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Abstract The aim of this paper is to investigate the well-posedness and stability in set opti-

mization. The notion of generalized well-posedness for set optimization problems is introduced

using the embedding technique for the first time. Some criteria and characterizations of this type

of well-posedness are derived. Sufficient conditions are also given for this type of well-posedness.

Moreover, by virtue of a generalized Gerstewitz’s function, the equivalent relation between this

type of well-posedness and the generalized well-posedness of a scalar optimization problem is

established. Finally, the upper semi-continuity and lower semi-continuity of weak efficient so-

lution mappings for parametric set optimization problems are investigated under some suitable

conditions.
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1. Introduction

During the last few years, set-valued optimization which is a generalization of vector opti-

mization, has received much attention due to its wide applications in many areas such as fuzzy

optimization, game theory, control theory and mathematical economics. For more details we

refer to [1].

It is well known that there are two types of criteria of solutions for set-valued optimization

problem: vector criterion [2, 3] and set optimization criterion [4, 5]. Vector criterion consists

of finding the solutions that give efficient points of image set of the objective set-valued map.

Set optimization was introduced by Kuroiwa [6]. This criterion depends on comparisons among

values of the set-valued map and this concept requires order relations to compare sets. The last

criterion seems to be more natural and is used in this paper.

Well-posedness plays a crucial role in the study of stability theory in optimization. The

study of well-posedness of an optimization problem is to investigate the behavior of the variable

when the corresponding objective function value is close to the optimal value. The notion of
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well-posedness for optimization problems was firstly introduced by Tykhonov [7] in 1966. Since

then, many authors have extended the notion of well-posedness for scalar and vector optimization

problems, we refer the readers to [8–13]. Recently, many authors have studied well-posedness

in set optimization. Zhang et al. [14] introduced a notion of pointwise well-posedness and two

notions of global well-posedness in set optimization and obtained their scalar characterization.

Using the scalar results, the authors derived some criteria and characterizations for all the three

types of well-posedness. This research was generalized by Gutierrez et al. [15] under assumptions

of cone properness. Long and Peng [16] studied various types of well-posedness in the sense of

Bednarczuk in set optimization. Crespi et al. [17] linked some already existing notions of well-

posedness with the upper semicontinuity and compactness of solution maps. Vui et al. [18]

studied various types of Levitin-Polyak (LP) well-posedness in set optimization. Gupta and

Srivastava [19] defined new types of well-posedness in set optimization and derived their necessary

and sufficient conditions. To the best of our knowledge, however, there is still no paper concerning

the well-posedness under perturbation in set optimization.

On the other hand, the stability of solutions is a very interesting topic in the study of set

optimization. Recently, Xu and Li [20] obtained the upper semi-continuity and lower semi-

continuity of the minimal solution and weak minimal solution mappings for a parametric set

optimization problem by using converse u-property of objective mappings. Han and Huang [21]

studied the upper semi-continuity and lower semi-continuity of minimal solution mappings for

parametric set optimization problems by using the level mappings. Khoshkhabar-amiranloo [22]

discussed the upper semi-continuity, lower semi-continuity and compactness of minimal solution

mappings for parametric set optimization problems whose objective values are not necessarily

compact. Zhang and Huang [23] studied the upper semi-continuity, lower semi-continuity and

compactness of minimal solution mappings for parametric set optimization involving the cone

Lipschitz continuous set-valued mapping.

Motivated by these works, in this paper, we aim to investigate the well-posedness under

perturbation for set optimizations and stability of solution mappings for a new parametric set

optimization problem. We introduce the notion of generalized well-posedness by embedding the

original set optimization problem in a family of perturbed problems depending on a parameter.

It is worth mentioning that generalized well-posedness includes the extended k0-well-posedness

studied in [14] as a special case. Some criteria and characterizations of this type of well-posedness

are derived. Sufficient conditions are also given for this type of well-posedness. Moreover, using a

generalized version of so-called nonlinear scalarization functional [24], we establish the equivalent

relation between this type of well-posedness and the generalized well-posedness of a suitable

scalar optimization problem. Finally, the upper semi-continuity and lower semi-continuity of

weak efficient solution mappings are investigated under some suitable conditions.

2. Preliminaries

Let X and Y be normed spaces. Denote by BX and BY the closed unit balls, respectively,
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in X and Y . The family of all nonempty subsets of Y is denoted by P0(Y ). The space Y is

ordered by a convex closed and pointed cone K ⊂ Y with its topological interior intK 6= ∅, in

the following way:

x ≤ y ⇔ y − x ∈ K,

x < y ⇔ y − x ∈ intK.

Throughout we assume e ∈ intK to be a fixed element. A ⊂ Y is said to be K-closed if

A +K is a closed set, K-bounded if for each neighborhood U of 0 in Y there is some positive

number t such that A ⊂ tU +K and K-compact if any cover of A of the form {Uα +K| Uα are

open} admits a finite subcover.

Assume that P is a metric space, p∗ is a fixed point in P , and that L is a closed ball in P

centered at p∗ with a positive radius. Let S be a nonempty subset of X , let J : S ⇉ Y and

I : S × L ⇉ Y be set-valued mappings such that

I(x, p∗) = J(x), ∀x ∈ S.

The problem is set as follows. The original set optimization problem is described by:

(S, J) : min
x∈S

J(x).

The parametric set optimization problem is described by:

(S, I(·, p)) : min
x∈S

I(x, p).

Note that the original problem (S, J) is consistent with problem (S, I(·, p∗)). (S, I(·, p))

(for short (p) if no confusion arises) is called the perturbed problem of the original problem

corresponding to the parameter p ∈ L.

To study the set optimization problem (p), we will consider the set relation introduced by

Kuroiwa [6] as follows.

Definition 2.1 Let A,B ∈ P0(Y ). The lower set less relation ≺l
K is defined by

A ≺l
K B ⇔ B ⊂ A+ intK ⇔ ∀ b ∈ B, ∃ a ∈ A s.t. a < b.

The negation of A ≺l
K B is denoted by A ⊀l

K B, that is, B 6⊂ A + intK. In general, ≺l
K is

not a preorder since it is not reflexive.

In particular, if A and B are singletons, then ≺l
K and < have the same meaning.

Using the set relation ≺l
K , Kuroiwa [6] defined the concept of weak efficient solutions to set

optimization problems.

Definition 2.2 An element x0 ∈ S is said to be a weak efficient solution of (p) iff I(x, p) 6≺l
K

I(x0, p), for all x ∈ S.

We denote the set of all weak efficient solutions of (p) by WEff(p). Throughout we assume

that WEff(p) 6= ∅ for all p ∈ L. Note that WEff(p∗) is the set of all weak efficient solutions of

(S, J).
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Let F : S ⇉ Y be a set-valued mapping. The graph of F , denoted by graphF , is defined as

graphF := {(x, y) ∈ S × Y : y ∈ F (x)}.

Definition 2.3 ([14]) The mapping F is said to be bounded-valued (respectively closed-valued,

compact-valued, open-valued, K-bounded-valued, K-closed-valued, K-compact-valued and so

on) if for any x ∈ S, the set F (x) is a bounded set (respectively a closed set, a compact set, an

open set, a K-bounded set, a K-closed set, a K-compact set and so on).

We now recall the notion of compactness of set-valued mappings.

Definition 2.4 ([17]) The mapping F is said to be compact at x0 ∈ S if for every sequence

{(xn, yn)} ⊂ graphF with xn → x0 there exists a subsequence {ynk
} of {yn} such that ynk

→

y0 ∈ F (x0).

Also, we say that F is compact on S if F is compact at every x0 ∈ S.

We next recall the concepts of semi-continuity of set-valued mappings.

Definition 2.5 ([1]) The mapping F is said to be

(i) Upper semi-continuous (for short, u.s.c.) at x0 ∈ S if for any neighborhood V of F (x0),

there exists a neighborhoood U of x0 such that F (x) ⊂ V for all x ∈ U ∩ S;

(ii) Lower semi-continuous (for short, l.s.c.) at x0 ∈ S if for any y ∈ F (x0) and any

neighborhood V of y, there exists a neighborhoood U of x0 such that F (x) ∩ V 6= ∅ for all

x ∈ U ∩ S;

(iii) Hausdorff lower semi-continuous (for short, H-l.s.c.) at x0 ∈ S if for any neighborhood

V of 0 ∈ Y , there exists a neighborhoood U of x0 such that F (x0) ⊂ F (x) +V for all x ∈ U ∩S.

Remark 2.6 F is compact at x0 ∈ S iff F (x0) is compact and F is u.s.c. at x0.

Definition 2.7 ([25]) The mapping F is said to be K-upper semicontinuous (for short, K-

u.s.c.) at x0 ∈ S if for any d ∈ intK, there exists a neighborhood U of x0 such that F (x0)+ d ⊂

F (x) + intK for all x ∈ U ∩ S.

Definition 2.8 We say that the mapping F has the ≺l
K-continuous property at x0 ∈ S with

respect to y0 ∈ S if, either F (y0) ≺l
K F (x0) or for any sequence {xn}, {yn} ⊂ S with xn →

x0, yn → y0, there exists n ∈ N such that F (yn) 6≺l
K F (xn).

Also, we say that F has the ≺l
K-continuous property on S if F has the ≺l

K-continuous

property at each x0 ∈ S with respect to each y0 ∈ S.

We give the following example to illustrate Definition 2.8.

Example 2.9 Let X = Y = R, S = [0, 2], K = R+ and F : S ⇉ Y be defined by

F (x) = (−1, x], ∀x ∈ [0, 2].

Then, it is easy to check that F has the ≺l
K-continuous property on S.

3. Generalized well-posedness
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In this section, we will introduce the notion of generalized well-posedness for (S, J) and

investigate its characterizations and sufficient conditions.

Definition 3.1 Let ε ≥ 0. A point xε ∈ S is said to be an ε-weak efficient solution of (p), if

there is no x ∈ S such that I(x, p) + εe ≺l
K I(xε, p).

We denote the set of all ε-weak efficient solutions of (p) by ε-WEff(p). If ε = 0, then the set

ε-WEff(p) is consistent with WEff(p).

Remark 3.2 Clearly, if 0 ≤ ε1 ≤ ε2, then for all p ∈ L,

WEff(p) ⊂ ε1-WEff(p) ⊂ ε2-WEff(p).

Definition 3.3 Let {pn} ⊂ L be such that pn → p∗. A sequence {xn} ⊂ S is said to be a

generalized e-minimizing sequence corresponding to pn iff there exists εn > 0 with εn → 0 such

that

I(x, pn) + εne 6≺
l
K I(xn, pn), ∀x ∈ S.

Remark 3.4 (i) Let {pn} ⊂ L be such that pn → p∗. Then {xn} ⊂ S is a generalized e-

minimizing sequence corresponding to pn iff there exists εn > 0 with εn → 0 such that xn ∈

εn-WEff(pn);

(ii) If pn ≡ p∗, then {xn} is an extended e-minimizing sequence in [14].

Definition 3.5 (S, J) is said to be generalized well-posed iff for any {pn} ⊂ L such that pn → p∗,

each generalized e-minimizing sequence corresponding to pn has a subsequence that converges

to an element of WEff(p∗).

Remark 3.6 (i) Definition 3.5 generalizes Definition 2.3 of [14] to the perturbed case;

(ii) (S, J) is generalized well-posed iff WEff(p∗) is compact and for any {pn} ⊂ L such that

pn → p∗, each generalized e-minimizing sequence corresponding to pn has a subsequence {xnk
}

such that d(xnk
,WEff(p∗)) → 0.

We now give the following example to illustrate Definition 3.5.

Example 3.7 Let X = P = R, Y = R2, S = (0,+∞), K = R2
+, e = (1, 1), p∗ = 0, L = [− 1

2
, 1

2
]

and let J : S ⇉ Y and I : S × L ⇉ Y be defined by

J(x) = (x− n, n) + [0, 1]× [0, 1], x ∈ (n, n+ 1], n = 0, 1, . . .

and

I(x, p) = (x− n, n) + [p2, 1− p2]× [p2, 1− p2], x ∈ (n, n+ 1], n = 0, 1, . . . .

Then, the problem (S, J) is generalized well-posed.

Now we consider some criteria and characterizations of generalized well-posedness for (S, J).

Given a set A ⊂ S, the Kuratowski measure of noncompactness of A is defined as follows:

α(A) = inf{k > 0 : A has a finite cover of sets with diameter < k}.
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When p is near p∗, let T (ε) =
⋃

{ε-WEff(p) : ρ(p, p∗) < ε} for any ε > 0. We need the

following condition:

α(T (ε)) → 0, as ε → 0 (3.1)

Theorem 3.8 Assume that:

(i) T (ε) is closed for all ε > 0;

(ii) J is open-valued and compact-valued;

(iii) I(x, ·) is K-u.s.c. at p∗ for all x ∈ S;

(iv) I(x, p) ⊂ J(x) for all (x, p) ∈ S × L.

Then (S, J) is generalized well-posed iff (3.1) holds.

Proof First, it follows from Remark 3.2 that T (ε) 6= ∅ for all p ∈ L. By (i), similar to Theorem

3.2 in [11], we only need to verify

WEff(p∗) =
⋂

ε>0

T (ε).

As WEff(p∗) ⊂ T (ε), for every ε > 0, it is clear that WEff(p∗) ⊂
⋂

ε>0
T (ε). Now we show that

⋂

ε>0
T (ε) ⊂ WEff(p∗). Let x∗ ∈

⋂

ε>0
T (ε). Thus there exists a sequence {pn} ⊂ L satisfying

ρ(pn, p
∗) < εn, where εn ↓ 0, such that x∗ ∈ εn-WEff(pn) for all n ∈ N. Note that we also have

pn → p∗. Let x ∈ S, then

I(x∗, pn) 6⊂ I(x, pn) + εne+ intK.

Thus there exists yn ∈ I(x∗, pn) such that

yn − εne 6∈ I(x, pn) + intK.

Using (iii), for any d ∈ intK, there exists n0 ∈ N such that

I(x, p∗) + d ⊂ I(x, pn) + intK, ∀n > n0.

This implies that

yn − εne 6∈ J(x) + d, ∀n > n0. (3.2)

From (iv) we obtain yn ∈ J(x∗) and by (ii) we have J(x∗) is compact. Thus there exist a

subsequence {ynk
} of {yn} and y∗ ∈ J(x∗) such that ynk

→ y∗. Also, by (ii) we have J(x) + d

is open. Hence by taking limits in (3.2) it follows that

y∗ 6∈ J(x) + d. (3.3)

Since d is arbitrary, it follows that (3.3) holds for all d ∈ intK. Therefore,

y∗ 6∈ J(x) + intK,

which implies

J(x∗) * J(x) + intK, ∀x ∈ S.

That is, x∗ ∈ WEff(p∗). The proof is completed. 2

Remark 3.9 Theorem 3.2 in [11] uses the Kuratowski noncompactness measure to study the
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characterization of strongly extended well-posedness of set-valued vector optimization problems.

In this paper, Theorem 3.8 uses the same tool to give the characterization of generalized well-

posedness for set optimization problems. The proof method is different from [11].

Now we define approximate solution mapping M : R+ × L ⇉ S by

M(ε, p) = ε-WEff(p), ∀ (ε, p) ∈ R+ × L.

Proposition 3.10 Suppose that WEff(p∗) ⊂ WEff(p) for all p ∈ L, then the approximate

solution mapping M(·, ·) is H-l.s.c. at (0, p∗).

Proof Suppose the contrary that M(·, ·) is not H-l.s.c. at (0, p∗). Then there exists δ > 0 such

that for any neighborhood U ×W of (0, p∗), there exists (ε, p) ∈ U ×W satisfying

M(0, p∗) 6⊂ M(ε, p) +B(0, δ). (3.4)

Observe that M(0, p∗) = WEff(p∗) ⊂ WEff(p), it follows from Remark 3.1 that

M(0, p∗) ⊂ M(ε, p) ⊂ M(ε, p) +B(0, δ),

which contradicts (3.4). Therefore, M(·, ·) is H-l.s.c. at (0, p∗). 2

Theorem 3.11 (S, J) is generalized well-posed iff WEff(p∗) is compact and the approximate

solution mapping M(·, ·) is u.s.c. at (0, p∗).

Proof Suppose that (S, J) is generalized well-posed. Let {xn} be a sequence in WEff(p∗).

Since WEff(p∗) ⊂ ε-WEff(p∗), there exists εn ↓ 0 such that xn ∈ εn-WEff(p∗). It follows from

Remark 3.4 (i) that {xn} is a generalized e-minimizing sequence corresponding to pn ≡ p∗. Hence

there exists a subsequence {xnk
} of {xn} and x∗ ∈ WEff(p∗) such that xnk

→ x∗. This implies

WEff(p∗) is compact. It remains to verify M(·, ·) is u.s.c. at (0, p∗). Suppose not, then there

exists a neighborhood V0 of M(0, p∗) such that for any neighborhood U × W of (0, p∗), there

exists (ε, p) ∈ U ×W satisfying

M(ε, p) 6⊂ V0.

Thus, we can choose (εn, pn) → (0, p∗), which satisfies ∃xn ∈ M(εn, pn) such that xn 6∈ V0. Then

it follows from Remark 3.4 (i) that {xn} is a generalized e-minimizing sequence corresponding to

pn, hence there exists a subsequence {xnk
} such that

xnk
→ x0 ∈ WEff(p∗) ⊂ V0.

This gives a contradiction to xnk
6∈ V0.

Conversely, let pn → p∗ and {xn} be a generalized e-minimizing sequence corresponding to

pn. It follows from Remark 3.4 (i) that there exists εn → 0 such that xn ∈ M(εn, pn). Since

M(·, ·) is u.s.c. at (0, p∗) and (εn, pn) → (0, p∗), it follows that for any neighborhood V of 0 ∈ X ,

there exists n0 ∈ N such that

xn ∈ M(εn, pn) ⊂ WEff(p∗) + V, ∀n > n0.

By the compactness of WEff(p∗), we obtain that (S, J) is generalized well-posed. The proof is

completed. 2
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Corollary 3.12 (S, J) is generalized well-posed iff M(·, ·) is compact at (0, p∗).

We next give sufficient conditions for generalized well-posedness.

Theorem 3.13 Assume that:

(i) S is a compact set;

(ii) J is open-valued and compact on S;

(iii) I(x, ·) is K-u.s.c. at p∗ for all x ∈ S;

(iv) I(x, p) ⊂ J(x) for all (x, p) ∈ S × L.

Then (S, J) is generalized well-posed.

Proof Let pn → p∗ and {xn} be a generalized e-minimizing sequence corresponding to pn. Then

it follows from Remark 3.4 (i) that there exists εn → 0 such that xn ∈ εn-WEff(pn). Since S is

compact, there exist a subsequence {xnk
} and x∗ ∈ S such that xnk

→ x∗. Let x ∈ S. Now

xnk
∈ εnk

-WEff(pnk
), thus there exists ynk

∈ I(xnk
, pnk

) such that

ynk
− εnk

e 6∈ I(x, pnk
) + intK.

Use (iii), for any d ∈ intK, there exists k0 ∈ N such that

I(x, p∗) + d ⊂ I(x, pnk
) + intK, ∀ k > k0.

This implies that

ynk
− εnk

e 6∈ J(x) + d, ∀ k > k0. (3.5)

Using (iv), we obtain ynk
∈ J(xnk

) for all k ∈ N. Since J is compact at x∗, there exist a

subsequence of {ynk
} and y∗ ∈ J(x∗) such that it converges to y∗. Also, by (ii) we have J(x)+ d

is open. Hence by taking limits in (3.5) it follows that

y∗ 6∈ J(x) + d. (3.6)

Since d is arbitrary, it follows that (3.6) holds for all d ∈ intK. Therefore,

y∗ 6∈ J(x) + intK,

which implies

J(x∗) * J(x) + intK, ∀x ∈ S.

That is, x∗ ∈ WEff(p∗). This completes the proof. 2

The following example shows that the compactness of S cannot be dropped in Theorem 3.13.

Example 3.14 Let X = P = R, Y = R2, S = (0, 1], K = R2
+, e = (1, 1), p∗ = 1, L = [0, 2] and

let J : S ⇉ Y and I : S × L ⇉ Y be defined by

J(x) =

{

{(x, x)} + R2
++, if x ∈ (0, 1);

R2
++, if x = 1;

and

I(x, p) =

{

{(x+ p, x+ p)}+ R2
++, if x ∈ (0, 1);

R2
++, if x = 1

, ∀ p 6= 1.
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It can be seen that WEff(p∗) = {1}. Here, (ii)–(iv) hold but S is not compact. If pn = 1 + 1

n

and xn = εn = 1

n
, then {xn} is a generalized e-minimizing sequence corresponding to pn and

xn → 0, but 0 6∈ WEff(p∗). Thus, (S, J) is not generalized well-posed.

Theorem 3.15 Assume that:

(i) X is a finite dimensional normed space;

(ii) WEff(p∗) is a compact set;

(iii) J is open-valued and compact on S;

(iv) I(x, ·) is K-u.s.c. at p∗ for all x ∈ S;

(v) I(x, p) ⊂ J(x) for all (x, p) ∈ S × L;

(vi) WEff(p∗) ⊂ WEff(p) for all p ∈ L;

(vii) There exists δ > 0 such that ε-WEff(p) is connected for every (ε, p) ∈ (0, δ)×B(p∗, δ).

Then (S, J) is generalized well-posed.

Proof Suppose (S, J) is not generalized well-posed. Since WEff(p∗) is compact, it follows from

Remark 3.6 (ii) there exist a sequence {pn} ⊂ L with pn → p∗ and a generalized e-minimizing

sequence {xn} corresponding to pn such that d(xn,WEff(p∗)) 6→ 0. Since {xn} is a generalized e-

minimizing sequence corresponding to pn, it follows from Remark 3.4 (i) that there exists εn → 0

such that xn ∈ εn-WEff(pn). As d(xn,WEff(p∗)) 6→ 0 it follows that there exist a subsequence

{xnk
} and α > 0 such that

xnk
6∈ WEff(p∗) + αBX .

Therefore,

xnk
∈ εnk

-WEff(pnk
) ∩ (WEff(p∗) + αBX)c,

which implies

εnk
-WEff(pnk

) ∩ (WEff(p∗) + αBX)c 6= ∅. (3.7)

Also, by (vi) we have WEff(p∗) ⊂ WEff(pnk
) ⊂ εnk

-WEff(pnk
). Thus,

εnk
-WEff(pnk

) ∩ int (WEff(p∗) + αBX) 6= ∅. (3.8)

Since (εnk
, pnk

) → (0, p∗), it follows that for δ > 0 given in (vii), there exists k0 ∈ N, such that

for any k > k0, we have εnk
< δ and ρ(pnk

, p∗) < δ. Now we claim that

εnk
-WEff(pnk

) ∩ ∂(WEff(p∗) + αBX) 6= ∅, ∀ k > k0.

Suppose the contrary, then there exists k > k0 such that

εnk
-WEff(pnk

) ⊂ (WEff(p∗) + αBX)c ∪ int (WEff(p∗) + αBX). (3.9)

From (3.7), (3.8) and (3.9), this arrives at a contradiction to the fact that εnk
-WEff(pnk

) is con-

nected. Therefore, there exists a sequence {ωnk
} such that ωnk

∈ εnk
-WEff(pnk

)∩∂(WEff(p∗)+

αBX) for all k > k0. Since ∂(WEff(p∗) + αBX) is a compact set, there exists a subsequence,

which we again denote by {ωnk
} such that ωnk

→ ω∗ and

ω∗ ∈ ∂(WEff(p∗) + αBX). (3.10)
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Let x ∈ S. For k > k0, as ωnk
∈ εnk

-WEff(pnk
), there exists ynk

∈ I(ωnk
, pnk

) such that

ynk
− εnk

e 6∈ I(x, pnk
) + intK.

Proceeding as in Theorem 3.13, we derive that ω∗ ∈ WEff(p∗). It is a contradiction with (3.10)

and the proof is completed. 2

Remark 3.16 It may be observed in Example 3.14 that for every (ε, p) ∈ (0, 1)× [0, 2], the set

ε-WEff(p) = (0, ε] ∪ {1} is not connected. Since (S, J) is not generalized well-posed, therefore

(vii) cannot be dropped in Theorem 3.15.

Remark 3.17 Both Theorems 3.13 and 3.15 give sufficient conditions for generalized well-

posedness, but their hypotheses are slightly different. Moreover, the proof method used in the

two theorems are different.

4. Scalarization results

In this section, we will discuss the equivalent relation between the generalized well-posedness

for (S, J) and the generalized well-posedness for a suitable scalar optimization problem by using

a nonlinear scalarization function.

First we recall the definition of generalized well-posedness for a scalar optimization problem

in [26]. Let f : S → R be a real-valued function. Consider the following scalar optimization

problem:

(S, f) : min
x∈S

f(x).

We denote the set of all minimizers of (S, f) by argmin(S, f). Then (S, f) is said to be generalized

well-posed in the scalar sense iff argmin(S, f) is not empty, and every sequence {xn} ⊂ S such

that f(xn) → inff(S) has some subsequence {xnk
} converging to a minimizer of (S, f).

Based on the Gerstewitz’s nonconvex separation function studied in [24], Hernández and

Rodŕıguez-Maŕın [27] introduced a generalization of the Gerstewitz’s function.

Definition 4.1 ([27]) Let the function Ge(·, ·) : P0(Y )× P0(Y ) → R ∪ {∞} defined by setting

Ge(A,B) = sup
b∈B

φe,A(b), for (A,B) ∈ P0(Y )× P0(Y ),

where the function φe,A : Y → R ∪ {−∞} is defined by

φe,A(y) = inf{t ∈ R : y ∈ −te+A+K}, for y ∈ Y.

Note that when A = {a} and B = {y}, the function Ge(A,B) reduces to the Gerstewitz’s

function φe,a(y).

We now recall the following important properties of Ge(·, ·).

Lemma 4.2 ([14]) Assume A,B ∈ P0(Y ), r ∈ R, A is K-closed and B is K-bounded. Then

(i) Ge(A,A) = 0;

(ii) Ge(A,B + εe) = Ge(A,B)− ε, for all ε ≥ 0;
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(iii) Ge(A,B) < r ⇔ B ⊂ A− re + intK;

(iv) If B1 and B2 are K-compact sets and B1 ≺l
K B2, then Ge(A,B2) < Ge(A,B1).

Proposition 4.3 Suppose that I(·, p) is K-compact-valued for all p ∈ L. Then
⋃

p∈L

WEff(p) = argmin
(

S,− sup
p∈L

inf
x∈S

Ge(I(x, p), I(·, p))
)

.

Proof Let x∗ ∈
⋃

p∈LWEff(p). Then x∗ ∈ WEff(p0) for some p0. We claim that for every

x ∈ S, Ge(I(x, p0), I(x
∗, p0)) ≥ 0. Suppose on the contrary that there exist x0 ∈ S and r < 0

such that Ge(I(x0, p0), I(x
∗, p0)) < r. Then it follows from Lemma 4.2 (iii) that

I(x∗, p0) ⊂ I(x0, p0)− re + intK ⊂ I(x0, p0) + intK,

that is, I(x0, p0) ≺l
K I(x∗, p0), which gives a contradiction to x∗ ∈ WEff(p0). Therefore,

infx∈S Ge(I(x, p0), I(x
∗, p0)) ≥ 0. It follows that

sup
p∈L

inf
x∈S

Ge(I(x, p), I(x
∗, p)) ≥ 0. (4.1)

Also, using Lemma 4.2 (i) we obtain for any y ∈ S

Ge(I(y, p), I(y, p)) = 0, ∀ p ∈ L.

This implies that

sup
p∈L

inf
x∈S

Ge(I(x, p), I(y, p)) ≤ 0. (4.2)

Along with (4.1) we obtain for all y ∈ S

sup
p∈L

inf
x∈S

Ge(I(x, p), I(y, p)) ≥ − sup
p∈L

inf
x∈S

Ge(I(x, p), I(x
∗, p)), (4.3)

i.e., x∗ ∈ argmin(S,− supp∈L infx∈S Ge(I(x, p), I(·, p))). This implies

⋃

p∈L

WEff(p) ⊂ argmin
(

S,− sup
p∈L

inf
x∈S

Ge(I(x, p), I(·, p))
)

.

Now we prove the converse case. Let x∗ ∈ argmin(S,− supp∈L infx∈S Ge(I(x, p), I(·, p))).

Then (4.3) holds. Combining with (4.2), we have (4.1) holds. Therefore, there exists p0 ∈ L such

that

inf
x∈S

Ge(I(x, p0), I(x
∗, p0)) ≥ 0.

Thus, for any x ∈ S, we have

Ge(I(x, p0), I(x
∗, p0)) ≥ 0 = Ge(I(x, p0), I(x, p0)).

Then it follows from Lemma 4.2 (iv) that I(x, p0) 6≺l
K I(x∗, p0), which implies x∗ ∈ WEff(p0).

This completes the proof. 2

Theorem 4.4 Suppose that I(·, p) is K-compact-valued and WEff(p) ⊂ WEff(p∗) for all p ∈ L.

Then (S, J) is generalized well-posed iff the scalar problem (S,− supp∈L infx∈S Ge(I(x, p), I(·, p)))

is generalized well-posed in the scalar sense.
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Proof First, using Proposition 4.3 and the fact that WEff(p) ⊂ WEff(p∗) for all p ∈ L, we

obtain

WEff(p∗) = argmin
(

S,− sup
p∈L

inf
x∈S

Ge(I(x, p), I(·, p))
)

. (4.4)

Let pn → p∗ and {xn} be a generalized e-minimizing sequence corresponding to pn. Then there

exists εn → 0 such that for all x ∈ S

I(xn, pn) 6⊂ I(x, pn) + εne+ intK.

From Lemma 4.2 (iii), we have

Ge(I(x, pn), I(xn, pn)) ≥ −εn, ∀x ∈ S,

which implies

− sup
p∈L

inf
x∈S

Ge(I(x, p), I(xn, p)) ≤ εn.

Also, note that Ge(I(xn, p), I(xn, p)) = 0 for any p ∈ L. It follows that

− sup
p∈L

inf
x∈S

Ge(I(x, p), I(xn, p)) ≥ 0.

Hence, for all n

0 ≤ − sup
p∈L

inf
x∈S

Ge(I(x, p), I(xn, p)) ≤ εn.

Thus, − supp∈L infx∈S Ge(I(x, p), I(xn, p)) → 0. Since (S,− supp∈L infx∈S Ge(I(x, p), I(·, p))) is

well-posed, there exists a subsequence {xnk
} converging to a point

x∗ ∈ argmin
(

S,− sup
p∈L

inf
x∈S

Ge(I(x, p), I(·, p))
)

.

From (4.4), x∗ ∈ WEff(p∗). Therefore, (S, J) is generalized e-well-posed.

Conversely, assume that {xn} is a sequence which satisfies that ∃ εn → 0 such that

− sup
p∈L

inf
x∈S

Ge(I(x, p), I(xn, p)) < inf
y∈S

[

− sup
p∈L

inf
x∈S

Ge(I(x, p), I(y, p))
]

+ εn.

Thus, for all y ∈ S, we have

sup
p∈L

inf
x∈S

Ge(I(x, p), I(xn, p)) > sup
p∈L

inf
x∈S

Ge(I(x, p), I(y, p))− εn.

So for all p ∈ L, there exists pn → p∗ such that

inf
x∈S

Ge(I(x, pn), I(xn, pn)) > inf
x∈S

Ge(I(x, p), I(y, p)) − εn.

Especially, we have

inf
x∈S

Ge(I(x, pn), I(xn, pn)) > inf
x∈S

Ge(I(x, pn), I(y, pn))− εn.

Thus, for any y ∈ S and n, there exists zy,n ∈ S such that

Ge(I(zy,n, pn), I(xn, pn)) > Ge(I(zy,n, pn), I(y, pn))− εn

= Ge(I(zy,n, pn), I(y, pn) + εne).
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It follows from Lemma 4.2 (iv) that I(y, pn)+ εne 6≺l
K I(xn, pn) for all y ∈ S and n. Hence, {xn}

is a generalized e-minimizing sequence corresponding to pn. Since (S, J) is generalized e-well-

posed, there exists a subsequence {xnk
} converging to a point x∗ ∈ WEff(p∗). From (4.4), x∗ ∈

argmin(S,− supp∈L infx∈S Ge(I(x, p), I(·, p))). Therefore, (S,− supp∈L infx∈S Ge(I(x, p), I(·, p)))

is generalized well-posed in the scalar sense. The proof is completed. 2

5. Stability of the solution mappings

Let W : L ⇉ S denote weak efficient solution mapping of the parametric set optimization

problem (p), i.e.,

W (p) = WEff(p) = {x0 ∈ S : I(x, p) 6≺l
K I(x0, p), ∀x ∈ S}, ∀p ∈ L.

In this section, we establish the upper semi-continuity and lower semi-continuity of W .

Theorem 5.1 Assume that:

(i) S is a compact set;

(ii) J is open-valued and compact on S;

(iii) I(x, ·) is K-u.s.c. at p∗ for all x ∈ S;

(iv) I(x, p) ⊂ J(x) for all (x, p) ∈ S × L.

Then W is u.s.c. at p∗.

Proof Suppose to the contrary that W is not u.s.c. at p∗. Then there exists a neighborhood

V0 of W (p∗) such that for any neighborhood U of p∗, there exists p ∈ U satisfying

W (p) 6⊂ V0.

Thus, we can choose pn → p∗, which satisfies ∃xn ∈ W (pn) such that xn 6∈ V0. Since S is

compact, there exist a subsequence {xnk
} of {xn} and x∗ ∈ S such that xnk

→ x∗. Let x ∈ S.

Now xnk
∈ W (pnk

), thus there exists ynk
∈ I(xnk

, pnk
) such that

ynk
6∈ I(x, pnk

) + intK.

Using (iii), for any d ∈ intK, there exists k0 ∈ N such that

I(x, p∗) + d ⊂ I(x, pnk
) + intK, ∀ k > k0.

This implies that

ynk
6∈ J(x) + d, ∀ k > k0.

Proceeding as in Theorem 3.13, we derive that x∗ ∈ WEff(p∗). Thus, it follows that xnk
→ x∗ ∈

V0, which gives a contradiction to xnk
6∈ V0. Therefore, W is u.s.c. at p∗. 2

Theorem 5.2 Assume that:

(i) S is a compact set;

(ii) I(·, ·) is compact on S × {p∗};

(iii) J(x) ⊂ I(x, p) for all (x, p) ∈ S × L.

Then W is u.s.c. at p∗.
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Proof Suppose to the contrary that W is not u.s.c. at p∗. Then there exists a neighborhood

V0 of W (p∗) such that for any neighborhood U of p∗, there exists p ∈ U satisfying

W (p) 6⊂ V0.

Thus, we can choose pn → p∗, which satisfies ∃xn ∈ W (pn) such that xn 6∈ V0. Since S is

compact, there exist a subsequence {xnk
} of {xn} and x∗ ∈ S such that xnk

→ x∗. Without loss

of generality, we can assume that xn → x∗.

Now we claim that x∗ ∈ W (p∗). In fact, suppose that x∗ 6∈ W (p∗). Then it follows that

there exists y ∈ S such that J(y) ≺l
K J(x∗), that is,

J(x∗) ⊂ J(y) + intK. (5.1)

From (5.1), we claim that there exists n0 ∈ N such that

I(xn, pn) ⊂ I(y, pn) + intK, ∀n > n0. (5.2)

In fact, if not, then there exist a subsequence {xnk
} of {xn} and a subsequence {pnk

} of {pn} such

that I(xnk
, pnk

) 6⊂ I(y, pnk
) + intK. Without loss of generality, we can assume that I(xn, pn) 6⊂

I(y, pn) + intK. Thus, there exists vn ∈ I(xn, pn) such that

vn 6∈ I(y, pn) + intK.

From (iii) we obtain J(y) ⊂ I(y, pn) for all n ∈ N, it follows that

vn 6∈ J(y) + intK. (5.3)

Since I(·, ·) is compact at (x∗, p∗) and (xn, pn) → (x∗, p∗), it follows that there exist v∗ ∈ J(x∗)

and a subsequence {vnk
} of {vn} such that vnk

→ v∗. Without loss of generality, we can assume

that vn → v∗. It follows from (5.1) that

v∗ ∈ J(y) + intK.

This implies that vn ∈ J(y) + intK for n large enough, which contradicts (5.3). Then it follows

from (5.2) that I(y, pn) ≺
l
K I(xn, pn) when n > n0, which contradicts the fact that xn ∈ W (pn).

Thus, x∗ ∈ W (p∗). We can see that xn → x∗ ∈ V0, which gives a contradiction to xn 6∈ V0.

Therefore, W is u.s.c. at p∗. 2

Remark 5.3 The hypotheses of Theorems 5.1 and 5.2 are different, while we obtain the same

stability result concerned with the upper semi-continuity for set optimization problems by using

different methods. Moreover, we would like to mention that the results we obtained are new since

the parametric set optimization problem and the solution mapping discussed in this section are

different from those in [20–23].

Theorem 5.4 Assume that:

(i) S is a compact set;

(ii) I(·, ·) has the ≺l
K-continuous property on S × L;

(iii) W (p∗) ⊂ S′, where S′ denotes the derived set of S.

Then W is l.s.c. at p∗.
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Proof Suppose the contrary that W is not l.s.c. at p∗. Then there exist x∗ ∈ W (p∗) and a

neighborhood V0 of 0 ∈ X such that for any neighborhood U of p∗, there exists p ∈ U satisfying

(x∗ + V0) ∩W (p) = ∅. Thus there exists a sequence {pn} with pn → p∗ such that

(x∗ + V0) ∩W (pn) = ∅, ∀n ∈ N. (5.4)

From (iii) we obtain x∗ is a limit point of S and hence there exits a sequence {xn} ⊂ S \ {x∗}

such that xn → x∗. Therefore, there exists n0 ∈ N such that

xn ∈ x∗ + V0, ∀n > n0. (5.5)

Now we claim that there exists n1 ∈ N such that xn ∈ W (pn) when n > n1. Indeed, if not,

then there exists a subsequence {xnk
} of {xn} such that xnk

6∈ W (pnk
) for k ∈ N. Without

loss of generality, we can assume that xn 6∈ W (pn) for n ∈ N. Then, there exists yn ∈ S such

that I(yn, pn) ≺l
K I(xn, pn). Noting that S is compact, there exist y∗ ∈ S and a subsequence

{ynl
} of {yn} such that ynl

→ y. Without loss of generality, we can assume that yn → y∗. From

(ii), I(·, ·) has the ≺l
K-continuous property at (x∗, p∗) with respect to (y∗, p∗). Then it follows

from I(yn, pn) ≺l
K I(xn, pn) that J(y

∗) ≺l
K J(x∗), which contradicts the fact that x∗ ∈ W (p∗).

Therefore, xn ∈ W (pn) when n > n1. Along with (5.5), we obtain xn ∈ (x∗ + V0)∩W (pn) when

n > max{n0, n1}. This gives a contradiction to (5.4) and hence W is l.s.c. at p∗. 2

Finally, we give the following example to illustrate Theorem 5.4.

Example 5.5 Let X = P = R, Y = R2, S = [0, 1], K = R2
+, p

∗ = 1, L = [0, 2] and let

J : S ⇉ Y and I : S × L ⇉ Y be defined by

J(x) = [−1, x]× [0, 1], ∀x ∈ [0, 1];

and

I(x, p) = [−1, px]× [0, 1], ∀ (x, p) ∈ [0, 1]× [0, 2].

Then it is easy to check that all assumptions of Theorem 5.4 are satisfied. Moreover, we can see

that W (p) = [0, 1] for all p ∈ [0, 2]. Thus, W is l.s.c. at 1.
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[1] A. A. KHAN, C. TAMMER, C. ZĂLINESCU. Set-Valued Optimization: An Introduction with Applications.

Springer, New York, 2015.

[2] Guangya CHEN, Xuexiang HUANG, Xiaogi YANG. Vector Optimization: Set-Valued and Variational Anal-
ysis. Springer, New York, 2006.

[3] J. P. AUBIN, H. FRANKOWSKA. Set-Valued Analysis. Springer, New York, 2009.

[4] D. KUROIWA. On set-valued optimization. Nonlinear Anal., 2001, 47(2): 1395–1400.

[5] J. JAHN, T. X. D. HA. New order relations in set optimization. J. Optim. Theory Appl., 2011, 148(2):
209–236.

[6] D. KUROIWA. Some Duality Theorems of Set-Valued Optimization with Natural Criteria. World Scientific

River Edge, Niigata, 1999.

[7] A. N. TIKHONOV. On the stability of the functional optimization problem. USSR Compt. Math. Math.

Phys., 1966, 6(4): 28–33.



652 Congjun ZHANG, Zhiwei WANG and Sai LI

[8] E. BEDNARCZUK. Well Posedness of Vector Optimization Problems. Springer, New York, 1987.

[9] G. P. CRESPI, A. GUERRAGGIO, M. ROCCA. Well posedness in vector optimization problems and vector
variational inequalities. J. Optim. Theory Appl., 2007, 132(1): 213–226.

[10] G. P. CRESPI, M. PAPALIA, M. ROCCA. Extended well-posedness of quasiconvex vector optimization

problems. J. Optim. Theory Appl., 2009, 141(2): 285–297.

[11] Xuexiang HUANG. Extended and strongly extended well-posedness of set-valued optimization problems.

Math. Methods Oper. Res., 2001, 53(1): 101–116.

[12] Xuexiang HUANG. Pointwise well-posedness of perturbed vector optimization problems in a vector-valued
variational principle. J. Optim. Theory Appl., 2001, 108(3): 671–684.

[13] E. MIGLIERINA, E. MOLHO, M. ROCCA. Well-posedness and scalarization in vector optimization. J.
Optim. Theory Appl., 2005, 126(2): 391–409.

[14] Wenyan ZHANG, Shengjie LI, K. L. TEO. Well-posedness for set optimization problems. Nonlinear Anal.,

2009, 71(9): 3769–3778.
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