Least Common Multiple of Path, Star with Cartesian Product of Some Graphs

T. REJI, R. RUBY*, B. SNEHA
Department of Mathematics, Government College Chittur, Palakkad, Kerala, India

Abstract

A graph G without isolated vertices is a least common multiple of two graphs H_{1} and H_{2} if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of G into edge disjoint copies of H_{1} and H_{2}. The collection of all least common multiples of H_{1} and H_{2} is denoted by $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ and the size of a least common multiple of H_{1} and H_{2} is denoted by $\operatorname{lcm}\left(H_{1}, H_{2}\right)$. In this paper $\operatorname{lcm}\left(P_{4}, P_{m} \square P_{n}\right), \operatorname{lcm}\left(P_{4}, C_{m} \square C_{n}\right)$ and $\operatorname{lcm}\left(K_{1,3}, K_{1, m} \square K_{1, n}\right)$ are determined.

Keywords graph decomposition; least common multiple
MR(2020) Subject Classification 05C38; 05C51; 05C70

1. Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices. The number of vertices of a graph G denoted by $v(G)$, is called the order of G and the number of edges of G denoted by $e(G)$, is called the size of G.

A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an H decomposition of G. If G has an H-decomposition, we say that G is H-decomposable and write $H \mid G$.

A graph is called a common multiple of two graphs H_{1} and H_{2} if both $H_{1} \mid G$ and $H_{2} \mid G$. A graph G is a least common multiple of H_{1} and H_{2} if G is a common multiple of H_{1} and H_{2} and no other common multiple has fewer edges. Several authors have investigated the problem of finding least common multiples of pairs of graphs H_{1} and H_{2}; that is graphs of minimum size which are both H_{1} and H_{2} decomposable. The problem was introduced by Chartrand et al. in [1] and they showed that every two nonempty graphs have a least common multiple. The problem of finding the size of least common multiples of graphs has been studied for several pairs of graphs: cycles and stars [1-3], paths and complete graphs [4], pairs of complete graphs, complete graphs and a 4-cycle, paths and stars and pairs of cycles. Least common multiple of digraphs were considered in [5].

[^0]If G is a common multiple of H_{1} and H_{2} and G has q edges, then we call G a $\left(q, H_{1}, H_{2}\right)$ graph. An obvious necessary condition for the existence of a $\left(q, H_{1}, H_{2}\right)$ graph is that $e\left(H_{1}\right) \mid q$ and $e\left(H_{2}\right) \mid q$. This obvious necessary condition is not always sufficient. Therefore, we may ask: Given two graphs H_{1} and H_{2}, for which value of q does there exist a $\left(q, H_{1}, H_{2}\right)$ graph? Adams, Bryant and Maenhaut [6] gave a complete solution to this problem in the case where H_{1} is the 4 -cycle and H_{2} is a complete graph; Bryant and Maenhaut [7] gave a complete solution to this problem in the case where H_{1} is the complete graph K_{3} and H_{2} is a complete graph. Thus the problem to find least common multiple of H_{1} and H_{2} is to find the least positive integer q such that there exists a $\left(q, H_{1}, H_{2}\right)$ graph. We denote the set of all least common multiples of H_{1} and H_{2} by $\operatorname{LCM}\left(H_{1}, H_{2}\right)$. The size of a least common multiple of H_{1} and H_{2} is denoted by $\operatorname{lcm}\left(H_{1}, H_{2}\right)$. Since every two nonempty graphs have a least common multiple, $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ is nonempty. For many pairs of graphs number of elements of $\operatorname{LCM}\left(H_{1}, H_{2}\right)$ is greater than one. For example both P_{7} and C_{6} are least common multiples of P_{4} and P_{3}. In fact Chartrand et al. [8] proved that for every positive integer n there exist two graphs having exactly n least common multiples.

2. Preliminaries

The path P_{n} having vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ will be denoted by $\left\langle e_{1}, e_{2}, \ldots, e_{n-1}\right\rangle$ and a star $K_{1, n}$ having vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$, where v_{1} is the hub vertex, and edge set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ will be denoted by $\left[v_{1} ; e_{1}, e_{2}, \ldots, e_{n}\right]$. The cartesian product of two graphs G and H denoted by $G \square H$ is a graph with vertex set $V(G) \times V(H)$ for which $\{(x, a),(y, b)\}$ is an edge if $x=y$ and $\{a, b\} \in E(H)$ or $\{x, y\} \in E(G)$ and $a=b . v(G \square H)=$ $v(G) v(H)$ and $e(G \square H)=v(G) e(H)+v(H) e(G)$.

Theorem 2.1 ([9]) A nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.

Theorem 2.2 ([9]) Let G and H be nontrivial connected graphs. Then $G \square H$ is Eulerian if and only if both G and H are Eulerian or every vertex of G and H is odd.

Theorem 2.3 ([9]) A nontrivial graph G is a bipartite graph if and only if G contains no odd cycles.

Theorem 2.4 ([10]) Let E be an Eulerian circuit in a graph G. If $k_{1}, k_{2}, \ldots, k_{m}$ are positive integers such that $k_{1}+k_{2}+\cdots+k_{m}=e(G)$ and each less than $g(E)$, where $g(E)$ is the length of the minimal cycle contained in E, then G can be decomposed into paths of lengths $k_{1}, k_{2}, \ldots, k_{m}$.

Theorem $2.5([11])$ A complete bipartite graph of size $q \equiv 0(\bmod 3)$ is $K_{1,3}$-decomposable.
Theorem 2.6 ([12]) If the graphs G and H have an F-decomposition, then their cartesian product $G \square H$ also has an F-decomposition.

Theorem 2.7 ([13]) If the graphs G and H are bipartite, then $\operatorname{lcm}(G, H) \leq e(G) . e(H)$ where
equality holds if $\operatorname{gcd}(e(G), e(H))=1$.
For a graph G, let G^{t} for $t=1,2,3$ denote the t-th copy of G. Let v^{t} denote a vertex and e^{t} denote an edge in G^{t}.

3. Main results

In this section we compute

$$
\operatorname{lcm}\left(P_{4}, P_{m} \square P_{n}\right), \operatorname{lcm}\left(P_{4}, C_{m} \square C_{n}\right) \text { and } \operatorname{lcm}\left(K_{1,3}, K_{1, m} \square K_{1, n}\right) .
$$

lcm of P_{4} and $P_{m} \square P_{n}$
Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be the vertices of P_{m} and P_{n}, respectively. $P_{m} \times\left\{b_{j}\right\}$, $1 \leq j \leq n$ are the P_{m}-fibers and $\left\{a_{i}\right\} \times P_{n}, 1 \leq i \leq m$ are the P_{n}-fibers in $P_{m} \square P_{n}$. Label the vertices and edges of the j-th P_{m}-fiber, $P_{m} \times\left\{b_{j}\right\}$ as $\left\{v_{1, j}, v_{2, j}, \ldots, v_{m, j}\right\},\left\{f_{1, j}, f_{2, j}, \ldots, f_{m-1, j}\right\}$ and that of the i-th P_{n}-fiber, $\left\{a_{i}\right\} \times P_{n}$ as $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\},\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n-1}\right\}$. A path on m vertices P_{m} has $m-1$ edges and it is P_{n}-decomposable if and only if $n-1$ divides $m-1$.

Figure $1 \quad P_{m} \square P_{n}$

Theorem 3.1 $\operatorname{lcm}\left(P_{4}, P_{m} \square P_{n}\right)= \begin{cases}m(n-1)+n(m-1) ; & m, n \equiv 0(\bmod 3), \\ & m, n \equiv 1(\bmod 3), \\ 3(m(n-1)+n(m-1)) ; & \text { otherwise. }\end{cases}$
Proof Least common multiple of P_{4} and $P_{m}$$P_{n}$ is the number of edges in the graph F of least size that is both P_{4}-decomposable and $P_{m} \square P_{n}$-decomposable. Since $e\left(P_{m} \square P_{n}\right)=$ $m(n-1)+n(m-1), e(F)$ must be a multiple of 3 and $m(n-1)+n(m-1)$. We consider various cases for m and n in modulo 3 and will construct in each case a graph of least size that is P_{4}-decomposable and $P_{m}$$P_{n}$-decomposable. Let $G=P_{m}$$P_{n}$.
Let $X=\{(a, b): a, b \equiv 0(\bmod 3)$ or $a, b \equiv 1(\bmod 3)\}$. Then $m(n-1)+n(m-1) \equiv 0$ $(\bmod 3)$ if and only if $(m, n) \in X$.

Case 1. $(m, n) \in X$.
Subcase 1.1. Let $m, n \equiv 0(\bmod 3)$. The $m-1$ edges of the j-th P_{m}-fiber, where $1 \leq j \leq n-1$, together with the edge $e_{1, j}$ make a P_{m+1}, which is P_{4}-decomposable. Similarly, the $n-1$ edges of the i-th P_{n}-fiber, where $2 \leq i \leq m$, together with the edge $f_{i, n}$ will make a P_{n+1} and it is $P_{4^{-}}$ decomposable. Thus G is P_{4}-decomposable and hence $\operatorname{lcm}\left(P_{4}, P_{m} \square P_{n}\right)=m(n-1)+n(m-1)$.

Subcase 1.2. Let $m, n \equiv 1(\bmod 3)$. Then each P_{m}-fiber has $3 k$ edges and each P_{m}-fiber has $3 l$ edges for some positive integers k and l. So each fiber and hence $P_{m} \square P_{n}$ is P_{4}-decomposable. Thus $\operatorname{lcm}\left(P_{4}, P_{m} \square P_{n}\right)=m(n-1)+n(m-1)$.

Case 2. $(m, n) \notin X$.
In this case $P_{m}$$P_{n}$ is not P_{4}-decomposable. Since P_{4} and $P_{m} \square P_{n}$ have no odd cycles by Theorem 2.3, both are bipartite. Also $\operatorname{gcd}(3, m(n-1)+n(m-1))=1$. So by Theorem 2.7, $\operatorname{lcm}\left(P_{4}, P_{m} \square P_{n}\right)=3(m(n-1)+n(m-1))$.

From Theorem 3.1 the following result is obtained, which is a subcase of the open problem: The P_{4}-decomposability of a graph.

Theorem $3.2 P_{m} \square P_{n}$ is P_{4}-decomposable if and only if $m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 3)$ or $m \equiv 1(\bmod 3)$ and $n \equiv 1(\bmod 3)$.
lcm of P_{4} and $C_{m} \square C_{n}$
Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be the vertices of C_{m} and C_{n}, respectively. $C_{m} \times\left\{b_{j}\right\}$, $1 \leq j \leq n$ are the C_{m}-fibers and $\left\{a_{i}\right\} \times C_{n}, 1 \leq i \leq m$ are the C_{n}-fibers in $C_{m} \square C_{n}$. Label the vertices and edges of the j-th C_{m}-fiber, $C_{m} \times\left\{b_{j}\right\}$ as $\left\{v_{1, j}, v_{2, j}, \ldots, v_{m, j}\right\},\left\{f_{1, j}, f_{2, j}, \ldots, f_{m, j}\right\}$ and that of the i-th C_{n}-fiber, $\left\{a_{i}\right\} \times C_{n}$ as $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n}\right\},\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n}\right\}$.
Theorem $3.3 \operatorname{lcm}\left(P_{4}, C_{m} \square C_{n}\right)= \begin{cases}2 m n & \text { if } m n \equiv 0(\bmod 3), \\ 6 m n & \text { otherwise. }\end{cases}$
Proof Least common multiple of P_{4} and $C_{m} \square C_{n}$ is the number of edges in the graph F of least size that is both P_{4}-decomposable and $C_{m} \square C_{n}$-decomposable. Since $e\left(C_{m} \square C_{n}\right)=2 m n$, $e(F)$ must be a multiple of 3 and $2 m n$.

Let $G=C_{m} \square C_{n}$. If G is P_{4}-decomposable, then $G \in \operatorname{LCM}\left(P_{4}, C_{m} \square C_{n}\right)$. Since $\operatorname{deg}(v)=2$ for all $v \in V\left(C_{n}\right)$, by Theorem 2.1, the cycle C_{n} is Eulerian for every n. So by Theorem 2.2, $G=C_{m} \square C_{n}$ is Eulerian. If m or n is a multiple of three, $e\left(C_{m} \square C_{n}\right)=2 m n$ is a multiple of three. Let $e\left(C_{m} \square C_{n}\right)=3 r$, for some $r \in \mathbb{Z}$. Then by Theorem 2.4, $C_{m} \square C_{n}$ can be decomposed into r copies of P_{4} and hence $G=C_{m} \square C_{n}$ is P_{4}-decomposable. Thus $\operatorname{lcm}\left(P_{4}, C_{m} \square C_{n}\right)=2 m n$, if $m n \equiv 0(\bmod 3)$.

Suppose $m n \not \equiv 0(\bmod 3)$. Then $C_{m}$$C_{n}$ is not P_{4}-decomposable and the least positive integer which is a multiple of 3 and $2 m n$ is 6 mn . We will prove that $\operatorname{lcm}\left(P_{4}, C_{m}\right.$$\left.C_{n}\right)=6 m n$ if $m n \not \equiv 0(\bmod 3)$. For this consider various cases for m and n in modulo 3 and in each case we will construct a graph of size $6 m n$ that is both P_{4}-decomposable and $C_{m}$$C_{n}$-decomposable. Let $G=C_{m} \square C_{n}$.

Case 1. $m=3 k+1, n=3 l+1$.
Let H be the graph obtained by identifying the vertex $v_{m, n}^{1}$ of G^{1} with the vertex $v_{1,1}^{2}$ of G^{2} and the vertex $v_{m, n}^{2}$ of G^{2} with $v_{1,1}^{3}$ of G^{3}. Clearly, H is $C_{m} \square C_{n}$-decomposable. A P_{4} decomposition of H is given below. In each G^{t} consider the $C_{3 k+1}$-fibers and the $C_{3 l+1}$-fibers except the first and last fibers. The first $3 k$ edges in the $C_{3 k+1}$-fiber makes a $P_{3 k+1}$ and the first $3 l$ edges in the $C_{3 l+1}$-fiber makes a $P_{3 l+1}$ and both are P_{4}-decomposable. A P_{4}-decomposition of the remaining edges of H is obtained as follows. For $1 \leq i \leq m-1,1 \leq j \leq n-1$ and $1 \leq t \leq 3$,

$$
\left\langle e_{1, j}^{t}, f_{m, j+1}^{t}, e_{m, j}^{t}\right\rangle \quad\left\langle f_{i, 1}^{t}, e_{i, n}^{t}, f_{i, n}^{t}\right\rangle \quad\left\langle f_{m, 1}^{1}, e_{m, n}^{1}, f_{m, 1}^{2}\right\rangle \quad\left\langle e_{m, n}^{2}, f_{m, 1}^{3}, e_{m, n}^{3}\right\rangle
$$

Thus H is P_{4}-decomposable.

Figure $2 m=4, n=4$
Case 2. $m=3 k+2, n=3 l+1$.
Let H be the graph obtained by identifying the vertex $v_{m, n}^{1}$ of G^{1} with the vertex $v_{m, 1}^{2}$ of G^{2} and the vertex $v_{m, n}^{2}$ of G^{2} with $v_{m, 1}^{3}$ of G^{3}. Clearly, H is $C_{m} \square C_{n}$-decomposable. A P_{4} decomposition of H is given below. In each G^{t} consider the $C_{3 k+2}$-fibers and the $C_{3 l+1}$-fibers except the first and last fibers. The first $3 k$ edges in the $C_{3 k+2}$-fiber makes a $P_{3 k+1}$ and the first $3 l$ edges in the $C_{3 l+1}$-fiber makes a $P_{3 l+1}$ and both are P_{4}-decomposable. A P_{4}-decomposition of the remaining edges of H is obtained as follows. For $1 \leq i \leq m-1,2 \leq j \leq n-1$ and $1 \leq t \leq 3$,

$$
\begin{array}{ccc}
\left\langle e_{1, j}^{t}, f_{m-1, j}^{t}, f_{m, j}^{t}\right\rangle & \left\langle f_{i, 1}^{t}, e_{i, n}^{t}, f_{i, n}^{t}\right\rangle & \left\langle e_{1,1}^{t}, f_{m, 1}^{t}, e_{m, 1}^{t}\right\rangle \\
\left\langle f_{m, n}^{t}, e_{m, n-2}^{t}, e_{m, n-1}^{t}\right\rangle & \left\langle e_{m, n}^{1}, e_{m, n}^{2}, e_{m, n}^{3}\right\rangle &
\end{array}
$$

The edges $\left\{e_{m, 2}^{t}, e_{m, 3}^{t}, \ldots, e_{m, n-3}^{t}\right\}$ makes a $P_{3 l-2}$ and it has $3 l-3$ edges which is P_{4}-decomposable. Thus H is P_{4}-decomposable.

Case 3. $m=3 k+2, n=3 l+2$.
Let H be the graph obtained by identifying the vertex $v_{m, 1}^{1}$ of G^{1} with the vertex $v_{1, n}^{2}$ of G^{2} and the vertex $v_{m, 1}^{2}$ of G^{2} with $v_{1, n}^{3}$ of G^{3}. Clearly, H is $C_{m} \square C_{n}$-decomposable. A P_{4} decomposition of H is given below. In each G^{t} consider the $C_{3 k+2}$-fibers except the last fiber and the $C_{3 l+2}$-fibers except the first and last fibers. The $3 k$ edges in the $C_{3 k+2}$-fiber except the
edges $\left\{f_{1, j}, f_{m, j} ; 1 \leq j \leq n-1\right\}$ makes a $P_{3 k+1}$ and the $3 l$ edges in the $C_{3 l+2}$-fiber except the edges $\left\{e_{i .1}, e_{i . n} ; 2 \leq i \leq m-1\right\}$ makes a $P_{3 l+1}$ and both are P_{4}-decomposable. A P_{4}-decomposition of the remaining edges of H is obtained as follows. For $2 \leq i \leq m, 2 \leq j \leq n-1$ and $1 \leq t \leq 3$,

$$
\begin{array}{ccc}
\left\langle f_{1, j}^{t}, f_{m, j}^{t}, e_{m, j}^{t}\right\rangle & \left\langle e_{i, 1}^{t}, e_{i, n}^{t}, f_{i-1, n}^{t}\right\rangle & \left\langle f_{1,1}^{t}, e_{1,1}^{t}, e_{1,2}^{t}\right\rangle \\
\left\langle e_{1, n-2}^{t}, e_{1, n-1}^{t}, f_{m, n}^{t}\right\rangle & \left\langle e_{1, n}^{1}, f_{m, 1}^{1}, e_{1, n}^{2}\right\rangle & \left\langle f_{m, 1}^{2}, e_{1, n}^{3}, f_{m, 1}^{3}\right\rangle
\end{array}
$$

The edges $\left\{e_{1,3}^{t}, e_{1,4}^{t}, \ldots, e_{1, n-3}^{t}\right\}$ makes a $P_{3 l-2}$ and it has $3 l-3$ edges which is P_{4}-decomposable. Thus H is P_{4}-decomposable.

In all three cases $e(H)=6 m n$ and $H \in \operatorname{LCM}\left(P_{4}, C_{m} \square C_{n}\right)$. Thus $\operatorname{lcm}\left(P_{4}, C_{m} \square C_{n}\right)=6 m n$ if $m n \not \equiv 0(\bmod 3)$.

From Theorem 3.3, the following result is obtained.
Theorem 3.4 $C_{m} \square C_{n}$ is P_{4}-decomposable if and only if the number of vertices of $C_{m} \square C_{n}$ is a multiple of three.

lcm of $K_{1,3}$ and $K_{1, m} \square K_{1, n}$.

Figure $3 \quad K_{1, m} \square K_{1, n}$
Let $a_{1}, a_{2}, \ldots, a_{m+1}$ and $b_{1}, b_{2}, \ldots, b_{n+1}$ be the vertices of $K_{1, m}$ and $K_{1, n}$ respectively. $K_{1, m} \times$ $\left\{b_{j}\right\}, 1 \leq j \leq n+1$ are the $K_{1, m}$-fibers and $\left\{a_{i}\right\} \times K_{1, n}, 1 \leq i \leq m+1$ are the $K_{1, n^{-}}$ fibers in $K_{1, m} \square K_{1, n}$. Label the vertices and edges of the j-th $K_{1, m}$-fiber, $K_{1, m} \times\left\{b_{j}\right\}$ as $\left\{v_{1, j}, v_{2, j}, \ldots, v_{m+1, j}\right\},\left\{f_{1, j}, f_{2, j}, \ldots, f_{m, j}\right\}$ and that of the i-th $K_{1, n}$-fiber, $\left\{a_{i}\right\} \times K_{1, n}$ as $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, n+1}\right\},\left\{e_{i, 1}, e_{i, 2}, \ldots, e_{i, n}\right\}$.

Theorem 3.5 $\operatorname{lcm}\left(K_{1,3}, K_{1, m} \square K_{1, n}\right)= \begin{cases}(m+1) n+m(n+1) ; & m, n \equiv 0(\bmod 3), \\ & m, n \equiv 2(\bmod 3), \\ 3((m+1) n+m(n+1)) ; & \text { otherwise. }\end{cases}$
Proof Least common multiple of $K_{1,3}$ and $K_{1, m}$$K_{1, n}$ is the number of edges in the graph of least size that is both $K_{1,3}$-decomposable and $K_{1, m}$$K_{1, n}$-decomposable. Let $G=K_{1, m}$$K_{1, n}$. Then $e(G)=n(m+1)+m(n+1)=2 m n+m+n$ and $e(G)$ is a multiple of 3 if and only if $m, n \equiv 0$ $(\bmod 3)$ or $m, n \equiv 2(\bmod 3)$. Let $X=\{(a, b): m, n \equiv 0(\bmod 3)$ or $m, n \equiv 2(\bmod 3)\}$.

Case 1. $(m, n) \in X$.

Subcase 1.1. If $m, n \equiv 0(\bmod 3)$, by Theorem $2.5, K_{1, m}$ and $K_{1, n}$ are $K_{1,3}$-decomposable. Then by Theorem 2.6, $G=K_{1, m} \square K_{1, n}$ is $K_{1,3}$-decomposable. So $G \in \operatorname{LCM}\left(K_{1,3}, K_{1, m} \square K_{1, n}\right)$ and $\operatorname{lcm}\left(K_{1,3}, K_{1, m} \square K_{1, n}\right)=(m+1) n+m(n+1)$.

Subcase 1.2. If $m, n \equiv 2(\bmod 3)$, in G consider the first $3 k$ edges of $K_{1, m}$-fibers and the first $3 l$ edges of the $K_{1, n}$-fibers, except the first $K_{1, m}$ and $K_{1, n}$-fibers. These edges will have a $K_{1,3}$-decomposition. In any $K_{1, m}$-fiber the edges $f_{3 k+1, j}, f_{3 k+2, j}$ for $2 \leq j \leq n+1$, in any $K_{1, n}$-fiber the edges $e_{i, 3 l+1}, e_{i, 3 l+2}$ for $2 \leq i \leq m+1$ and the edges in the first $K_{1, m}$-fiber and $K_{1, n}$-fiber remains. A $K_{1,3}$-decomposition of these edges are given below

$$
\left[v_{i, 1} ; f_{i-1,1}, e_{i, 3 l+1}, e_{i, 3 l+2}\right]_{i=2}^{m+1} \quad\left[v_{1, j} ; e_{1, j-1}, f_{3 k+1, j}, f_{3 k+2, j}\right]_{j=2}^{n+1}
$$

Thus G is $K_{1,3}$-decomposable.
Case 2. $(m, n) \notin X$.
In this case $K_{1, m} \square K_{1, n}$ is not P_{4}-decomposable. Since P_{4} and $K_{1, m} \square K_{1, n}$ have no odd cycles by Theorem 2.3, both are bipartite. Also $\operatorname{gcd}(3,(m+1) n+m(n+1))=1$. So by Theorem 2.7, $\operatorname{lcm}\left(P_{4}, K_{1, m} \square K_{1, n}\right)=3((m+1) n+m(n+1))$.

Theorem 3.6 $K_{1, m} \square K_{1, n}$ is $K_{1,3}$-decomposable if and only if number of edges of $K_{1, m} \square K_{1, n}$ is a multiple of three.

Proof From Theorem 3.5 the result follows.
Acknowledgements The authors are grateful to the anonymous referees for their valuable comments.

References

[1] G. CHARTRAND, L. HOLLEY, G. KUBICKI, et al. Greatest common divisors and least common multiples of graphs. Period. Math. Hungar., 1993, 27(2): 95-104.
[2] C. SUNIL KUMAR. Least Common Multiple of a Cycle and a Star. Elsevier Sci. B. V., Amsterdam, 2003.
[3] Ping WANG. On the sizes of least common multiples of stars versus cycles. Util. Math., 1998, 53: 231-242.
[4] C. M. MYNHARDT, F. SABA. On the sizes of least common multiples of paths versus complete graphs. Util. Math., 1994, 46: 117-128.
[5] G. CHARTRAND, F. SABA. On least common multiples of digraphs. Uti. Math., 1996, 49: 45-63.
[6] P. ADAMS, D. BRYANT, B. MAENHAUT. Common multiples of complete graphs and a 4-cycle. Discrete Math., 2004, 275(1-3): 289-297.
[7] D. BRYANT, B. MAENHAUT. Common multiples of complete graphs. Proc. London Math. Soc. (3), 2003, 86(2): 302-326.
[8] G. CHARTRAND, G. KUBICKI, C. M. MYNHARDT, et al. On graphs with a unique least common multiple. Ars Combin., 1997, 46: 177-190.
[9] G. CHARTRAND, Ping ZHANG. A First Course in Graph Theory. Courier Corporation, 2013.
[10] Zhenchun CHEN, T. W. SHYU. Common multiples of paths and stars. Ars Combin., 2019, 146: 115-122.
[11] C. SUNIL KUMAR. Decomposition Problems in Graph theory. Thesis, 2002.
[12] P. HELL, A. ROSA. Graph decompositions, handcuffed prisoners and balanced P-designs. Discrete Math., 1972, 2(3): 229-252.
[13] O. FAVARON, C. M. MYNHARDT. On the sizes of least common multiples of several pairs of graphs. Ars Combin., 1996, 43: 181-190.

[^0]: Received March 20, 2022; Accepted May 22, 2022

 * Corresponding author

 E-mail address: rejiaran@gmail.com (T. REJI); rubymathpkd@gmail.com (R. RUBY); sneharbkrishnan@gmail.
 com (B. SNEHA)

