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Abstract The aim of this paper is to consider the following two problems:

(1) Establish interrelationships between the growth of coefficients and the geometric distri-

bution of zeros of solutions of non-homogeneous linear differential equation

f
′′′ + A2(z)f

′′ + A1(z)f
′ +A0(z)f = A3(z),

where A0(z), . . . , A3(z) are analytic functions in the unit disc D;

(2) Find some sufficient conditions on the analytic coefficients of the differential equation

f
(k) +Ak−1(z)f

(k−1) + · · ·+A1(z)f
′ + A0(z)f = 0,

for all solutions to belong to the Zygmund type space.

The results we obtain are a generalization of some earlier results by Heittokangas, Gröhn,

Korhoneon and Rättyä.
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1. Introduction and main results

Let DR denote the Euclidian disc of radius R centered at the origin in the complex C, so

D1 = D. Denote by H(D) the set of all analytic functions on D.

The sequence {zn}
∞
n=1 ⊂ D is called uniformly separated if

inf
k∈N

∏

n∈N\{k}

|
zn − zk
1− znzk

| > 0,

while {zn}
∞
n=1 ⊂ D is said to be separated in the hyperbolic metric if there exists a constant

δ > 0 such that |zn − zk|/|1− znzk| > δ for any n 6= k.

A fundamental objective in the study of complex linear differential equations with analytic

coefficients in a complex domain is to relate the growth of coefficients to the growth of solutions

and the distribution of their zeros.

We restrict ourselves to the case of the unit disc D. The early results on oscillation theory

in the case of unit disc go back to the work of Nehari and his students Beesack and Schwarz in
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the 1940s and 1950s. Nehari proved in [1] that if A ∈ H(D) and

sup
z∈D

|A(z)|(1− |z|2)2 (1.1)

is at most one, then each non-trivial solution of

f ′′ + A(z)f = 0 (1.2)

has at most one zero in D.

In 1955, Schwarz [2] showed that if A ∈ H(D), then zero-sequences of all nontrivial solutions

of (1.2) are separated in the hyperbolic metric if and only if (1.1) is finite.

For recent developments based on localization of the classical results [3]. In the case of higher

order linear differential equations

f (k) +Ak−1(z)f
(k−1) + · · ·+A1(z)f

′ +A0(z)f = 0, k ∈ N, (1.3)

with coefficients Aj ∈ H(D), j = 0, . . . , k − 1, there are few results.

Let ϕa(z) = (a − z)/(1 − az), for a, z ∈ D, denote a conformal automorphism of D which

coincides with its own inverse. Moreover, let dσz denote the element of the Lebesgue area measure

on D.

Very recently, Gröhn etc [4] studied the zero distribution of nontrivial solutions of the linear

differential equation

f ′′′ +A2(z)f
′′ + A1(z)f

′ +A0(z)f = 0, (1.4)

where A0, A1, A2 ∈ D. They obtained the following result.

Theorem 1.1 ([4]) Let f be a nontrivial solution of (1.4), where A0, A1, A2 ∈ H(D).

(i) If

sup
z∈D

|Aj(z)|(1− |z|2)3−j < ∞, j = 0, 1, 2,

then the sequence of two-fold zeros of f is a finite union of separated sequences.

(ii) If

sup
a∈D

∫

D

|Aj(z)|(1− |z|2)1−j(1− |ϕa(z)|
2)dσz < ∞, j = 0, 1, 2,

then the sequence of two-fold zeros of f is a finite union of uniformly separated sequences.

Theorem 1.1 is a generalization of the second order case [2]. The proof of Theorem 1.1 is based

on a conformal transformation of (1.4), Jensen’s formula, and on a sharp growth estimate for

solutions of (1.4). A natural question is: what can we say about the nonhomogeneous equation

associated to (1.4)

f ′′′ +A2(z)f
′′ +A1(z)f

′ +A0(z)f = A3(z). (1.5)

One purpose of this study is to establish interrelationships between the growth of coefficients

and the geometric distribution of zeros of solutions of (1.5). For 0 < p < ∞, the Ber-type space,

denoted by H∞
p , consists of all f ∈ H(D) such that

‖f‖H∞
p

= sup
z∈D

|f(z)|(1− |z|2)p < ∞.
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We obtain the following result.

Theorem 1.2 Let f be a nontrivial solution of (1.5), where A0, A1, A2, A3 ∈ H(D).

(i) If

‖Aj‖H∞
3−j

= sup
z∈D

|Aj(z)|(1− |z|2)3−j < ∞, j = 0, 1, 2, (1.6)

and

‖A3‖H∞
3

= sup
z∈D

|A3(z)|(1− |z|2)3 < ∞, (1.7)

then the sequence of two-fold zeros of f is a finite union of separated sequences.

(ii) If

sup
a∈D

∫

D

|Aj(z)|(1− |z|2)1−j(1− |ϕa(z)|
2)dσz < ∞, j = 0, 1, 2, (1.8)

and

sup
a∈D

∫

D

|A3(z)|(1− |z|2)(1− |ϕa(z)|
2)dσz < ∞, (1.9)

then the sequence of two-fold zeros of f is a finite union of uniformly separated sequences.

Nevanlinna theory has been applied for fast-growing analytic solutions [5–11], but the analysis

on slowly growing solutions seems to require a different approach. An important breakthrough in

this regard was [12], where Pommerenke obtained a sharp sufficient condition for the coefficient

A which places all solutions f of (1.2) to the classical Hardy space H2.

Recently, Heittokangas et al. [13] studied equation (1.3) and found sufficient conditions for

the analytic coefficients such that all solutions belong to H∞
p .

Theorem 1.3 ([13]) Let 0 ≤ δ < 1. For every p > 0 there exists a positive constant α, depending

only on p and k, such that if the coefficients Aj(z) of (1.1) are analytic in D and satisfy

sup
|z|≥δ

|Aj(z)|(1− |z|2)k−j ≤ α, j = 0, . . . , k − 1,

then all solutions of (1.3) belong to H∞
p .

Sufficient conditions for the coefficients such that all solutions belong to Dp were found in [14].

For 0 < p < ∞, the Dirichlet-type space Dp consists of those analytic functions f in D for which

the integral
∫

D

|f ′(z)|p(1− |z|2)p−1dσz

converges.

Theorem 1.4 ( [14]) Let 0 ≤ δ < 1. For every 0 < p ≤ 2, there is a positive constant α,

depending only on p and k, such that if the coefficients Aj(z) of (1.3) are analytic in D and

satisfy

sup
|a|≥δ

∫

D

|A0(z)|
p(1− |z|2)pk−1 1− |a|2

|1− az|2
dσz ≤ α

and

sup
|z|≥δ

|Aj(z)|(1− |z|2)k−j ≤ α, j = 1, . . . , k − 1,
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then all solutions of (1.3) belong to Dp ∩H∞
p .

As for the solutions in other function spaces, see, for example [15, 16].

Another purpose of this study is to give some sufficient conditions on the analytic coefficients

of (1.3) for all solutions to belong to the Zygmund type space. For 0 < α < ∞, we denote by

Zα the Zygmund type space of those functions f ∈ H(D) satisfying

sup
z∈D

(1− |z|2)α|f ′′(z)| < ∞

equipped with the norm ‖f‖Zα := |f(0)|+ |f ′(0)|+supz∈D(1−|z|2)α|f ′′(z)|. The little Zygmund

type space, denoted by Zα
o , is the closed subspace of Zα consisting of those functions f ∈ Zα

with

lim
|z|→1

(1 − |z|2)α|f ′′(z)| = 0.

When α = 1, we get the classical Zygmund spaces Z and Zo. To the best of our knowledge,

solutions of differential equations in the Zygmund type space are considered in the present paper

for the first time. We obtain the following results.

Theorem 1.5 Let A0(z), . . . , Ak−1(z) be the analytic coefficients of (1.3) in D. Let nc ∈

{1, . . . , k} be the number of nonzero coefficients Aj(z), j = 0, . . . , k − 1. Fix l > 0 and denote

R = (e1/l − 1)/e1/l. Suppose that

∫ 1

R

(log(1− t)−l)−1
k−1
∑

j=0

|Aj(te
iθ)|

1
k−j dt ≤

1

nc
. (1.10)

Then all solutions of (1.3) belong to the space Z l+2.

Theorem 1.6 Let A0(z), . . . , Ak−1(z) be the analytic coefficients of (1.3) in D. Assume that

|Aj(z)| ≤
αj

(1− |z|)k−j−1
, (1.11)

where αj > 0. Then all solutions of (1.3) belong to the space Z2− 2
k .

Theorem 1.7 Let A0(z), . . . , Ak−1(z) be the analytic coefficients of (1.3) in D. Assume that

|Aj(z)| ≤ αj log
e

1− |z|
, (1.12)

where αj > 0. Then all solutions of (1.3) belong to the space
⋂

0<α<∞ Zα
o .

Corollary 1.8 Let all the coefficients Aj(z) (j = 0, . . . , k− 1) of (1.3) belong to the Zygmund

type space Z2. Then all solutions of (1.3) belong to the space
⋂

0<α<∞ Zα
o .

2. Auxiliary lemmas

The following lemma gives an estimate for the number of sequences in the finite union ap-

pearing in the statement of Theorem 1.1.

Lemma 2.1 ([4]) Let L = {zk} be a sequence of points in D such that the multiplicity of each

point is at most p ∈ N, and let M ∈ N.
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(i) If

sup
a∈L

∑

zk∈L\{a}

(1− |ϕa(zk)|
2)2 ≤ M < ∞,

then {zk} can be expressed as a finite union of at most M + p separated sequences.

(ii) If

sup
a∈L

∑

zk∈L\{a}

(1− |ϕa(zk)|
2) ≤ M < ∞,

then {zk} can be expressed as a finite union of at most M + p uniformly separated sequences.

For 0 < p < ∞ and −1 < α < ∞, the weighted Bergman space Ap
α consists of those functions

f , analytic in D, for which

‖f‖Ap
α
=

(

∫

D

|f(z)|p(1 − |z|2)αdσz

)
1
p

< ∞.

The classical Bergman space Ap is Ap
0. See [17] and [18] for the theory of Bergman spaces. It

is well known that an analytic function f belongs to the Bergman space Ap
α if and only if f (n)

belongs to Ap
np+α. This fact follows by Lemma 2.2, which can be found, for example, in [19].

Lemma 2.2 ([19]) Let f be an analytic function in D, and let 0 < p < ∞, −1 < α < ∞ and

n ∈ N. Then there exist two constants C1 > 0 and C2 > 0, depending only on p, α and n, such

that

C1‖f‖Ap
α
≤ ‖f (n)‖Ap

np+α
+

n−1
∑

j=0

|f (j)(0)| ≤ C2‖f‖Ap
α
.

Lemma 2.3 ([20]) Suppose z ∈ D, c is real, t > −1, and

Ic,t(z) =

∫

D

(1 − |w|2)t

|1− zw|2+t+c
dσw.

(a) If c < 0, then as a function of z, Ic,t(z) is bounded from above and bounded from below

on D.

(b) If c > 0, then Ic,t(z) ∼
1

(1−|z|2)c , |z| → 1−.

(c) If c = 0, then I0,t(z) ∼ log 1
1−|z|2 , |z| → 1−.

Lemma 2.4 ([21]) If α > 1 and R = 1+r
2 , then

∫ 2π

0

dϕ

|Reiϕ − r|α
= O(

1

(1 − r)α−1
).

Lemma 2.5 ([22]) Let f be a solution of (1.3) in DR, where 0 < R ≤ ∞, let nc ∈ {1, . . . , k}

be the number of nonzero coefficients Aj(z), j = 0, . . . , k − 1, and let θ ∈ [0, 2π) and ε > 0. If

zθ = νeiθ ∈ DR is such that Aj(zθ) 6= 0 for some j = 0, . . . , k − 1, then, for all ν < r < R,

|f(reiθ)| ≤ C exp
(

nc

∫ r

ν

max
j=0,...,k−1

|Aj(te
iθ)|1/(k−j)dt

)

, (2.1)

where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,...,k−1

(
|f (j)(zθ)|

(nc)j maxn=0,...,k−1 |An(zθ)|j/(k−n)
).
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An application of Herold’s comparison Theorem in its full generality at the end of proof of

Lemma 2.5 yields the following pointwise growth estimate for the derivatives of solutions of (1.3).

It is also a special case of a more general result in [23].

Lemma 2.6 ([23]) Suppose the assumptions in Lemma 2.5 hold. Then, for all r ∈ (ν,R) and

j = 0, . . . , k − 1,

|f (j)(reiθ)| ≤C
(

sup
ν≤x≤ 1+r

2

(nc max
j=0,...,k−1

|Aj(xe
iθ)|

1
k−j )

)j

×

exp
(

nc

∫ r

ν

max
j=0,...,k−1

|Aj(te
iθ)|

1
k−j dt

)

.

3. Proofs of Theorems

Theorem 1.2 can be verified by the following proof of Theorem 1 in [4] with suitable modifi-

cations.

Proof of Theorem 1.2 (i) If f is a nontrivial solution of (1.5), then g = f ◦ ϕa solves

g′′′ + B2g
′′ +B1g

′ +B0g = B3, (3.1)

where
B0 = (A0 ◦ ϕa)(ϕ

′
a)

3,

B1 = (A1 ◦ ϕa)(ϕ
′
a)

2 − (A2 ◦ ϕa)ϕ
′′
a + 3(

ϕ′′
a

ϕ′
a

)2 −
ϕ′′′
a

ϕ′
a

,

B2 = (A2 ◦ ϕa)ϕ
′
a − 3

ϕ′′
a

ϕ′
a

, B3 = (A3 ◦ ϕa)(ϕ
′
a)

3.

(3.2)

Thus by the Schwarz-Pick lemma [24, Lemma 1.2], 1−|ϕa(z)|
2 = (1−|z|2)|ϕ′

a(z)|, we can obtain

‖B0‖H∞
3

= sup
z∈D

|B0(z)|(1− |z|2)3 = sup
z∈D

|A0 ◦ ϕa(z)||ϕ
′(z)|3(1− |z|2)3

= sup
z∈D

|A0 ◦ ϕa(z)|(1− |ϕa(z)|
2)3 = sup

w∈D

|A0(w)|(1 − |w|2)3 = ‖A0‖H∞
3
.

Similarly, we have ‖B3‖H∞
3

= ‖A3‖H∞
3
. Straightforward calculations show that

ϕ′′
a(z)

ϕ′
a(z)

=
2a

1− az
,

ϕ′′′
a (z)

ϕ′
a(z)

=
6a2

(1− az)2
.

Therefore, we have

|
ϕ′′
a(z)

ϕ′
a(z)

(1− |z|2)| ≤ 4, |
ϕ′′′
a (z)

ϕ′
a(z)

(1− |z|2)2| ≤ 24.

An application of above estimates, yields,

‖B1‖H∞
2

≤ sup
w∈D

|A1(w)|(1 − |w|2)2 + 4 sup
w∈D

|A2(w)|(1 − |w|2) + 48 + 24

≤ ‖A1‖H∞
2

+ 4‖A2‖H∞
1

+ 72

and

‖B2‖H∞
1

≤ sup
w∈D

|A2(w)|(1 − |w|2) + 12 = ‖A2‖H∞
1

+ 12.
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Let L = L(f) be the sequence of two-fold zeros of f, and let a ∈ L; we may assume that L is

not empty, for otherwise there is nothing to prove. Then 0 is a two-fold zero of g = f ◦ ϕa. By

applying Jensen’s formula to g(z)/z2, we obtain

∑

zk∈L

0<|ϕa(zk)|<r

log
r

|ϕa(zk)|
≤

1

2π

∫ 2π

0

log+ |g(reiθ)|dθ − log |g′′(0)|+ log
2

r2
, (3.3)

where 0 < r < 1, log+ x = max{0, logx} for 0 ≤ x < ∞. Since
∫ 1

0

(

∑

zk∈L

0<|ϕa(zk)|<r

log
r

|ϕa(zk)|

)

rdr =
∑

zk∈L\{a}

∫ 1

|ϕa(zk)|

r log
r

|ϕa(zk)|
dr

=
1

4

∑

zk∈L\{a}

[2 log
1

|ϕa(zk)|
− (1− |ϕa(zk)|

2)]

≥
1

4

∑

zk∈L\{a}

[2(1− |ϕa(zk)|)− (1− |ϕa(zk)|
2)]

=
1

4

∑

zk∈L\{a}

(1− |ϕa(zk)|)
2 ≥

1

16

∑

zk∈L\{a}

(1 − |ϕa(zk)|
2)2,

the estimate (3.3) implies

∑

zk∈L\{a}

(1− |ϕa(zk)|
2)2 ≤

8

π

∫

D

log+ |g(z)|dσz − 8 log |g′′(0)|+ 8 log 2 + 8. (3.4)

Recall that g(z) is a solution of (3.1). By the proof of the growth estimates [25, Corollary 3],

there exists an absolute constant C1 > 0 such that

1

2π

∫ 2π

0

log+ |g(reiθ)|dθ ≤C1

(

∫ 2π

0

log+
∫ r

0

|B3(se
iθ)|(1 − s)2dsdθ+

2
∑

j=0

j
∑

n=0

∫ 2π

0

∫ r

0

|B
(n)
j (seiθ)|(1− s)2−j+ndsdθ

)

. (3.5)

Since Bj ∈ H∞
3−j for j = 0, 1, 2, we have B

(n)
j ∈ H∞

3−j+n for j = 0, 1, 2, n = 0, . . . , j by Cauchy’s

integral formula. Hence there exists a positive constant C2 = C2(‖A0‖H∞
3
, ‖A1‖H∞

2
, ‖A2‖H∞

1
),

independent of a ∈ D, such that

|B
(n)
j (seiθ)|(1 − s)3−j+n ≤ C2, j = 0, 1, 2, n = 0, . . . , j, (3.6)

for seiθ ∈ D.

Now we estimate
∫ 2π

0
log+

∫ r

0
|B3(se

iθ)|(1− s)2dsdθ. Since B3 ∈ H∞
3 , there exists a constant

C3 = C3(‖A3‖H∞
3
) > 1, independent of a ∈ D, such that |B3(se

iθ)|(1 − s)2 ≤ C3

1−s for seiθ ∈ D,

which implies
∫ 2π

0

log+
∫ r

0

|B3(se
iθ)|(1 − s)2dsdθ ≤

∫ 2π

0

log+
∫ r

0

C3

1− s
dsdθ

≤ 2π log+
C3

1− r
= 2π log

C3

1− r
. (3.7)
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Substituting (3.5)-(3.7) into (3.4), we obtain

sup
a∈L

∑

zk∈L\{a}

(1− |ϕa(zk)|
2)2

≤ 16C1

(

2π

∫ 1

0

r log
C3

1− r
dr + 2π

2
∑

j=0

j
∑

n=0

∫ 1

0

∫ r

0

r
C2

1− s
dsdr

)

− 8 log |g′′(0)|+ 8 log 2 + 8

≤ 32πC1

(

∫ 1

0

log
C3

1− r
dr + 6C2

∫ 1

0

log
1

1− r
dr

)

− 8 log |g′′(0)|+ 8 log 2 + 8

= 32πC1(logC3 + 1 + 6C2)− 8 log |g′′(0)|+ 8 log 2 + 8 < ∞.

This implies the assertion of Theorem 1.2 (i) by Lemma 2.1 (i).

(ii) As in the proof of (i), we conclude that g = f ◦ ϕa is a solution of (3.1), where the

coefficients B0, B1, B2 and B3 are defined by formula (3.2). Since
∫

D

|B3(z)(1− |z|2)2|dσz =

∫

D

|A3(ϕa(z))||ϕ
′
a(z)|

3(1− |z|2)2dσz

=

∫

D

|A3(w)|(1 − |w|2)(1 − |ϕa(w)|
2)dσw,

it follows from (1.9) that

sup
a∈D

∫

D

|B3(z)|(1− |z|2)2dσz < ∞. (3.8)

Next we will show that

sup
a∈D

∫

D

|B
(n)
j (z)|(1− |z|2)2−j+ndσz < ∞, j = 0, 1, 2, n = 0, . . . , j. (3.9)

According to Lemma 2.2, we need only to show that

sup
a∈D

∫

D

|Bj(z)|(1− |z|2)2−jdσz < ∞, j = 0, 1, 2.

As a matter of fact, first, since
∫

D

|B0(z)|(1− |z|2)2dσz =

∫

D

|A0(ϕa(z))||ϕ
′
a(z)|

3(1− |z|2)2dσz

=

∫

D

|A0(w)|(1 − |w|2)(1 − |ϕa(w)|
2)dσw,

we can get

sup
a∈D

∫

D

|B0(z)|(1− |z|)2dσz < ∞

from (1.8).

Next, we can obtain from (3.2) and Lemma 2.3 that
∫

D

|B1(z)|(1− |z|2)dσz

≤

∫

D

|A1(ϕa(z))||ϕ
′
a(z)|

2(1− |z|2)dσz +

∫

D

|A2(ϕa(z))||ϕ
′′
a(z)|(1− |z|2)dσz+

3

∫

D

|
ϕ′′
a(z)

ϕ′
a(z)

|2(1− |z|2)dσz +

∫

D

|
ϕ′′′
a (z)

ϕ′
a(z)

|(1− |z|2)dσz
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≤

∫

D

|A1(w)|(1 − |ϕa(w)|
2)dσw + 4

∫

D

|A2(ϕa(z))|
1

|ϕ′
a(z)|

|ϕ′
a(z)|

2dσz+

3

∫

D

4|a|2

|1− az|2
(1 − |z|2)dσz +

∫

D

6|a|2

|1− az|2
(1 − |z|2)dσz

≤

∫

D

|A1(w)|(1 − |ϕa(w)|
2)dσw + 4

∫

D

|A2(w)|
1 − |ϕa(w)|

2

1− |w|2
dσw +O(1).

The condition (1.8) implies

sup
a∈D

∫

D

|B1(z)|(1 − |z|2)dσz < ∞.

Finally, from(1.8) and Lemma 2.3, we can deduce that

sup
a∈D

∫

D

|B2(z)|dσz ≤ sup
a∈D

∫

D

|A2(ϕa(z))||ϕ
′
a(z)|dσz + 3 sup

a∈D

∫

D

|
ϕ′′
a(z)

ϕ′
a(z)

|dσz

= sup
a∈D

∫

D

|A2(w)|
1 − |ϕa(w)|

2

1− |w|2
dσw + 3 sup

a∈D

∫

D

2|a|

|1− az|
dσz < ∞.

Let L be the sequence of two-fold zeros of f . As above, by applying the proof of [26, Lemma

4.6], there exists an absolute constant C2 > 0, such that

∑

zk∈L

0<|ϕa(zk)|<r

log
r

|ϕa(zk)|
≤

1

2π

∫ 2π

0

log+ |g(reiθ)|dθ − log |g′′(0)|+ log
2

r2

≤ C1

(

∫ 2π

0

log+
∫ r

0

|B3(se
iθ)|(1 − s)2dsdθ+

2
∑

j=1

j
∑

n=0

∫ 2π

0

∫ r

0

|B
(n)
j (seiθ)|1− s)2−j+ndsdθ

)

− log |g′′(0)|+ log
2

r2

≤ C1

(

∫ 2π

0

∫ r

0

|B3(se
iθ)|(1 − s)2dsdθ+

2
∑

j=1

j
∑

n=0

∫ 2π

0

∫ r

0

|B
(n)
j (seiθ)|1− s)2−j+ndsdθ

)

− log |g′′(0)|+ log
2

r2

≤ C2

(

∫

D

|B3(z)|(1− |z|2)2dσz +

2
∑

j=1

j
∑

n=0

∫

D

|B
(n)
j (z)|1− |z|2)2−j+ndσz

)

−

log |g′′(0)|+ log
2

r2
.

Using the estimates (3.8) and (3.9), and letting r → 1−, we get

sup
a∈L

∑

zk∈L\{a}

(1− |ϕa(zk)|
2) < ∞.

Consequently, the assertion of Theorem 1.2 (ii) follows from Lemma 2.1 (ii). 2

Proof of Theorem 1.5 If r ∈ (R, 1), it follows from (1.10) that

(log(1− r)−l)−1

∫ r

R

k−1
∑

j=0

|Aj(te
iθ)|

1
k−j dt
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≤

∫ r

R

(log(1 − t)−l)−1
k−1
∑

j=0

|Aj(te
iθ)|

1
k−j dt ≤

1

nc
,

so,

nc

∫ r

R

k−1
∑

j=0

|Aj(te
iθ)|

1
k−j dt ≤ log

1

(1 − r)l
. (3.10)

Let f be a non-constant solution of (1.3). By the Cauchy integral formula for derivatives and

Lemma 2.4, we have

|f ′′(reiϕ)| ≤
1

π

∫

|ζ|= 1+r
2

|f(ζ)|

|ζ − reiϕ|3
|dζ| = O(

M(1+r
2 , f)

(1 − r)2
).

Now an application of (3.10) and (2.1) yields,

|f ′′(reiϕ)| = O(
1

(1 − r)l+2
),

that is, f ∈ Z l+2. 2

Proof of Theorem 1.6 Let f be a non-constant solution of (1.3). By Lemma 2.6,

|f ′′(reiθ)| ≤C
(

sup
ν≤x≤ 1+r

2

(nc max
j=0,...,k−1

|Aj(xe
iθ)|

1
k−j )

)2

×

exp
(

nc

∫ r

ν

max
j=0,...,k−1

|Aj(te
iθ)|

1
k−j dt

)

,

for all r ∈ (ν,R). Here in after we use C to denote a positive constant which need not be the

same at each occurrence. Then (1.11) gives

|f ′′(reiθ)| ≤C
(

sup
ν≤x≤ 1+r

2

( max
j=0,...,k−1

(
1

1− x
)1−

1
k−j )

)2

×

exp
(

C

∫ r

ν

max
j=0,...,k−1

(
1

1− t
)1−

1
k−j dt

)

≤C
(

sup
ν≤x≤ 1+r

2

(
1

1− x
)1−

1
k

)2

exp
(

C

∫ r

0

(
1

1− t
)1−

1
k dt

)

≤C(
2

1− r
)2−

2
k exp(Ck(1 − (1− r)

1
k )) ≤ C(

1

1− r
)2−

2
k .

It follows that

sup
z∈D

|f ′′(z)|(1− |z|2)2−
2
k < ∞,

which implies that f ∈ Z2− 2
k . 2

Proof of Theorem 1.7 Let f be a nonconstant solution of (1.3). An application of Lemma

2.6 yields,

|f ′′(reiθ)| ≤C
(

sup
ν≤x≤ 1+r

2

(nc max
j=0,...,k−1

|Aj(xe
iθ)|

1
k−j )

)2

×

exp(nc

∫ r

ν

max
j=0,...,k−1

|Aj(te
iθ)|

1
k−j dt),
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for all r ∈ (ν,R). By (1.12), we can obtain

|f ′′(reiθ)| ≤C
(

sup
ν≤x≤ 1+r

2

max
j=0,...,k−1

(log
e

1− x
)

1
k−j

)2

×

exp
(

C

∫ r

0

max
j=0,...,k−1

(log
e

1− t
)

1
k−j dt

)

≤C
(

sup
ν≤x≤ 1+r

2

(log
e

1− x
)
)2

exp
(

C

∫ r

0

log
e

1− t
dt
)

≤C(log
2e

1− r
)2 exp

(

C

∫ r

0

log
e

1− t
dt
)

≤C(log
1

1− r
)2. (3.11)

Taking any α ∈ (0,+∞), multiplying (1 − r2)α on both sides of (3.11) and letting r → 1, we

obtain

lim
|z|→1

(1− |z|2)α|f ′′(z)| = lim
r→1

(1− r2)α|f ′′(eiθ)| = 0,

which implies that f ∈ Zα
o . Since α ∈ (0,+∞) is arbitrary, the conclusion follows. 2

Proof of Corollary 1.8 From Aj(z) ∈ Z2, we can get

|A′′
j (z)| ≤

‖Aj‖Z2

(1 − |z|2)2
, j = 0, . . . , k − 1,

which yields

|A′
j(z)−A′

j(0)| =
∣

∣

∣
z

∫ r

0

A′′
j (zt)dt

∣

∣

∣
≤ |z|‖Aj‖Z2

∫ 1

0

1

(1− |z|2t2)2
dt

≤ |z|‖Aj‖Z2

∫ 1

0

1

(1 − |z|t)2
dt = ‖Aj‖Z2

|z|

1− |z|

≤ ‖Aj‖Z2

1

1− |z|
.

This gives

|A′
j(z)| ≤ |A′

j(0)|+ ‖Aj‖Z2

1

1− |z|
≤ 2‖Aj‖Z2

1

1− |z|
.

Using the same procedure as above, we have

|Aj(z)−Aj(0)| =
∣

∣

∣
z

∫ r

0

A′
j(zt)dt

∣

∣

∣
≤ 2|z|‖Aj‖Z2

∫ 1

0

1

(1− |z|t)
dt

= 2‖Aj‖Z2 log
1

1− |z|
,

which implies

|Aj(z)| ≤ |Aj(0)|+ 2‖Aj‖Z2 log
1

1− |z|
≤ 2‖Aj‖Z2 log

e

1− |z|
.

Therefore, all solutions of (1.3) belong to space
⋂

0<α<∞ Zα
o by Theorem 1.7. 2
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