as (1.1). If Ef (S) = Eg(T ) and n > 2m+ 7 with (n,m) = 1, then f = Ag for some constant A

such that An = du
at
, An−m = dv

bt
.

Remark 1.13 Under the condition of Corollary 1.12, when S = T , that is, Ef (S) = Eg(S) and

An = An−m = 1, then f = g. Hence, Theorem 1.11 and Corollary 1.12 improve Theorem 1.6.

Remark 1.14 The conditions of Theorem 1.7 and Theorem 1.11 “f (k) is not constant” cannot

be dropped. For example: Let n = 15, m = 2, f = 7zk, g = zk and S = T = {z|z15+z13+1 = 0}.

It is clear that f (k)(z) = 7k!, g(k)(z) = k!, 7k! 6∈ S, k! 6∈ S and Ef(k)(S) = Eg(k)(S) = ∅, but

f (k)(z) 6≡ g(k)(z) for any z.

2. Some lemmas

In this section, we present some important lemmas which will be needed in the sequel. Firstly,

we introduce some notations and definitions as follows.

Let a be a finite complex number and let f and g be two meromorphic functions sharing the

value a IM. Let z0 be an a-point of f with multiplicity p, and an a-point of g with multiplicity q.

We denote by NL(r,
1

f−a
) the reduced counting function of the zeros of f − a with p > q ≥ 1. In

the same way, we can define NL(r,
1

g−a
). We denote by N2(r,

1
f−a

) the counting function of the

zeros of f − a, where an a-point of multiplicity m is counted m times if m ≤ 2 and is counted

twice if m > 2.

Definition 2.1 ([1]) We denote by Θ(a, f) the quantity

Θ(a, f) = 1− lim
r→∞

N(r, 1
f−a

)

T (r, f)
,

which is called the ramification index.

Lemma 2.2 ([1]) Let f be a non-constant meromorphic function and let

R(f) =

∑n
k=0 akf

k

∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ak} and {bj}, where an·bm 6= 0.

Then T (r, R(f)) = dT (r, f) + S(r, f), where d = max{n,m}.

Lemma 2.3 ([1]) Let f be a non-constant meromorphic function in C and let aj (j = 1, 2, . . . , q)

be distinct points in C ∪ {∞}. Then

(q − 2)T (r, f) ≤

q∑

j=1

N(r,
1

f − aj
) + S(r, f).

Lemma 2.4 ([1]) Let f be a non-constant meromorphic function and let k be a positive integer.



Set sharing results for derivatives of meromorphic functions 591

Then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN(r, f) + S(r, f).

Lemma 2.5 ([1]) Let f be a non-constant meromorphic function and let a be any value in the

extended complex plane. Then the set of values a for which Θ(a, f) > 0 is countable and
∑

a

Θ(a, f) ≤ 2.

Lemma 2.6 ([28]) Let f and g be two non-constant meromorphic functions sharing the value

1 IM. Let

H = (
f ′′

f ′
−

2f ′

f − 1
)− (

g′′

g′
−

2g′

g − 1
). (2.1)

If H 6≡ 0, then

T (r, f) + T (r, g) ≤2[N2(r, f) +N2(r, g) +N2(r,
1

f
) +N2(r,

1

g
)]+

3NL(r,
1

f − 1
) + 3NL(r,

1

g − 1
) + S(r, f) + S(r, g).

Lemma 2.7 Let f and g be two meromorphic functions. P and Q are given by (1.1). If there

exist two constants A (6= 0) and B such that

1

P (f)
=

A

Q(g)
+B, (2.2)

and n > 2m+ 3, where (n,m) = 1 or m ≥ 3, then Q(g) = AP (f) for some constant A such that

A = t
d
, where t and d are defined in (1.1).

Proof Set

F := P (f) = afn + bfn−m + d, G := Q(g) = ugn + vgn−m + t,

F1 := −
a

d
fn −

b

d
fn−m, G1 := −

u

t
gn −

v

t
gn−m.

It is easy to see that F1 − 1 = − 1
d
F , G1 − 1 = − 1

t
G. Then we can rewrite (2.2) as

F1 =
(t− dtB)G1 + (dA+ dtB − t)

(dA+ dtB)− dtBG1
. (2.3)

By Lemma 2.2, we get

T (r, f) = T (r, g) +O(1). (2.4)

We claim that B = 0, otherwise, we consider the following two cases:

Case 1. Suppose that B 6= 0, 1
d
. If dA+ dtB − t 6= 0, we have from (2.3) that

N(r,
1

(t− dtB)G1 + (dA + dtB − t)
) = N(r,

1

F1
).

Thus, together with (2.4) and using the second fundamental theorem, we get

nT (r, g) =T (r,G1) + S(r, g) ≤ N(r,G1) +N(r,
1

G1
)+
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N(r,
1

(t− dtB)G1 + (dA+ dtB − t)
) + S(r, g)

≤N(r, g) +N(r,
1

g
) +N(r,

1

ugm + v
)+

N(r,
1

f
) +N(r,

1

afm + b
) + S(r, g)

≤(2m+ 3)T (r, g) + S(r, g),

which contradicts the assumption n > 2m + 3. Therefore, we obtain dA + dtB − t = 0, and

hence, we can rewrite (2.3) as F1 = (1−dB)G1

1−dBG1
. It follows that N(r, 1

1−dBG1
) = N(r, F1). Again

from the second fundamental theorem and (2.4), we obtain

nT (r, g) = T (r,G1) + S(r, g) ≤ N(r,G1) +N(r,
1

G1
) +N(r,

1

1− dBG1
) + S(r, g)

≤ N(r, g) +N(r,
1

g
) +N(r,

1

ugm + v
) +N(r, f) + S(r, g)

≤ (m+ 3)T (r, g) + S(r, g),

which is also a contradiction.

Case 2. Suppose that B = 1
d
. Then (2.3) becomes F1 = dA

(dA+t)−tG1
. If dA+ t 6= 0, we get

N(r,
1

(dA+ t)− tG1
) = N(r, F1).

In the same manner as Case 1, we have a contradiction. Therefore, we have dA + t = 0, and

hence, F1G1 = 1, that is

fn−m{afm + b}gn−m{ugm + v} = dt. (2.5)

Write

afm + b = a(f − s1)(f − s2) · · · (f − sm), si 6= sj , i 6= j,

ugm + v = u(g − t1)(g − t2) · · · (g − tm), ti 6= tj , i 6= j.

We consider the following two subcases:

Subcase 2.1. (n,m) = 1.

Let z0 be a zero of f with multiplicity p0. Then by (2.5), z0 is a pole of g with multiplicity

q0 such that (n−m)p0 = nq0. Noting that (n,m) = 1, we have p0 ≥ n. Therefore

N(r,
1

f
) ≤

1

n
N(r,

1

f
). (2.6)

Let zi1 be a zero of f − si with multiplicity pi1 for i = 1, 2, . . . ,m. By (2.5) again, zi1 is a

pole of g with multiplicity qi1 such that pi1 = nqi1. Then pi1 ≥ n and thus

N(r,
1

f − si
) ≤

1

n
N(r,

1

f − si
). (2.7)

Similarly, we have results for the zeros of gn−m{ugm + v}. On the other hand, suppose z2 is

a pole of f , from (2.5), we get z2 is a zero of gn−m{ugm + v}. Then

N(r, f) ≤ N(r,
1

g
) +

m∑

i=1

N(r,
1

g − ti
)
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≤
1

n
N(r,

1

g
) +

1

n

m∑

i=1

N(r,
1

g − ti
)

≤
m+ 1

n
T (r, g) + S(r, g). (2.8)

From (2.4) and (2.6)–(2.8), by the second fundamental theorem, we have

mT (r, f) ≤N(r, f) +N(r,
1

f
) +

m∑

i=1

N(r,
1

f − si
) + S(r, f)

≤
m+ 1

n
T (r, g) +

1

n
N(r,

1

f
) +

1

n

m∑

i=1

N(r,
1

f − si
) + S(r, f) + S(r, g)

≤
2m+ 2

n
T (r, f) + S(r, f) + S(r, g),

which contradicts n > 2m+ 3.

Subcase 2.2. m ≥ 3.

Let z3 be a zero of f with multiplicity p3. Then by (2.5), z3 is a pole of g with multiplicity

q3 such that (n −m)p3 = nq3, then p3 ≥ n
n−m

. Let zi4 be a zero of f − si with multiplicity pi4

for i = 1, 2, . . . ,m. By (2.5) again, zi4 is a pole of g with multiplicity qi4 such that pi4 = nqi4,

then pi4 ≥ n.

In the same manner as Subcase 2.1, we have

mT (r, f) ≤ N(r, f) +N(r,
1

f
) +

m∑

i=1

N(r,
1

f − si
) + S(r, f)

≤ T (r, g) +
n−m

n
N(r,

1

f
) +

1

n

m∑

i=1

N(r,
1

f − si
) + S(r, , f) + S(r, g)

≤ 2T (r, f) + S(r, f) + S(r, g),

which contradicts m > 3.

Therefore, we have B = 0, and hence, we can rewrite (2.3) as

d(F1 − 1) =
1

A
· t(G1 − 1),

that is

afn + bfn−m + d =
u

A
gn +

v

A
gn−m +

t

A
. (2.9)

Eq. (2.9) can be rewritten as

f1 + f2 =
t

A
− d,

where

f1 = fn−m{afm + b}, f2 = −
1

A
gn−m{ugm + v}.

If A 6= t
d
, together with (2.4) and applying the second fundamental theorem, we have

nT (r, f) = T (r, f1) + S(r, f) ≤N(r, f1) +N(r,
1

f1
) +N(r,

1

f1 − ( t
A
− d)

) + S(r, f)

≤N(r, f) +N(r,
1

f
) +N(r,

1

afm + b
)+
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N(r,
1

g
) +N(r,

1

ugm + v
) + S(r, f)

≤(2m+ 3)T (r, f) + S(r, f) + S(r, g),

which contradicts n > 2m+ 3. Therefore, A = t
d
.

This completes the proof of Lemma 2.7. 2

Lemma 2.8 Let f and g be two non-constant meromorphic functions. P and Q are given by

(1.1). If P (f) = Q(g) and n > 2m+ 3, where either (n,m) = 1, m ≥ 2, or m ≥ 4, then f = Ag

for some constant A such that An = u
a
, An−m = v

b
.

Proof From the condition, we have

afn + bfn−m + d = ugn + vgn−m + t. (2.10)

Using the same manner as (2.9), we have t = d. Thus (2.10) becomes

afn + bfn−m = ugn + vgn−m. (2.11)

For simplicity, let A(z) := f(z)
g(z) , α := u

a
6= 0 and β := v

b
6= 0. Then (2.11) becomes

gm(An − α) = −
b

a
(An−m − β), gm = −

b(An−m − β)

a(An − α)
. (2.12)

Assume that A is not a constant, we discuss the following two cases.

Case 1. (n,m) = 1, m ≥ 2.

If An−m − β and An − α have no common zeros, write

An − α = (A− α1)(A − α2) · · · (A− αn), αi 6= αj , i 6= j.

It follows from (2.12) that each zero of A− αi, i = 1, . . . , n is also a pole of g. Suppose that zi1

is a zero of A(z)−αi with multiplicity pi1, then zi1 is a pole of g with multiplicity qi1. Again by

(2.12), we obtain pi1 = mqi1, then pi1 ≥ m, which implies

N(r,
1

A− αi

) ≤
1

m
N(r,

1

A− αi

).

Therefore,

Θ(αi, A) = 1− lim
r→∞

N(r, 1
A−αi

)

T (r, A)
≥ 1− lim

r→∞

N(r, 1
A−αi

)

N(r, 1
A−αi

)
≥ 1−

1

m
> 0.

By Lemma 2.5, n(1 − 1
m
) ≤ 2, that is, n ≤ 2m

m−1 , which contradicts n > 2m+ 3.

If zn−m − β and zn − α have common zeros, then there exists z2 such that An(z2) =

α, An−m(z2) = β. We can rewrite (2.12) as

gm = −
bβ

aα
·
( A
A(z2)

)n−m − 1

( A
A(z2)

)n − 1
. (2.13)

Since (n,m) = 1, zn − 1 and zn−m − 1 have different zeros except for z = 1. Let ri, i =

1, 2, . . . , n− 1 be all the roots of the equation zn− 1 = 0 except for the value 1. Suppose that zi3

is a zero of A(z)
A(z2)

− ri with multiplicity pi2, then from (2.13), zi3 is a pole of g with multiplicity
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qi2. By (2.13) again, pi2 = mqi2, then pi2 ≥ m, so that

N(r,
1

A
A(z2)

− ri
) ≤

1

m
N(r,

1
A

A(z2)
− ri

).

Therefore,

Θ(ri,
A

A(z2)
) = 1− lim

r→∞

N(r, 1
A

A(z2)−ri
)

T (r, A
A(z2)

)
≥ 1− lim

r→∞

N(r, 1
A

A(z2)−ri
)

N(r, 1
A

A(z2)
−ri

)
≥ 1−

1

m
> 0.

By Lemma 2.5, we obtain (n− 1)(1− 1
m
) ≤ 2, that is, n ≤ 3m−1

m−1 , which contradicts n > 2m+3.

Case 2. m ≥ 4.

Noting that zn−α and zn−m−β have at most n−m common simple zeros. Therefore, there

are at least m distinct roots of the equation zn − α = 0, say γ1, γ2, . . . , γm, that are not roots

of zn−m − β = 0. Suppose that zi4 is a zero of A(z) − γi, i = 1, 2, . . . ,m with multiplicity pi3.

Then from (2.12), zi4 is a pole of g with multiplicity qi3. By (2.12) again, we obtain pi3 = mqi3,

then pi3 ≥ m, so that

N(r,
1

A− γi
) ≤

1

m
N(r,

1

A− γi
).

Therefore,

Θ(γi, A) = 1− lim
r→∞

N(r, 1
A−γi

)

T (r, A)
≥ 1− lim

r→∞

N(r, 1
A−γi

)

N(r, 1
A−γi

)
≥ 1−

1

m
> 0.

By Lemma 2.5, we have m(1− 1
m
) ≤ 2, that is, m ≤ 3, which contradicts m ≥ 4.

In conclusion, A is a constant, we have f = Ag. From (2.12), and since f and g are non-

constant functions, we obtain An = u
a
and An−m = v

t
.

This completes the proof of Lemma 2.8. 2

3. Proofs of theorems

Let f and g be two meromorphic functions in C. For convenience, we assume that

F := P (f (k)) = a[f (k)]n + b[f (k)]n−m + d,

G := Q(g(k)) = u[g(k)]n + v[g(k)]n−m + t,

F1 :=−
1

d
[f (k)]n−m{a[f (k)]m + b},

G1 :=−
1

t
[g(k)]n−m{u[g(k)]m + v}, (3.1)

where a, b, d, u, v, t are nonzero complex numbers.

Proof of Theorem 1.7 Let F, G, F1, G1 and H be defined as (3.1) and (2.1), respectively.

One can verify that F and G share the value 0 IM, thus F1 and G1 share the value 1 IM. By

Lemma 2.6, if H 6≡ 0, we have

T (r, F1) + T (r,G1) ≤2[N2(r, F1) +N2(r,G1) +N2(r,
1

F1
) +N2(r,

1

G1
)]+
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3NL(r,
1

F1 − 1
) + 3NL(r,

1

G1 − 1
) + S(r, f (k)) + S(r, g(k)). (3.2)

Note that

N2(r, F1) +N2(r,
1

F1
) ≤ 2N(r, f (k)) + 2N(r,

1

f (k)
) +N(r,

1

a[f (k)]m + b
),

N2(r,G1) +N2(r,
1

G1
) ≤ 2N(r, g(k)) + 2N(r,

1

g(k)
) +N(r,

1

u[g(k)]m + v
),

NL(r,
1

F1 − 1
) ≤ N (2(r,

1

F
) ≤ N(r,

1

f (k+1)
) ≤ N(r,

1

f (k)
) +N(r, f (k)),

NL(r,
1

G1 − 1
) ≤ N (2(r,

1

G
) ≤ N(r,

1

g(k+1)
) ≤ N(r,

1

g(k)
) +N(r, g(k)).

Combining the above inequalities and (3.2), we have

n{T (r, f (k)) + T (r, g(k))} =T (r, F1) + T (r,G1) + S(r, f (k)) + S(r, g(k))

≤7N(r, f (k)) + 7N(r, g(k)) + 7N(r,
1

f (k)
) + S(r, f (k)) + S(r, g(k))+

7N(r,
1

g(k)
) + 2N(r,

1

a[f (k)]m + b
) + 2N(r,

1

u[g(k)]m + v
)

≤(2m+ 7 +
7

k + 1
){T (r, f (k)) + T (r, g(k))}+ S(r, f (k)) + S(r, g(k)),

which contradicts the assumption n > 2m+ 7 + 7
k+1 . Thus H ≡ 0, that is

F ′′

1

F ′

1

−
2F ′

1

F1 − 1
=

G′′

1

G′

1

−
2G′

1

G1 − 1
.

Integrating both sides of the above equality twice, we get

1

F1 − 1
=

A∗

G1 − 1
+B∗, (3.3)

where A∗(6= 0) and B∗ are constants. Note that

F1 − 1 = −
1

d
F, G1 − 1 = −

1

t
G. (3.4)

Then substituting (3.4) into (3.3) yields

1

F
=

tA∗

d
·
1

G
−

B∗

d
.

Applying Lemma 2.7, we get tF = dG. Further, applying Lemma 2.8, we can obtain f (k) = Ag(k),

where An = du
at
, An−m = dv

bt
.

This completes the proof of Theorem 1.7. 2

Proof of Theorem 1.11 Let F, G, F1, G1 and H be defined as (3.1) and (2.1), respectively.

It can be seen that F1 and G1 share the value 1 IM. Note that N(r, f (k)) = N(r, g(k)) = 0. In

the same way as done in the proof of Theorem 1.7, we can show that

1

F
=

tA∗

d
·
1

G
−

B∗

d
,

where A∗ (6= 0) and B∗ are constants.
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Thus by Lemma 2.7, we get tF = dG, which implies

at[f (k)]n + bt[f (k)]n−m = du[g(k)]n + dv[g(k)]n−m. (3.5)

Let A(z) := f(k)(z)
g(k)(z)

, α := du
at

6= 0 and β := dv
bt

6= 0 and substituting into (3.5), we obtain

[g(k)]m(An − α) = −
b

a
(An−m − β), [g(k)]m = −

b(An−m − β)

a(An − α)
. (3.6)

If A is not a constant. Since (n,m) = 1, zn − α and zn−m − β have at most one common

simple zero z0. Let zi, i = 1, 2, . . . , n− 1 be roots of the equation zn−α = 0 except for the value

z0. Noting that each zero of A(z)− zi is also a pole of g(k), and g is an entire function, then zi

are Picard exceptional values of A, which is impossible.

Thus, A is a constant, we have f (k) = Ag(k). From (3.6), if An 6= du
at
, we will deduce that f (k)

is a constant, which contradicts the assumption. Therefore, we have An = du
at

and An−m = dv
bt
.

This completes the proof of Theorem 1.11. 2

4. Some open questions

Recently, we have studied on what will happen if the condition “Ef(k)(S) = Eg(k)(T )” in

Theorems 1.7 and 1.11 is replaced by “Ef(k)(S) = Eg(k)(T )”, and we obtained the following

results.

Theorem 4.1 Let f and g be two non-constant meromorphic functions and k be a non-negative

integer, and let P , Q, S and T be defined as (1.1). If Ef(k)(S) = Eg(k)(T ) and n > 2m+4+ 4
k+1 ,

where either (n,m) = 1, m ≥ 2, or m ≥ 4, then f (k) = Ag(k) for some constant A.

Theorem 4.2 Let f and g be two non-constant entire functions and k be a non-negative

integer, and let P , Q, S and T be defined as (1.1). If Ef(k)(S) = Eg(k) (T ) and n > 2m+4, then

f (k) = Ag(k) for some constant A.

There are still some open questions for further study.

Question 4.3 Is it possible to additionally weaken the relationship conditions n and m in

Theorems 1.7 and 4.1?

Question 4.4 What happens when Yi’s polynomials P and Q are replaced by the other style

of polynomials?
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