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Abstract In 1977, Yingming Liu introduced quasi-paracompactness and proved that under

2ω1 > 2ω every separable normal quasi-paracompact space is a paracompact space, which is

a result of set-theoretic topology. In this paper we further prove that hypothesis “2ω1 > 2ω”

is equivalent to that every separable normal quasi-paracompact space is a paracompact space,

which gives an independent result of quasi-paracompactness.
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1. Questions

Metrizability and compactness are the heart and soul of general topology. Besides metrizabil-

ity and compactness, there are a few other concepts which are fundamental in general topology,

for examples, generalized metric spaces and covering properties [1, 2]. A topological property

is called a covering property if it can be characterized by every open cover of a space having a

certain refinement, for examples, compactness, Lindelöfness, paracompactness, subparacompact-

ness, etc.

In 1977, Liu [3] introduced and studied special covering properties containing weak paracom-

pactness and subparacompactness: quasi-paracompact spaces and strongly quasi-paracompact

spaces. In the book “Selected Topics in General Topology”, Jiang pointed out [4, p. 197]: “In

recent years, it has been found that paracompactness, subparacompactness, metacompactness

and submetacompactness can be decomposed into factors of strong quasi-paracompactness. It

shows that paracompact, subparacompact, metacompact and submetacompact spaces can be

characterized by strongly quasi-paracompact spaces, which further displays the theoretical value

of this kind of new spaces.”

Jiang and Zhang obtained a relationship between paracompactness and quasi-paracompactness

under set-theoretic hypothesis, i.e., under hypothesis “V = L” in set theory, every normal locally

compact quasi-paracompact space is a paracompact space [5, Theorem2.1]. Hence, they partial-

ly answered the famous Arhangel’skǐı-Tall problem [6, p. 44]: Is every normal locally compact
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space a paracompact space? Now, it is known that the problem is undecidable in ZFC axiom

system [7, p. 2]. This demonstrates the special role of quasi-paracompactness in covering proper-

ties. In this paper we will continue to discuss the role of quasi-paracompactness in set-theoretic

topology and promulgates the importance of this property.

Set-theoretic topology is an interdisciplinary research of topology and mathematical logic,

which emerged in the 1960–1970s (see [8,9]). With the achievements of mathematical logic, some

problems in topology have been solved, in which set-theoretic hypothesis played an important

role. Recently, Hrušák and Ramos-Garćıa proved that every separable Fréchet topological group

being metrizable is compatible with ZFC axiom system [10], which solved the Malykhin problem

in 1978 (see [10, p. 194]). One of the main sources of general topology, which used to be called

point-set topology, is the set theory founded by Cantor. Later, with the help of mathematical

logic, set-theoretic topology was generated. This is a good case of separation, intersection and

integration of some branches of mathematics.

In 1937, Jones proved that if 2ω < 2ω1 , then every separable normal Moore space is ω1-

compact, and therefore metrizable [11], and also posed the famous Normal Moore Space Prob-

lem [11, p. 676]: Is every normal Moore space metrizable? Related to the well-known conjec-

ture of normal Moore spaces, McAuley proposed the following problem [12]: Is every separable

normal semimetric space paracompact? It is known that McAuley’s problem was undecidable

in ZFC axiom system [3]. Furthermore, by using the weak continuum hypothesis and quasi-

paracompactness, Liu found a way to solve the above problem, i.e., he proved the following

result [3]: Under 2ω1 > 2ω, every separable normal quasi-paracompact space is paracompact.

“2ω1 > 2ω” is a set-theoreric hypothesis which is independent of ZFC axiom system [13]. Liu’s

theorem was the first result of applying set-theoretic hypothesis to solving problems of general

topology in China, which expanded the research of set-theoretic topology.

This paper discusses the set-theoretic hypothesis in Liu’s theorem. There is the following

question.

Question 1.1 Is hypothesis 2ω1 > 2ω equivalent to that every separable normal quasi-paracompact

space is a paracompact space?

The following result is related to set-theoretic hypothesis for separable normal spaces.

Lemma 1.2 ([13, Lemma 2.1 and Example E]) Hypothesis 2ω1 > 2ω is equivalent to that every

separable normal space is a ω1-compact space.

In this paper, we prove that the answer to Question 1.1 is affirmative, hence the following

question is undecidable in ZFC: Is every separable normal quasi-paracompact space a paracom-

pact space in ZFC axiom system?

2. The main results

First, recall some related concepts and results. In this paper, all spaces are T1-topological

spaces. The readers may refer to [14] for notation and terminology not explicitly given here.

The sets of the first infinite ordinal and the first uncountable ordinal are denoted by ω and
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ω1, respectively. Continuum hypothesis (CH, i.e., 2ω = ω1) implies hypothesis 2ω1 > 2ω, hence

hypothesis 2ω1 > 2ω is also called weak continuum hypothesis [15, Definition 14.5].

Let [ω]ω = {A ⊆ ω : |A| = ω}, where |A| is the cardinality of the set A. A subset E of [ω]ω

is called a family of independent sets [15, Definition 11.2] if, whenever A1, . . . , Am, B1, . . . , Bn

in E are different from each other, there holds

∣

∣

∣

m
⋂

i=1

Ai ∩

n
⋂

j=1

(ω \Bj)
∣

∣

∣
= ω.

Lemma 2.1 ([15, Theorem 11.3]) There is a family of independent sets with cardinality 2ω.

A topological space X is called an ω1-compact space, if every uncountable subset of X has

an accumulation point. Both Lindelöf spaces and countably compact spaces are ω1-compact

spaces. In order to make our main results more general, the following concepts are introduced.

A topological space X is called an iso-Lindelöf space, if every ω1-compact and closed subspace of

X is Lindelöf. This space can be compared with the iso-compact space as follows: A topological

space X is called an iso-compact space [16], if every countably compact and closed subspace of

X is compact. Every iso-Lindelöf space is iso-compact 1.

Worrell and Wicke proved that a space is developable if and only if it is a submetacompact

space having a base of countable order [17]. The search for weak covering properties was going

strong from this point on. The following theorem is the main result of the present paper, which

involves quasi-paracompact spaces and irreducible spaces. A topological space X is called a

quasi-paracompact space [3], if every open cover of X has a σ-relatively discrete refinement. A

topological space X is called an irreducible space [18, Definition 6.6.2], if every open cover of X

has the minimal open refinement.

Theorem 2.2 The following statements are equivalent.

(1) 2ω < 2ω1.

(2) Every separable normal iso-Lindelöf space is paracompact.

(3) Every separable normal quasi-paracompact space is paracompact.

(4) Every separable normal irreducible space is paracompact.

Proof (1)⇒(2). Let X be a separable normal iso-Lindelöf space. By Lemma 1.2 and the

definition of iso-Lindelöf spaces, X is a Lindelöf space. And since X is a regular space, X is a

paracompact space [14, Theorem 5.1.2].

Since every quasi-paracompact space is iso-Lindelöf [3, Theorem 6] and irreducible [19, Corol-

lary 1], (2)⇒(3) and (4)⇒ (3) hold.

(3)⇒(1). Suppose that 2ω = 2ω1 . Using a subspace of Stone-Čech compactification βω of

ω, we should construct a separable normal quasi-paracompact space which is not a paracompact

space. It is well known that Stone-Čech compactification βω of ω is the family of all ultrafilters

(i.e., maximal filters) endowed with the topology generated by all {A∗ : A ⊆ ω} as a subbase,

where A∗ = {p ∈ βω : A ∈ p} (see [20, p. 111]).

1 Let X be an iso-Lindelöf space. If A is a countably compact and closed subspace of X, then A is ω1-compact

and closed, thus A is Lindelöf, so then A is compact. Hence, X is iso-compact.
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By Lemma 2.1, let {Aα : α < 2ω} be a family of independent sets of ω. The power set P(ω1)

is denoted by the family {Hα : α < 2ω}. For every ξ < ω1, put

Uξ = {Aα : ξ ∈ Hα and α < 2ω} ∪ {ω \Aα : ξ /∈ Hα and α < 2ω}.

By the definition of independent sets, Uξ is of the finite intersection property. And by Zorn’s

Lemma, there exists an ultrafilter pξ of ω with Uξ ⊆ pξ. Since {Aα : α < 2ω} is a family of

independent sets, we have that pξ ∈ βω \ ω. If ξ1 6= ξ2 < ω1, then there exists α < 2ω such that

ξ1 ∈ Hα and ξ2 /∈ Hα (for example, pick Hα = {ξ1}). Hence Aα ∈ Uξ1 and ω \ Aα ∈ Uξ2 , and

therefore pξ1 6= pξ2 .

Let X = ω ∪ {pξ : ξ < ω1} ⊂ βω endowed with the subspace topology of Stone-Čech

compactification βω.

(a) Since ω is a dense subset of βω, ω is dense in X . Hence, X is a separable space.

(b) X is a normal space. In fact, let A,B be disjoint closed subsets of X . There exists

Λ ⊆ ω1 such that A \ ω = {pξ : ξ ∈ Λ}, and then there exists α0 < 2ω such that Hα0
= Λ. For

each ξ ∈ Λ = Hα0
, we have that Aα0

∈ Uξ ⊆ pξ, hence pξ ∈ A∗

α0
, and thus A \ ω ⊂ A∗

α0
. For

each pη ∈ B, we have that η /∈ Λ = Hα0
, hence ω \ Aα0

∈ Uη ⊆ pη, thus pη ∈ (ω \ Aα0
)∗, and

therefore B \ ω ⊆ (ω \Aα0
)∗. And it is easy to verify that A∗

α0
∩ (ω \Aα0

)∗ = ∅.

Set

U = [(ω ∩ A) ∪ A∗

α0
] ∩X \B, V = [(ω ∩B) ∪ (ω \Aα0

)∗] ∩X \A.

Then U and V are disjoint open sets in X containing A and B, respectively.

(c) {pξ : ξ < ω1} is a discrete subset of X . In fact, for each ξ < ω1, there exists α0 < 2ω

such that Hα0
= {ξ}, thus Aα0

∈ Uξ ⊆ pξ, and hence pξ ∈ A∗

α0
. If η < ω1 and η 6= ξ, then

η /∈ Hα0
, thus ω \Aα0

∈ Uη ⊆ pη, hence Aα0
/∈ pη, and therefore pη /∈ A∗

α0
.

Since ω is an open subset of X , {pξ : ξ < ω1} is a closed discrete subset of X . Thus X is

not an ω1-compact space. It follows from the fact that every separable paracompact space is a

Lindelöf space [14, Corollary 5.1.26] that X is not a paracompact space. And since X = ω∪{pξ :

ξ < ω1} is σ-closed discrete and every discrete family is relatively discrete, the space X is a

quasi-paracompact space.

(1)⇒(4). Let X be a separable normal irreducible space. By Lemma 1.2, X is an ω1-

compact irreducible space, hence X is a Lindelöf space [18, Theorem 6.6.13], and therefore X is

a paracompact space. 2

Since paracompactness is equivalent to Lindelöf property in separable regular spaces, we have

the following corollary.

Corollary 2.3 The following statements are equivalent.

(1) 2ω < 2ω1.

(2) Every separable normal iso-Lindelöf space is Lindelöf.

(3) Every separable normal quasi-paracompact space is Lindelöf.

(4) Every separable normal irreducible space is Lindelöf.

Remark 2.4 The conditions of Theorem 2.2 and Corollary 2.3 are explained below.
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(1) Iso-Lindelöf spaces are a kind of very extensive spaces. Among the main covering prop-

erties, paracompact spaces ⇒ metacompact spaces (or subparacompact spaces if the spaces are

T2) ⇒ submetacompact spaces ⇒ quasi-paracompact spaces ⇒ weakly submetacompact spaces

and irreducible spaces; weakly submetacompact spaces (or spaces which each closed subspace is

irreducible) ⇒ iso-Lindelöf spaces [18, Chapter 6].

(2) There is a normal metacompact space satisfying the countable chain condition (i.e.,

CCC) which is not a paracompact space [13, Example J].

(3) There is a separable normal space which is not a paracompact space [21, Theorem].

By Theorem 2.2, if every separable normal iso-compact space is paracompact, then 2ω < 2ω1 .

Question 2.5 Is every separable normal iso-compact space a paracompact space under 2ω <

2ω1?
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