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Abstract Let A be a unital C∗-algebra with a state τ and G be a discrete group that acts

on A through a τ -preserving action α. We first generalize the Haagerup property of dynamical

systems by considering states and prove that the dynamical system has the Haagerup property

if and only if the reduced crossed product does. Then we introduce the quasi-amenable action

of G on A with respect to τ . Finally, using the above results, we prove that if α is a quasi-

amenable action of G on A with respect to τ , then (A, τ ) has the Haagerup property if and only

if (A ⋊α,r G, τ ′) does, where τ ′ is the induced state on A ⋊α,r G. As a consequence, our main

results improve some well known results in the classical situation.
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1. Introduction

Approximation theory has always been a hot research topic in group theory and operator

algebra theory. Over the past few decades, many mathematicians have studied many different

approximation properties, such as amenability which was first introduced by von Neumann [1]

in response to the famous Banach-Tarski paradox, weak amenability which was defined formally

by Cowling and Haagerup in [2], the Haagerup property which was first introduced for groups

by Haagerup in [3] as a weaker version of amenability, the weak Haagerup property which was

introduced by Knudby [4] in order to study the relation between weak amenability and the

Haagerup property, and so on.

The Haagerup property has been considered for von Neumann algebras [5–8]. In [9], Dong

introduced the Haagerup property for a C∗-algebra with a faithful tracial state. Suzuki [10]

proved that the Haagerup property for C∗-algebras does depend on the faithful tracial state.

In [11], the authors generalized the Haagerup property to arbitrary C∗-algebras.

Herz-Schur multiplier is an important notion in operator algebra theory, since a number of

approximation properties of groups and group C∗-algebras depend on it (see [3, 4, 12] for more

information). In [13], Mckee, Todorov and Turowska extended the notion to the setting of non-

commutative dynamical systems. Let G be a discrete group which acts on a unital C∗-algebra

A through an action α. We denote by CB(A) the space of all completely bounded linear maps
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from A into itself, and Cc(G,A) the space of all finitely supported functions on G with values in

A. In fact, we have known that Cc(G,A) is a dense subalgebra of the reduced crossed product

A⋊α,r G and a typical element x ∈ Cc(G,A) is written as a finite sum x =
∑

s∈G ass.

Definition 1.1 ([13]) Let (A,G, α) be a C∗-dynamical system. A bounded function F : G →

CB(A) is called a Herz-Schur (A,G, α)-multiplier if the map SF : Cc(G,A) → Cc(G,A) such

that SF (
∑

s∈G ass) =
∑

s∈G F (s)(as)s is completely bounded.

If F is a Herz-Schur (A,G, α)-multiplier, then the map SF has a unique extension to a

completely bounded map on A⋊α,rG, which is still denoted by SF . We say that F is a completely

positive Herz-Schur (A,G, α)-multiplier if the map SF : A ⋊α,r G → A ⋊α,r G is completely

positive. Note that the set of all Herz-Schur (A,G, α)-multipliers is an algebra with respect

to the obvious operations and endowed with the norm ‖F‖m = ‖SF ‖cb. Let ρ be a faithful

α-invariant tracial state on A. In [14], the authors introduced the Haagerup property of the

dynamical system (A,G, α, ρ) and proved that (A,G, α, ρ) has the Haagerup property if and

only if (A⋊α,r G, ρ′) has the Haagerup property, where ρ′ is the induced faithful tracial state on

A⋊α,r G.

In Section 2, we first recall some notations and results of Gelfand-Naimark-Segal construction

with repect to a state τ on A. Next, we introduce the Haagerup property of (A,G, α, τ) and give

some similar results as [14, Lemma 3.5-3.7]. Finally, we prove that (A,G, α, τ) has the Haagerup

property if and only if (A⋊α,r G, τ ′) has the Haagerup property.

In Section 3, we first recall some notations and results about multiplicative domains. Next,

we introduce the quasi-amenable action with respect to a state τ . Finally, we prove that if α is

a quasi-amenable action of G on A with respect to τ , then (A, τ) has the Haagerup property if

and only if (A⋊α,r G, τ ′) has the Haagerup property, where τ ′ is the induced state on A⋊α,r G.

As a consequence, our main results improve some well known results in the classical situation.

2. Haagerup property of dynamical systems

In this paper, G is a discrete group with the unit e, A is a unital C∗-algebra with a state

τ , α is a τ -preserving action of G on A, A+ is the cone of positive elements in A, Nτ = {a ∈

A|τ(a∗a) = 0} and Λτ (A) = A/Nτ . By the Gelfand-Naimark-Segal construction, τ defines a

Hilbert space L2(A, τ). We denote by 〈Λτ (a),Λτ (b)〉 = τ(b∗a) the associated inner product

and ‖Λτ (a)‖2,τ = τ(a∗a)1/2 the associated Hilbert norm for any a, b ∈ A. We say a linear map

Φ : A → A is L2-bounded if there exists a constant C > 0 such that ‖Λτ (Φ(a))‖2,τ ≤ C‖Λτ (a)‖2,τ

for any a ∈ A.

To simplify notations, we use c.p. to abbreviate “completely positive”, u.c.p. for “unital

completely positive” and c.c.p. for “contractive completely positive”.

Lemma 2.1 If Φ : A → A is L2-bounded, then there exists a bounded operator TΦ : L2(A, τ) →

L2(A, τ) determined by Λτ (a) 7→ Λτ (Φ(a)), a ∈ A.
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Proof Since Φ is L2-bounded, there is a constant C > 0 such that

‖Λτ(Φ(a))‖2,τ ≤ C‖Λτ (a)‖2,τ .

Let Φ̃ : Λτ (A) → Λτ (A) such that

Λτ (a) 7→ Λτ (Φ(a)).

First, we show that Φ̃ is well-defined. Indeed, if a, b ∈ A such that Λτ (a) = Λτ (b), i.e., a−b ∈ Nτ ,

we have

0 ≤ τ(Φ(a− b)∗Φ(a− b)) = ‖Λτ (Φ(a− b))‖22,τ ≤ C2‖Λτ(a− b)‖22,τ = 0.

Hence, Φ̃ is well-defined and it is obvious that Φ̃ extends to a bounded operator TΦ : L2(A, τ) →

L2(A, τ) with norm at most C. 2

Note that if Φ is a c.c.p. map and satisfies τ ◦ Φ ≤ τ , then Φ is L2-bounded and TΦ is a

contraction. We say that Φ : A → A is L2-compact if TΦ is a compact operator on L2(A, τ).

Definition 2.2 ([11]) We say that (A, τ) has the Haagerup property if there exists a net (Φi)i∈I

of c.c.p. maps from A into itself such that

(1) τ ◦ Φi ≤ τ and Φi is L
2-compact for every i ∈ I;

(2) {TΦi
}i∈I converges to the identity map in the strong operator topology.

Remark 2.3 Since A is a unital C∗-algebra and τ is a state on A, we have the following

statements.

(1) By [11, Remark 3.4], the above c.c.p. maps can be replaced by u.c.p. maps.

(2) Condition (2) is equivalent to

‖Λτ (Φi(a))− Λτ (a)‖2,τ → 0, a ∈ A.

Although τ is only a state here, the proof of the following lemma is similar to [14, Lemma

3.2], we omit it.

Lemma 2.4 Let F : G → CB(A) be a c.p. Herz-Schur (A,G, α)-multiplier such that τ◦F (e) ≤ τ

and F (e)(1A) = 1A. Then F (t) is L2-bounded and TFi(t) is a contraction for each t ∈ G.

Now we introduce the Haagerup property of the dynamical system (A,G, α, τ).

Definition 2.5 We say that (A,G, α, τ) has the Haagerup property if there is a net (Fi)i∈I of

c.p. Herz-Schur (A,G, α)-multipliers such that

(1) Fi(e) is unital and τ ◦ Fi(e) ≤ τ, i ∈ I;

(2) Fi(t) is L
2-compact, t ∈ G;

(3) The function s → ‖TFi(s)‖ vanishes at infinity, i ∈ I;

(4) ‖Λτ (Fi(t)(a) − a)‖2,τ → 0 for all t ∈ G and all a ∈ A.

Let A ⋊α,r G be the reduced crossed product of the dynamical system (A,G, α) and E :

A⋊α,r G → A be the canonical faithful conditional expectation. Assume that τ ′ is the induced

state on A⋊α,r G, i.e.,

τ ′(x) = τ ◦ E(x), x ∈ A⋊α,r G.
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We denote by L2(τ) the Hilbert space L2(A, τ), and L2(τ ′) the Hilbert space L2(A ⋊α,r G, τ ′).

For any t ∈ G, we denote by Lt the subspace {at : a ∈ A} of A⋊α,r G, and L2
t (τ

′) the closure of

Λτ ′(Lt) in the norm ‖·‖2,τ ′ . Next we will give some results which are generalization of [14, Lemma

3.5-3.7].

Lemma 2.6 The following statements are true.

(1) We have an orthogonal decomposition

L2(τ ′) =
⊕

t∈G

L2
t (τ

′).

(2) For each t ∈ G, the map Λτ (a) 7→ Λτ ′(at) extends to a unitary Vt from L2(τ) to L2
t (τ

′).

(3) Let Pt be the orthogonal projection of L2(τ ′) onto L2
t (τ

′). Then the map V ∗
t Pt : L

2(τ ′) →

L2(τ) satisfies

V ∗
t Pt(Λτ ′(z)) = Λτ (E(zt

−1)), z ∈ A⋊α,r G.

(4) F : G → CB(A) is a c.p. Herz-Schur (A,G, α)-multiplier, then τ ◦ F (e) ≤ τ if and only

if τ ′ ◦ SF ≤ τ ′.

Proof (1) For all s, t ∈ G and a, b ∈ A, we have

〈Λτ ′(as),Λτ ′(bt)〉 = τ ′((bt)∗(as)) = τ ′(t−1b∗as) = τ ′(b∗ast−1),

where the last equality is due to [11, Lemma 3.15]. It follows that Λτ ′(Ls) ⊥ Λτ ′(Lt) whenever

s 6= t. Since {L2
t (τ

′) : t ∈ G} is a collection of pairwise orthogonal subspaces of L2(τ ′), we have
⊕

t∈G

L2
t (τ

′) = span{Λτ ′(at) : a ∈ A, t ∈ G}
‖·‖2,τ′

.

Hence, we have
⊕

t∈G

L2
t (τ

′) = Λτ ′(Cc(G,A))
‖·‖2,τ′

= L2(τ ′).

(2) For each t ∈ G, we define a map Vt : Λτ (A) → L2
t (τ

′) by

Λτ (a) 7→ Λτ ′(at), a ∈ A.

First, we prove that Vt is well-defined. Indeed, if Λτ (a) = Λτ (b), i.e., a− b ∈ Nτ , we have

0 ≤ τ ′((at− bt)∗(at− bt)) = τ ′(t−1(a− b)∗(a− b)t) = τ((a − b)∗(a− b)) = 0.

It follows that Vt is well-defined. Since

‖Vt(Λτ (a))‖
2
2,τ ′ = ‖Λτ ′(at)‖22,τ ′ = ‖Λτ(a)‖

2
2,τ ,

it can be extended to an isometry from L2(τ) to L2
t (τ

′) denoted still by Vt. It is obvious that

Vt : L
2(τ) → L2

t (τ
′) is surjective.

(3) Since E : A ⋊α,r G → A is a conditional expectation and τ ′ = τ ◦ E , it follows from [11,

Lemma 3.1] that TE : L2(τ ′) → L2(τ), Λτ ′(x) 7→ Λτ (E(x)), x ∈ A ⋊α,r G exists and is a

contraction. For z = bt (b ∈ A), since V ∗
t (Λτ ′(bt)) = Λτ (b), we have

V ∗
t Pt(Λτ ′(z)) = V ∗

t (Λτ ′(bt)) = Λτ (b) = TE(Λτ ′(zt−1)) = Λτ (E(zt
−1)).
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Considering the linearity and continuity of involved maps and the fact that

‖Λτ ′(x)‖2,τ ′ ≤ ‖x‖

for any x ∈ A⋊α,r G, it follows that the claim is true for all z ∈ A⋊α,r G.

(4) (⇒). For any positive element
∑

s∈G ass ∈ Cc(G,A), since E is a c.p. map, we have

E(
∑

s∈G ass) = ae ≥ 0. Hence

τ ′ ◦ SF

(

∑

s∈G

ass
)

= τ ′
(

∑

s∈G

F (s)(as)s
)

= τ(F (e)(ae)) ≤ τ(ae) = τ ′
(

∑

s∈G

ass
)

.

(⇐). For any a ∈ A+,

τ ◦ F (e)(a) = τ ′ ◦ SF (ae) ≤ τ ′(ae) = τ(a).

This completes the proof. 2

Lemma 2.7 Let F : G → CB(A) be a c.p. Herz-Schur (A,G, α)-multiplier such that τ◦F (e) ≤ τ

and F (e)(1A) = 1A. Then TSF
is a contraction and

TSF
=

⊕

t∈G

TF (t).

Proof Since τ ◦ F (e) ≤ τ , it follows from Lemma 2.6 (4) that τ ′ ◦ SF ≤ τ ′. Hence, SF is

L2-bounded and TSF
is a contraction. Clearly, for every t ∈ G, TSF

leaves the space Λτ ′(Lt)

invariant. By Lemma 2.4, TF (t) exists for all t ∈ G. Hence, after identifying L2
t (τ

′) with

L2(τ) by Lemma 2.6 (2), we have that the restriction of TSF
to Λτ ′(Lt) coincides with TF (t).

After identifying L2(τ ′) with
⊕

t∈G L2
t (τ

′) by Lemma 2.6 (1), it follows that TSF
coincides with

⊕

t∈G TF (t) in the dense subspace Λτ ′(Cc(G,A)). So it is obvious that TSF
=

⊕

t∈G TF (t) on

L2(τ ′). 2

Lemma 2.8 If (Fi)i∈I is a net of c.p. Herz-Schur (A,G, α)-multiplier such that τ ◦ Fi(e) ≤ τ

and Fi(e)(1A) = 1A for every i ∈ I, then the following are equivalent:

(1) ‖Λτ ′(SFi
(x) − x)‖2,τ ′ → 0, x ∈ A⋊α,r G;

(2) ‖Λτ (Fi(t)(a) − a)‖2,τ → 0 for all t ∈ G, a ∈ A.

Proof (1)⇒(2). For any a ∈ A and t ∈ G, we have

‖Λτ (Fi(t)(a) − a)‖2,τ = ‖Λτ ′(Fi(t)(a)t− at)‖2,τ ′ = ‖Λτ ′(SFi
(at)− at)‖2,τ ′ → 0.

(2)⇒(1). By the above equation and the fact that TSFi
is a contraction for each i ∈ I, so for

any ε > 0, a routine ε/3-argument shows the convergence for all x ∈ A⋊α,r G. 2

Let Φ be a c.p. map on A⋊α,r G, we define a function hΦ : G → B(A) by

hΦ(s)(a) = E(Φ(as)s−1)

for all s ∈ G and a ∈ A. It follows from [14, Proposition 3.4] that hΦ is a c.p. Herz-Schur

(A,G, α)-multiplier.

Theorem 2.9 The following statements are equivalent:
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(1) (A,G, α, τ) has the Haagerup property;

(2) (A⋊α,r G, τ ′) has the Haagerup property.

Proof (1)⇒ (2). Let (Fi)i∈I be a net of c.p. Herz-Schur (A,G, α)-multipliers witnessing the

Haagerup property of (A,G, α, τ). It follows from Lemma 2.6 (4) that τ ′ ◦ SFi
≤ τ ′. By Lemma

2.8, ‖Λτ ′(SFi
(x)− x)‖2,τ ′ → 0, x ∈ A⋊α,r G. The rest proof is similar to [14, Theorem 3.8].

(2)⇒ (1). Let (Φi)i∈I be a net of u.c.p. maps on A⋊α,r G witnessing the Haagerup property

of (A ⋊α,r G, τ ′). Let Fi = hΦi
, i ∈ I. We only prove that Fi(t) is L2-compact for any t ∈ G,

the rest proof is similar to [14, Theorem 3.8]. Let Pt be the orthogonal projection from L2(τ ′)

to L2
t (τ

′), we have TFi(t) = V ∗
t PtTΦi

PtVt. Indeed, for any a ∈ A,

TFi(t)(Λτ (a)) = Λτ (Fi(t)(a)) = Λτ (hΦi
(t)(a)) = Λτ (E(Φi(at)t

−1))

= V ∗
t Pt(Λτ ′(Φi(at))) = V ∗

t PtTΦi
(Λτ ′(at)) = V ∗

t PtTΦi
PtVt(Λτ (a)).

Since TΦi
: L2(τ ′) → L2(τ ′) is a compact operator, we conclude that TFi(t) is a compact operator

on L2(τ). 2

3. Quasi-amenable actions with respect to a state

In this section, Z(A) is the center of A, Z(A)+ is the cone of positive elements in Z(A). First

we recall some notations and results about multiplicative domains.

Proposition 3.1 ([12]) Let A and B be C∗-algebras and ϕ : A → B be a c.c.p. map.

(1) (Schwarz Inequality) The inequality ϕ(a)∗ϕ(a) ≤ ϕ(a∗a) holds for every a ∈ A.

(2) (Bimodule Property) Given a ∈ A, if ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗, then

ϕ(ba) = ϕ(b)ϕ(a) and ϕ(ab) = ϕ(a)ϕ(b), for all b ∈ A.

(3) The subspace Aϕ = {a ∈ A : ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗} is a C∗-

subalgebra of A.

Definition 3.2 ( [12]) The C∗-subalgebra Aϕ in Proposition 3.1 is called the multiplicative

domain of ϕ.

Next, we introduce the quasi-amenable action of G on A with respect to τ .

Definition 3.3 We say that an action α of G on a unital C∗-algebra A with a state τ is

quasi-amenable with respect to τ if there exists a net {Ti}i∈I of finitely supported functions

Ti : G → A+ ∩Aτ such that
∑

t∈G Ti(t)
2 = 1A and

∥

∥

∥

∑

s∈G

Ti(s)aαt(Ti(t
−1s))− a

∥

∥

∥
→ 0 (3.1)

for all t ∈ G and a ∈ A.

Remark 3.4 If there exists a net {Ti}i∈I of finitely supported functions Ti : G → Z(A)+ ∩ Aτ

such that
∑

t∈G Ti(t)
2 = 1A and
∥

∥

∥

∑

s∈G

(Ti(s)− αt(Ti(t
−1s)))∗(Ti(s)− αt(Ti(t

−1s)))
∥

∥

∥
→ 0
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for all t ∈ G, then it follows from [12, Lemma 4.3.2] that the action α is quasi-amenable with

respect to τ .

Before the following theorem, we note a fact that for each a ∈ A, we can define a map

La : A → A by La(b) = ab for all b ∈ A. Indeed,

‖Λτ(La(b))‖2,τ = ‖Λτ (ab)‖2,τ = τ(b∗a∗ab)1/2 ≤ ‖a‖τ(b∗b)1/2 = ‖a‖‖Λτ(b)‖2,τ .

Similarly, for any c ∈ Aτ , we can define Rc : A → A by Rc(b) = bc. Indeed,

‖Λτ(Rc(b))‖2,τ = ‖Λτ(bc)‖2,τ = τ(c∗b∗bc)1/2 = τ(c∗c)1/2τ(b∗b)1/2 ≤ ‖c‖‖Λτ(b)‖2,τ .

Hence, there exist bounded operators TLa
and TRc

on L2(A, τ) with the norm at most ‖a‖ and

‖c‖, respectively, such that

TLa
(Λτ (b)) = Λτ (La(b)) = Λτ (ab),

TRc
(Λτ (b)) = Λτ (Rc(b)) = Λτ (bc)

for all b ∈ A.

Theorem 3.5 If α is a quasi-amenable action of G on A with respect to τ , then (A, τ) has the

Haagerup property if and only if (A⋊α,r G, τ ′) has the Haagerup property.

Proof (⇒). Suppose that {Φj}j∈J is a net of u.c.p. maps witnessing the Haagerup property of

(A, τ) and {Ti}i∈I is a net as in Definition 3.3 witnessing the quasi-amenability of α with respect

to τ , where Ti is supported on Fi. Now we define a map Fi,j(s) (i ∈ I, j ∈ J, s ∈ G) given by

Fi,j(s)(a) =
∑

p∈G

Ti(p)αp(Φj(α
−1
p (a)))αs(Ti(s

−1p)), a ∈ A.

Using the same argument from [14, Corollary 4.6], we get Fi,j is a c.p. Herz-Schur (A,G, α)-

multiplier. Since

Fi,j(e)(a) =
∑

p∈G

Ti(p)αp(Φj(α
−1
p (a)))Ti(p), a ∈ A,

we have

Fi,j(e)(1A) =
∑

p∈G

Ti(p)
2 = 1A.

For any a ∈ A+,

(τ ◦ Fi,j(e))(a) = τ
(

∑

p∈G

Ti(p)αp(Φj(α
−1
p (a)))Ti(p)

)

=
∑

p∈G

τ(Ti(p))τ(αp(Φj(α
−1
p (a))))τ(Ti(p))

=
∑

p∈G

τ(αp(Φj(α
−1
p (a))))τ(Ti(p)

2) ≤
∑

p∈G

τ(a)τ(Ti(p)
2) = τ(a),

where we use bimodule property of multiplicative domain and τ ◦ Φj ≤ τ .

Since αs(Ti(s
−1p)) ∈ Aτ and

LTi(p)Rαs(Ti(s−1p)) = Rαs(Ti(s−1p))LTi(p),
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for any s, p ∈ G, we have

Fi,j(s)(a) =
∑

p∈G

Ti(p)αp(Φj(α
−1
p (a)))αs(Ti(s

−1p))

=
∑

p∈G

LTi(p)Rαs(Ti(s−1p))αpΦjα
−1
p (a)

for all a ∈ A. For every t ∈ G, we get

‖Λτ(αt(a))‖
2
2,τ = τ(αt(a)

∗αt(a)) = τ(a∗a) = ‖Λτ(a)‖
2
2,τ

for all a ∈ A. Hence, there exists an isometry α̂t on L2(A, τ) such that α̂t(Λτ (a)) = Λτ (αt(a))

for all a ∈ A. Therefore, we have

TFi,j(s)(Λτ (a)) =
∑

p∈G

TLTi(p)
TR

αs(Ti(s
−1p))

α̂pTΦj
α̂p−1(Λτ (a)). (3.2)

It follows that TFi,j(s) is a compact operator on L2(A, τ) by the fact that the space K(H) of all

compact operators on a Hilbert space H is a closed ideal of B(H).

By Eq. (3.2), we have

‖TFi,j(s)‖ ≤
∑

p∈G

‖Ti(p)‖‖αs(Ti(s
−1p))‖‖α̂p ◦ TΦj

◦ α̂p−1‖.

Since Ti is supported on a finite set Fi, it is easy to see that
{

s ∈ G :
∑

p∈G

‖Ti(p)‖‖αs(Ti(s
−1p))‖‖α̂p ◦ TΦj

◦ α̂p−1‖ 6= 0
}

is finite. Hence for any ε > 0, the set {s ∈ G : ‖TFi,j(s)‖ > ε} is finite, i.e., ‖TFi,j(s)‖ → 0 as

s → ∞, for any i ∈ I, j ∈ J .

Finally, we show that ‖Λτ (Fi,j(s)(a)− a)‖2,τ → 0 for all s ∈ G, a ∈ A. Indeed,

‖Λτ (Fi,j(s)(a) − a)‖2,τ =
∥

∥

∥
Λτ

(

∑

p∈G

Ti(p)αp(Φj(α
−1
p (a)))αs(Ti(s

−1p))− a
)∥

∥

∥

2,τ

≤
∥

∥

∥
Λτ

(

∑

p∈G

Ti(p)αp(Φj(α
−1
p (a))− α−1

p (a))αs(Ti(s
−1p))

)∥

∥

∥

2,τ
+

∥

∥

∥
Λτ

(

∑

p∈G

Ti(p)aαs(Ti(s
−1p))− a

)∥

∥

∥

2,τ

≤‖TFi,j(s)(Λτ (Φj(α
−1
p (a))− α−1

p (a)))‖2,τ+
∥

∥

∥

∑

p∈G

Ti(p)aαs(Ti(s
−1p))− a‖.

The former converges to zero as ‖Λτ (Φj(x) − x)‖2,τ → 0 for all x ∈ A, the latter converges to

zero by Eq. (3.1). Hence, (A,G, α, τ) has the Haagerup property. It follows from Theorem 2.9

that (A⋊α,r G, τ ′) has the Haagerup property.

(⇐). It follows from [11, Corollary 3.14]. 2

As a special case of the above result, we give a new proof of [11, Theorem 3.19]. If F ⊆ G

is a finite subset, we denote by |F | the number of elements in F and χF the characteristic

function over F . Let E,F ⊆ G be two subsets, and the symmetric difference of them be
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E △ F = E ∪ F\E ∩ F .

Corollary 3.6 Let A be a unital C∗-algebra with a state τ and G be a discrete amenable

group acting on A through a τ -preserving action α. If (A, τ) has the Haagerup property, then

(A⋊α,r G, τ ′) has the Haagerup property.

Proof Let Fn be a Følner sequence. Define Tn : G → A by

Tn(t) =
1A

√

|Fn|
χFn

(t)

for all t ∈ G. It is obvious that Tn is finitely supported, Tn(t) ∈ Z(A)+ ∩ Aτ for all t ∈ G and
∑

t∈G Tn(t)
2 = 1A. We just need to check that

∥

∥

∥

∑

s∈G

(Tn(s)− αt(Tn(t
−1s)))∗(Tn(s)− αt(Tn(t

−1s)))
∥

∥

∥
→ 0

for every t ∈ G. Indeed,
∥

∥

∥

∑

s∈G

(
1A

√

|Fn|
χFn

(s)−
1A

√

|Fn|
χFn

(t−1s))2
∥

∥

∥
=

∣

∣

∣
2−

2

|Fn|

∑

s∈G

χFn
(s) · χFn

(t−1s)
∣

∣

∣

= |2− 2
|Fn ∩ tFn|

|Fn|
| =

|tFn △ Fn|

|Fn|
→ 0

for every t ∈ G. Therefore, it follows from Remark 3.4 and Theorem 3.5 that (A⋊α,r G, τ ′) has

the Haagerup property. 2
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