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A Note on the Aα-Spectral Radius of a Graph
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Abstract Let G be a simple graph of order n and ρα(G) be the Aα(G)-spectral radius of G.

In this note, for any vertex vi of G, we establish the relationship between ρα(G) and ρα(G− vi).
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph with

vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). Its order is |V (G)|, denoted by n, and

its size is |E(G)|, denoted by m. For vi ∈ V (G), let d(vi) (or di for short) and N(vi) be the

degree and the set of neighbors of vi, respectively, and G− vi be the graph obtained from G by

removing the vertex vi and its incident edges. Let G1 ∨ G2 be the graph obtained by joining

graphs G1 and G2 with |V (G1)| × |V (G2)| edges. For any undefined notations, we refer to [1].

The adjacency matrix of G is defined to be A(G) = (aij), where aij = 1 if vi is adjacent to

vj and aij = 0 otherwise. Let D(G) be the diagonal matrix of the vertex degrees of G. The

signless Laplacian matrix of G is Q(G) = D(G) +A(G). For every α ∈ [0, 1], the matrix Aα(G)

of a graph G is defined by Nikiforov in [2] as

Aα(G) = αD(G) + (1− α)A(G).

In particular,

A0(G) = A(G), A 1

2

(G) =
1

2
Q(G), A1(G) = D(G).

Since Aα(G) is a real symmetric matrix, all the eigenvalues of Aα(G) (also called the Aα-

eigenvalues of G) are real. We denote its eigenvalues in non-increasing order as λ1(Aα(G)) ≥
λ2(Aα(G)) ≥ · · · ≥ λn(Aα(G)). The largest eigenvalue λ1(Aα(G)), denoted by ρα(G) is called

the Aα-spectral radius of G. Note that Aα(G) is irreducible if and only if G is connected for

α ∈ [0, 1). Therefore, when G is a connected graph, the Perron-Frobenius Theorem implies that

the multiplicity of ρα(G) is one and there exists a positive unit eigenvector x = (x1, x2, . . . , xn)
T ,

Received January 4, 2022; Accepted May 8, 2022

Supported by the National Natural Science Foundation of China (Grant No. 12171089) and the Natural Science

Foundation of Fujian Province (Grant No. 2021J02048).
* Corresponding author

E-mail address: mnhzchern@gmail.com (Hongzhang CHEN); ptjxli@hotmail.com (Jianxi LI)



2 Hongzhang CHEN and Jianxi LI

which is called the Perron vector of Aα(G). We refer the reader to Brouwer and Haemers [3] and

Cvetković et al. [4] for literature in this area.

The spectral radius of a graph contains lots of information about the graph. Many studies

on this topic have been conducted [4]. In particular, establishing the relationship between the

spectral radius of a graph and its subgraph is of interest. It is known that when an edge or a

vertex is removed from a graph G, the spectral radius of G will not increase due to the Perron-

Frobenius Theorem. Van Mieghem et al. [5] and Li et al. [6] obtained several results on behavior

of the spectral radius of a graph G after removing edges or vertices from G. Recently, for any

vi ∈ V (G), Guo et al. [7] presented the relationship between ρ0(G) and ρ0(G− vi) as follows.

Theorem 1.1 ([7]) Let G be a connected graph of order n. For any vi ∈ V (G), we have

ρ0(G) ≤
√

ρ20(G− vi) + 1 +
√

di − 1. (1.1)

Moreover, the equality holds if and only if G ∼= K1,n−1 and vi is a pendant vertex of K1,n−1.

Moreover, they further conjectured that for any vi ∈ V (G),

ρ0(G) ≤
√

ρ20(G− vi) + 2di − 1.

Very recently, Sun and Das [8] confirmed this conjecture by proving the following result.

Theorem 1.2 ([8]) Let G be a graph of order n. For any vi ∈ V (G) with di ≥ 1, we have

ρ0(G) ≤
√

ρ20(G− vi) + 2di − 1. (1.2)

The equality holds if and only if G ∼= K1,n−1 and vi is a pendant vertex of K1,n−1, or G ∼= Kn.

Moreover, Wang and Guo [9] further deduced the following relationship between ρ0(G − vi)

and ρ0(G) for vi ∈ V (G).

Theorem 1.3 ([9]) Let G be a graph of order n. For vi ∈ V (G), we have

ρ0(G) ≤ ρ0(G− vi) +
√

ρ20(G− vi) + 4di
2

. (1.3)

Moreover, the equality holds if and only if G ∼= K1 ∨ H and vi is the vertex of degree n − 1,

where H is a regular graph of order n− 1.

Motivated by the above mentioned recent results. In this note, we further study the relation-

ship between ρα(G) and ρα(G− vi) for vi ∈ V (G) by using its Perron vector, and establish the

following result, which generalizes Theorem 1.3 since A0(G) = A(G).

Theorem 1.4 Let G be a graph of order n. For vi ∈ V (G) and α ∈ [0, 1), we have

ρ0(G) ≤ ρ0(G− vi) +
√

ρ20(G− vi) + 4di
2

, when α = 0; (1.4)

ρα(G) <
αdi + ρα(G− vi) +

√

(αdi − ρα(G− vi))2 + 4(1− α)2di
2

, when α 6= 0. (1.5)

Moreover, for α = 0, the equality holds if and only if G ∼= K1 ∨H and vi is the vertex of degree

n− 1, where H is a regular graph of order n− 1.
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Note that (1.2) is always better than (1.1). We now give the following remark to illustrate

that the bound in Theorem 1.3 is but not always, better than that in Theorems 1.1 and 1.2,

respectively.

Remark 1.5 It is easy to check that

√

ρ20(G− vi) + 1 <
ρ0(G− vi) +

√

ρ20(G− vi) + 4

2

when di = 1. Then (1.1) is better than (1.3) for di = 1. But for di ≥ 2, note that

ρ0(G− vi)
√

ρ20(G− vi) + 4di ≤ ρ20(G− vi) + 4ρ0(G− vi)
√

di − 1

< ρ20(G− vi) + 4
√

ρ20(G− vi) + 1
√

di − 1.

Then we have

[ρ0(G− vi) +
√

ρ20(G− vi) + 4di
2

]2
<

[
√

ρ20(G− vi) + 1 +
√

di − 1
]2
.

This shows that (1.3) is better than (1.1) for di ≥ 2. Thus, the bound of (1.3) is slightly better

than (1.1).

Now we compare the upper bounds of (1.3) and (1.2) in the following. It is easy to check

that
ρ0(G− vi) +

√

ρ20(G− vi) + 4di
2

≤
√

ρ20(G− vi) + 2di − 1

when di ≥ 1 + ρ0(G− vi). That is (1.3) is better than (1.2) when di ≥ 1 + ρ0(G− vi).

We now give the following examples to illustrate the sharpness of above bounds.

(1) In Theorems 1.2 and 1.3, if G = Sn is a star of order n ≥ 2, and v1 ∈ V (Sn) is the vertex

of degree n− 1, then ρ0(G− v1) = 0. Thus it turns out that

ρ0(G− v1) +
√

ρ20(G− v1) + 4d1
2

=

√

4(n− 1)

2
=

√
n− 1,

√

ρ20(G− v1) + 2d1 − 1 =
√

2(n− 1)− 1 =
√
2n− 3.

Note that
√
2n− 3 ≥

√
n− 1 since n ≥ 2. This implies that the bound of (1.3) is better than

(1.2) in this case.

(2) When G = K1 ∨Cn−1 is the wheel graph of order n and v1 ∈ V (K1 ∨Cn−1) is a vertex

of degree n− 1, then by Lemma 2.3, we have

ρ0(K1 ∨ Cn−1) = 1 +
√
n.

Moreover, ρ0(G− v1) = 2 since G− v1 = Cn−1. By (1.3) and (1.2), we have

1 +
√
n = ρ0(G) ≤ ρ0(G− v1) +

√

ρ20(G− v1) + 4d1
2

= 1 +
√
n,

1 +
√
n = ρ0(G) <

√

ρ20(G− v1) + 2d1 − 1 =
√
2n+ 1.

This shows that (1.3) is better than (1.2) in this case.
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2. Preliminaries

To give the proof of our result, the following lemmas are needed. For an n×n real symmetric

matrixM , its eigenvalues are denoted in non-increasing order as λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M).

The following is a classical result.

Lemma 2.1 (Cauchy’s interlacing theorem) Let M be an n× n real symmetric matrix. For an

integerm with 1 ≤ m ≤ n, let N be anm×m principal submatrix ofM . Then for i = 1, 2, . . . ,m,

λi(M) ≥ λi(N) ≥ λi+n−m(M).

In particular, in Lemma 2.1, let m = 1 and Wv(G) be the principal submatrices of Aα(G)

obtained by removing the row and the column of Aα(G) that correspond to the vertex vi. Then

we have

Corollary 2.2 Let G be a graph of order n. For any vi ⊆ V (G), then we have

ρα(G− vi) ≤ λ1(Wvi (G)).

Lemma 2.3 ([10]) Let A = (aij) and B = (bij) be two n× n non-negative symmetric matrices

with aij ≤ bij for i, j ∈ [1, 2, . . . , n]. Suppose that there is a positive eigenvector x corresponding

to its largest eigenvalue λ1(A). Then λ1(A) ≤ λ1(B), where equality holds if and only if A = B.

Lemma 2.4 ([10]) Let ‖ · ‖ be a 2-norm of an vector or a matrix. For any n× n non-negative

symmetric matrix A and x ∈ Rn, we have ‖Ax‖ ≤ ‖A‖‖x‖, the equality holds if and only if ‖A‖
is the spectral radius of A and x is the eigenvector corresponding to ‖A‖.

Lemma 2.5 ([11]) Let the Hermitian matrix A be partitioned as

A =

[

a bT

b M

]

and let x = (x1, x2, . . . , xn)
T be a unit eigenvector of A corresponding to the largest eigenvalue

λ1(A). If λ1(A) is not an eigenvalue of M , then

|x1|2 =
1

1 + ‖(λI −M)−1b‖2 .

Lemma 2.6 Let G be a connected graph of order n. For vi ∈ V (G), Aα(G) is partitioned as

Aα(G) =

[

αdi bT

b M

]

.

Then ρα(G− vi) = λ1(M) when α = 0; ρα(G− vi) < λ1(M) when α 6= 0.

Proof For α = 0, it is obvious that ρα(G − vi) = λ1(M) since A0(G − vi) = M ; for α 6= 0, we

now consider the following two cases:

Case 1. G − vi is connected. Then Aα(G − vi) has a positive eigenvector corresponding to

ρα(G− vi). Thus Lemma 2.3 implies that ρα(G− vi) < λ1(M).
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Case 2. G− vi is disconnected. Let G− vi = G1∪G2∪· · ·∪Gt. This gives the corresponding

partition of M as

M =










M1 0 0 0

0 M2 0 0
...

...
. . .

...

0 0 0 Mt










.

Assume that ρα(G − vi) = ρα(Gk) for some k ∈ [1, t]. Then similarly to Case 1, we have

ρα(Gk) < λ1(Mk). Thus

ρα(G− vi) = ρα(Gk) < λ1(Mk) ≤ max{λ1(M1), λ1(M2), . . . , λ1(Mt)} = λ1(M).

This completes the proof of Lemma 2.6. 2

3. Proof of Theorem 1.4

In this section, we will give a proof of Theorem 1.4. For this, we need the following upper

and lower bounds on the eigencomponent xi of the Perron vector of Aa(G) corresponding to the

vertex vi.

Lemma 3.1 Let G be a connected graph of order n, and x = (x1, x2, . . . , xn)
T be the Perron

vector of Aa(G) corresponding to ρα(G). Then for every 1 ≤ i ≤ n and α ∈ [0, 1), we have

xi ≤
1

√

1 + (ρα(G)−αdi)2

(1−α)2di

.

Moreover, the equality holds if and only if G = K1 ∨ H and vi is the vertex of degree n − 1,

where H is a regular graph of order n− 1.

Proof Let x = (x1, x2, . . . , xn)
T be the Perron vector of Aα(G) corresponding to ρα(G). Based

on Aα(G)x = ρα(G)x, we have

ρα(G)xi = αdixi + (1− α)
∑

vj∈N(vi)

xj .

Using the Cauchy-Schwarz inequality, we have

(ρα(G) − αdi)xi = (1− α)
∑

vj∈N(vi)

xj ≤ (1− α)

√

di
∑

vj∈N(vi)

x2
j ,

i.e.,

(ρα(G) − αdi)
2x2

i ≤ (1− α)2di
∑

vj∈N(vi)

x2
j .

That is
∑

vj∈N(vi)

x2
j ≥ (ρα(G) − αdi)

2x2
i

(1 − α)2di
.
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Thus

1 =

n∑

l=1

x2
l ≥ x2

i +
∑

vj∈N(vi)

x2
j ≥ x2

i (
(ρα(G) − αdi)

2

(1− α)2di
+ 1).

It follows that

xi ≤
1

√

1 + (ρα(G)−αdi)2

(1−α)2di

.

Equality is attained if and only if xk = xl for vk, vl ∈ N(vi) and xj = 0 for vj /∈ N(vi). Note

that the Perron vector x is positive since G is connected. It follows that every vertex different

from vi is adjacent to vi. Hence, G = vi ∨ H , where H is a graph of order n − 1. Moreover,

recall that xk = xl for vk, vl ∈ N(vi) and ρα(G)xj = xi+(dj − 1)xj for vj ∈ N(vi). Those imply

that each vertex in H has the same degree. Therefore, H is a regular graph. This completes the

proof of Lemma 3.1. 2

Next, we give a lower bound on the eigencomponent xi of the Perron vector x corresponding

to the vertex vi.

Lemma 3.2 Let G be a connected graph of order n, and x = (x1, x2, . . . , xn)
T be the Perron

vector of Aa(G) corresponding to ρα(G). Then for every 1 ≤ i ≤ n and α ∈ [0, 1), we have

xi ≥
1

√

1 + di

(ρ0(G)−ρ0(G−vi))2

, when α = 0;

xi >
1

√

1 + (1−α)2di

(ρα(G)−ρα(G−vi))2

, when α 6= 0.

Moreover, for α = 0, the equality holds if G = K1∨H and vi is the vertex of degree n− 1, where

H is a regular graph of order n− 1.

Proof Partition V (G) as {vi} ∪ V (G) \ {vi}, which gives a partition of Aα(G) as

Aα(G) =

[

αdi bT

b M

]

.

By Corollary 2.2 and Lemma 2.6, we then have ρα(G) > λ1(M) ≥ ρα(G − v1) (More precisely,

λ1(M) = ρ0(G − v1) and λ1(M) > ρα(G − v1) when α 6= 0). This means that ρα(G) is not an

eigenvalue of M . Thus by Lemmas 2.4 and 2.5, we have

|xi|2 =
1

1 + ‖(ρα(G)I −M)−1b‖2 ≥ 1

1 + ‖(ρα(G)I −M)−1‖2‖b‖2 . (3.1)

Note that

‖(ρα(G)I −M)−1‖ = λmax((ρα(G)I −M)−1) =
1

λmin(ρα(G)I −M)
=

1

ρα(G) − λmax(M)
.

Moreover, by Lemma 2.6, we have λmax(M) = ρ0(G) when α = 0 and λmax(M) > ρα(G − vi)

when α 6= 0. Thus, note that ‖b‖2 = (1− α)2di. By (3.1), we then have

|xi|2 ≥ 1

1 + di

(ρ0(G)−ρ0(G−vi))2

, when α = 0;
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|xi|2 >
1

1 + (1−α)2d1

(ρα(G)−ρα(G−v1))2

, when α 6= 0.

That is

xi ≥
1

√

1 + di

(ρ0(G)−ρ0(G−vi))2

;

xi >
1

√

1 + (1−α)2di

(ρα(G)−ρα(G−vi))2

, when α 6= 0.

Moreover, for α = 0, if G = K1 ∨H and vi is the vertex of degree n− 1, where H is a regular

graph of order n− 1, then we have b = (1, 1, . . . , 1
︸ ︷︷ ︸

n−1

)T and M = A0(H). It follows that

(ρ0(G)I −M)−1b =
1

ρ0(G)− ρ0(H)
b

and 1
ρ0(G)−ρ0(H) is the largest eigenvalue of (ρ0(G)I −M)−1. That is

‖(ρ0(G)I −M)−1b‖2 = ‖(ρ0(G)I −M)−1‖2‖b‖2.

Thus the equality in (3.1) holds, which completes the proof of Lemma 3.2. 2

Combining Lemmas 3.1 and 3.2, we now give a proof of Theorem 1.4 as follows.

Proof of Theorem 1.4 By Lemmas 3.1 and 3.2, we have

1
√

1 + (1−α)2di

(ρ0(G)−ρ0(G−vi))2

≤ xi ≤
1

√

1 +
ρ2

0
(G)
di

, when α = 0;

1
√

1 + (1−α)2di

(ρα(G)−ρα(G−vi))2

< xi ≤
1

√

1 + (ρα(G)−αdi)2

(1−α)2di

, when α 6= 0.

It follows that
ρ20(G)

di
≤ di

(ρ0(G)− ρ0(G− vi))2
;

(ρα − αdi)
2

(1− α)2di
<

(1− α)2di
(ρα(G)− ρα(G− vi))2

, when α 6= 0,

i.e.,

ρ0(G)(ρ0(G)− ρ0(G− vi)) ≤ di;

(ρα(G)− ρα(G− vi))(ρα(G) − αdi) < (1− α)2di, when α 6= 0.

Those imply that

ρ20(G)− ρ0(G)ρ0(G− vi)− di ≤ 0;

ρ2α(G)− (αdi + ρα(G− vi))ρα(G) + αdiρα(G− vi)− (1− α)2di < 0, when α 6= 0.

Thus

ρ0(G) ≤ ρ0(G− vi) +
√

ρ20(G− vi) + 4di
2

;

ρα(G) <
αdi + ρα(G− vi) +

√

(αdi − ρα(G− vi))2 + 4(1− α)2di
2

, when α 6= 0.
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Moreover, by Lemmas 3.1 and 3.2, for α = 0, the equality holds if and only if G ∼= K1 ∨H

and vi is the vertex of degree n− 1, where H is a regular graph of order n− 1. This completes

the proof of Theorem 1.4. 2
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