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Abstract A graph G without isolated vertices is a least common multiple of two graphs H1 and

H2 if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of

G into edge disjoint copies of H1 and H2. The collection of all least common multiples of H1 and

H2 is denoted by LCM(H1,H2) and the size of a least common multiple of H1 and H2 is denoted

by lcm(H1, H2). In this paper lcm(P4, Pm � Pn), lcm(P4, Cm � Cn) and lcm(K1,3, K1,m � K1,n)

are determined.
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1. Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices.

The number of vertices of a graph G denoted by v(G), is called the order of G and the number

of edges of G denoted by e(G), is called the size of G.

A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic

to H , whose edge sets partition the edge set of G. Such a set of subgraphs is called an H-

decomposition of G. If G has an H-decomposition, we say that G is H-decomposable and write

H |G.

A graph is called a common multiple of two graphs H1 and H2 if both H1|G and H2|G. A

graph G is a least common multiple of H1 and H2 if G is a common multiple of H1 and H2

and no other common multiple has fewer edges. Several authors have investigated the problem

of finding least common multiples of pairs of graphs H1 and H2; that is graphs of minimum

size which are both H1 and H2 decomposable. The problem was introduced by Chartrand et

al. in [1] and they showed that every two nonempty graphs have a least common multiple. The

problem of finding the size of least common multiples of graphs has been studied for several

pairs of graphs: cycles and stars [1–3], paths and complete graphs [4], pairs of complete graphs,

complete graphs and a 4-cycle, paths and stars and pairs of cycles. Least common multiple of

digraphs were considered in [5].
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If G is a common multiple of H1 and H2 and G has q edges, then we call G a (q,H1, H2)

graph. An obvious necessary condition for the existence of a (q,H1, H2) graph is that e(H1)|q

and e(H2)|q. This obvious necessary condition is not always sufficient. Therefore, we may ask:

Given two graphs H1 and H2, for which value of q does there exist a (q,H1, H2) graph? Adams,

Bryant and Maenhaut [6] gave a complete solution to this problem in the case where H1 is the

4-cycle and H2 is a complete graph; Bryant and Maenhaut [7] gave a complete solution to this

problem in the case where H1 is the complete graph K3 and H2 is a complete graph. Thus the

problem to find least common multiple of H1 and H2 is to find the least positive integer q such

that there exists a (q,H1, H2) graph. We denote the set of all least common multiples of H1

and H2 by LCM(H1, H2). The size of a least common multiple of H1 and H2 is denoted by

lcm(H1, H2). Since every two nonempty graphs have a least common multiple, LCM(H1, H2)

is nonempty. For many pairs of graphs number of elements of LCM(H1, H2) is greater than

one. For example both P7 and C6 are least common multiples of P4 and P3. In fact Chartrand

et al. [8] proved that for every positive integer n there exist two graphs having exactly n least

common multiples.

2. Preliminaries

The path Pn having vertex set {v1, v2, . . . , vn} and edge set {e1, e2, . . . , en−1} will be denoted

by 〈e1, e2, . . . , en−1〉 and a star K1,n having vertex set {v1, v2, . . . , vn+1}, where v1 is the hub

vertex, and edge set {e1, e2, . . . , en} will be denoted by [v1; e1, e2, . . . , en]. The cartesian product

of two graphs G and H denoted by G � H is a graph with vertex set V (G) × V (H) for which

{(x, a), (y, b)} is an edge if x = y and {a, b} ∈ E(H) or {x, y} ∈ E(G) and a = b. v(G � H) =

v(G)v(H) and e(G � H) = v(G)e(H) + v(H)e(G).

Theorem 2.1 ([9]) A nontrivial connected graph G is Eulerian if and only if every vertex of G

has even degree.

Theorem 2.2 ([9]) Let G and H be nontrivial connected graphs. Then G � H is Eulerian if

and only if both G and H are Eulerian or every vertex of G and H is odd.

Theorem 2.3 ([9]) A nontrivial graph G is a bipartite graph if and only if G contains no odd

cycles.

Theorem 2.4 ([10]) Let E be an Eulerian circuit in a graph G. If k1, k2, . . . , km are positive

integers such that k1+k2+ · · ·+km = e(G) and each less than g(E), where g(E) is the length of

the minimal cycle contained in E, then G can be decomposed into paths of lengths k1, k2, . . . , km.

Theorem 2.5 ([11]) A complete bipartite graph of size q ≡ 0 (mod 3) is K1,3-decomposable.

Theorem 2.6 ([12]) If the graphs G and H have an F -decomposition, then their cartesian

product G � H also has an F -decomposition.

Theorem 2.7 ([13]) If the graphs G and H are bipartite, then lcm(G,H) ≤ e(G).e(H) where
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equality holds if gcd(e(G), e(H)) = 1.

For a graph G, let Gt for t = 1, 2, 3 denote the t-th copy of G. Let vt denote a vertex and et

denote an edge in Gt.

3. Main results

In this section we compute

lcm(P4, Pm � Pn), lcm(P4, Cm � Cn) and lcm(K1,3,K1,m � K1,n).

lcm of P4 and Pm � Pn

Let a1, a2, . . . , am and b1, b2, . . . , bn be the vertices of Pm and Pn, respectively. Pm × {bj},

1 ≤ j ≤ n are the Pm-fibers and {ai} × Pn, 1 ≤ i ≤ m are the Pn-fibers in Pm � Pn. Label the

vertices and edges of the j-th Pm-fiber, Pm×{bj} as {v1,j, v2,j , . . . , vm,j}, {f1,j, f2,j, . . . , fm−1,j}

and that of the i-th Pn-fiber, {ai} × Pn as {vi,1, vi,2, . . . , vi,n}, {ei,1, ei,2, . . . , ei,n−1}. A path on

m vertices Pm has m− 1 edges and it is Pn-decomposable if and only if n− 1 divides m− 1.

f1,n f2,n f3,n fm−1,n

f1,n−1 f2,n−1 f3,n−1 fm−1,n−1

f1,3 f2,3 f3,3 fm−1,3

f1,2 f2,2 f3,2 fm−1,2

f1,1 f2,1 f3,1 fm−1,1
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Figure 1 Pm � Pn

Theorem 3.1 lcm(P4, Pm � Pn) =











m(n− 1) + n(m− 1); m,n ≡ 0 (mod 3),

m, n ≡ 1 (mod 3),

3(m(n− 1) + n(m− 1)); otherwise.

Proof Least common multiple of P4 and Pm � Pn is the number of edges in the graph F

of least size that is both P4-decomposable and Pm � Pn-decomposable. Since e(Pm � Pn) =

m(n − 1) + n(m − 1), e(F ) must be a multiple of 3 and m(n − 1) + n(m − 1). We consider

various cases for m and n in modulo 3 and will construct in each case a graph of least size that

is P4-decomposable and Pm � Pn-decomposable. Let G = Pm � Pn.

Let X = {(a, b) : a, b ≡ 0 (mod 3) or a, b ≡ 1 (mod 3)}. Then m(n − 1) + n(m − 1) ≡ 0

(mod 3) if and only if (m,n) ∈ X .



12 T. REJI, R. RUBY and B. SNEHA

Case 1. (m,n) ∈ X .

Subcase 1.1. Letm,n ≡ 0 (mod 3). Them−1 edges of the j-th Pm-fiber, where 1 ≤ j ≤ n−1,

together with the edge e1,j make a Pm+1, which is P4-decomposable. Similarly, the n− 1 edges

of the i-th Pn-fiber, where 2 ≤ i ≤ m, together with the edge fi,n will make a Pn+1 and it is P4-

decomposable. Thus G is P4-decomposable and hence lcm(P4, Pm � Pn) = m(n− 1)+n(m− 1).

Subcase 1.2. Let m,n ≡ 1 (mod 3). Then each Pm-fiber has 3k edges and each Pm-fiber has

3l edges for some positive integers k and l. So each fiber and hence Pm � Pn is P4-decomposable.

Thus lcm(P4, Pm � Pn) = m(n− 1) + n(m− 1).

Case 2. (m,n) /∈ X .

In this case Pm � Pn is not P4-decomposable. Since P4 and Pm � Pn have no odd cycles

by Theorem 2.3, both are bipartite. Also gcd(3,m(n− 1) + n(m− 1)) = 1. So by Theorem 2.7,

lcm(P4, Pm � Pn) = 3(m(n− 1) + n(m− 1)). 2

From Theorem 3.1 the following result is obtained, which is a subcase of the open problem:

The P4-decomposability of a graph.

Theorem 3.2 Pm � Pn is P4-decomposable if and only if m ≡ 0 (mod 3) and n ≡ 0 (mod 3)

or m ≡ 1 (mod 3) and n ≡ 1 (mod 3).

lcm of P4 and Cm � Cn

Let a1, a2, . . . , am and b1, b2, . . . , bn be the vertices of Cm and Cn, respectively. Cm × {bj},

1 ≤ j ≤ n are the Cm-fibers and {ai}×Cn, 1 ≤ i ≤ m are the Cn-fibers in Cm � Cn. Label the

vertices and edges of the j-th Cm-fiber, Cm × {bj} as {v1,j , v2,j , . . . , vm,j}, {f1,j, f2,j, . . . , fm,j}

and that of the i-th Cn-fiber, {ai} × Cn as {vi,1, vi,2, . . . , vi,n}, {ei,1, ei,2, . . . , ei,n}.

Theorem 3.3 lcm(P4, Cm � Cn) =

{

2mn if mn ≡ 0 (mod 3),

6mn otherwise.

Proof Least common multiple of P4 and Cm � Cn is the number of edges in the graph F of

least size that is both P4-decomposable and Cm � Cn-decomposable. Since e(Cm � Cn) = 2mn,

e(F ) must be a multiple of 3 and 2mn.

Let G = Cm � Cn. If G is P4-decomposable, then G ∈ LCM(P4, Cm � Cn). Since deg(v) = 2

for all v ∈ V (Cn), by Theorem 2.1, the cycle Cn is Eulerian for every n. So by Theorem 2.2,

G = Cm � Cn is Eulerian. If m or n is a multiple of three, e(Cm � Cn) = 2mn is a multiple of

three. Let e(Cm � Cn) = 3r, for some r ∈ Z. Then by Theorem 2.4, Cm � Cn can be decomposed

into r copies of P4 and hence G = Cm � Cn is P4-decomposable. Thus lcm(P4, Cm � Cn) = 2mn,

if mn ≡ 0 (mod 3).

Suppose mn 6≡ 0 (mod 3). Then Cm � Cn is not P4-decomposable and the least positive

integer which is a multiple of 3 and 2mn is 6mn. We will prove that lcm(P4, Cm � Cn) = 6mn

if mn 6≡ 0 (mod 3). For this consider various cases for m and n in modulo 3 and in each case we

will construct a graph of size 6mn that is both P4-decomposable and Cm � Cn-decomposable.

Let G = Cm � Cn.
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Case 1. m = 3k + 1, n = 3l + 1.

Let H be the graph obtained by identifying the vertex v1m,n of G1 with the vertex v21,1 of

G2 and the vertex v2m,n of G2 with v31,1 of G3. Clearly, H is Cm � Cn-decomposable. A P4

decomposition of H is given below. In each Gt consider the C3k+1-fibers and the C3l+1-fibers

except the first and last fibers. The first 3k edges in the C3k+1-fiber makes a P3k+1 and the first

3l edges in the C3l+1-fiber makes a P3l+1 and both are P4-decomposable. A P4-decomposition of

the remaining edges of H is obtained as follows. For 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n− 1 and 1 ≤ t ≤ 3,

〈et1,j , f
t
m,j+1, e

t
m,j〉 〈f t

i,1, e
t
i,n, f

t
i,n〉 〈f1

m,1, e
1
m,n, f

2
m,1〉 〈e2m,n, f

3
m,1, e

3
m,n〉

Thus H is P4-decomposable.

Figure 2 m = 4, n = 4

Case 2. m = 3k + 2, n = 3l + 1.

Let H be the graph obtained by identifying the vertex v1m,n of G1 with the vertex v2m,1 of

G2 and the vertex v2m,n of G2 with v3m,1 of G3. Clearly, H is Cm � Cn-decomposable. A P4

decomposition of H is given below. In each Gt consider the C3k+2-fibers and the C3l+1-fibers

except the first and last fibers. The first 3k edges in the C3k+2-fiber makes a P3k+1 and the first

3l edges in the C3l+1-fiber makes a P3l+1 and both are P4-decomposable. A P4-decomposition of

the remaining edges of H is obtained as follows. For 1 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1 and 1 ≤ t ≤ 3,

〈et1,j , f
t
m−1,j, f

t
m,j〉 〈f t

i,1, e
t
i,n, f

t
i,n〉 〈et1,1, f

t
m,1, e

t
m,1〉

〈f t
m,n, e

t
m,n−2, e

t
m,n−1〉 〈e1m,n, e

2
m,n, e

3
m,n〉

The edges {etm,2, e
t
m,3, . . . , e

t
m,n−3}makes a P3l−2 and it has 3l−3 edges which is P4-decomposable.

Thus H is P4-decomposable.

Case 3. m = 3k + 2, n = 3l + 2.

Let H be the graph obtained by identifying the vertex v1m,1 of G1 with the vertex v21,n of

G2 and the vertex v2m,1 of G2 with v31,n of G3. Clearly, H is Cm � Cn-decomposable. A P4

decomposition of H is given below. In each Gt consider the C3k+2-fibers except the last fiber

and the C3l+2-fibers except the first and last fibers. The 3k edges in the C3k+2-fiber except the
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edges {f1,j, fm,j ; 1 ≤ j ≤ n−1}makes a P3k+1 and the 3l edges in the C3l+2-fiber except the edges

{ei.1, ei.n; 2 ≤ i ≤ m− 1} makes a P3l+1 and both are P4-decomposable. A P4-decomposition of

the remaining edges of H is obtained as follows. For 2 ≤ i ≤ m, 2 ≤ j ≤ n− 1 and 1 ≤ t ≤ 3,

〈f t
1,j, f

t
m,j, e

t
m,j〉 〈eti,1, e

t
i,n, f

t
i−1,n〉 〈f t

1,1, e
t
1,1, e

t
1,2〉

〈et1,n−2, e
t
1,n−1, f

t
m,n〉 〈e11,n, f

1
m,1, e

2
1,n〉 〈f2

m,1, e
3
1,n, f

3
m,1〉

The edges {et1,3, e
t
1,4, . . . , e

t
1,n−3} makes a P3l−2 and it has 3l−3 edges which is P4-decomposable.

Thus H is P4-decomposable.

In all three cases e(H) = 6mn and H ∈ LCM(P4, Cm � Cn). Thus lcm(P4, Cm � Cn) = 6mn

if mn 6≡ 0 (mod 3). 2

From Theorem 3.3, the following result is obtained.

Theorem 3.4 Cm � Cn is P4-decomposable if and only if the number of vertices of Cm � Cn

is a multiple of three.

lcm of K1,3 and K1,m � K1,n.

f1,n+1
f2,n+1

fm,n+1

f1,3

f2,3

fm,3f1,2

f2,2

fm,2f1,1

f2,1

fm,1

e
1
,1

e
1
,2

e
1
,n

e
m

+
1
,1 e

m
+
1
,2

e
m

+
1
,n

Figure 3 K1,m � K1,n

Let a1, a2, . . . , am+1 and b1, b2, . . . , bn+1 be the vertices ofK1,m andK1,n respectively. K1,m×

{bj}, 1 ≤ j ≤ n + 1 are the K1,m-fibers and {ai} × K1,n, 1 ≤ i ≤ m + 1 are the K1,n-

fibers in K1,m � K1,n. Label the vertices and edges of the j-th K1,m-fiber, K1,m × {bj}

as {v1,j , v2,j , . . . , vm+1,j}, {f1,j, f2,j, . . . , fm,j} and that of the i-th K1,n-fiber, {ai} × K1,n as

{vi,1, vi,2, . . ., vi,n+1}, {ei,1, ei,2, . . . , ei,n}.

Theorem 3.5 lcm(K1,3,K1,m � K1,n) =











(m+ 1)n+m(n+ 1); m,n ≡ 0 (mod 3),

m, n ≡ 2 (mod 3),

3((m+ 1)n+m(n+ 1)); otherwise.

Proof Least common multiple of K1,3 and K1,m � K1,n is the number of edges in the graph of

least size that is bothK1,3-decomposable andK1,m �K1,n-decomposable. LetG = K1,m �K1,n.

Then e(G) = n(m+1)+m(n+1) = 2mn+m+n and e(G) is a multiple of 3 if and only if m,n ≡ 0

(mod 3) or m,n ≡ 2 (mod 3). Let X = {(a, b) : m,n ≡ 0 (mod 3) or m,n ≡ 2 (mod 3)}.

Case 1. (m,n) ∈ X .



Least common multiple of path, star with Cartesian product of some graphs 15

Subcase 1.1. If m,n ≡ 0 (mod 3), by Theorem 2.5, K1,m and K1,n are K1,3-decomposable.

Then by Theorem 2.6, G = K1,m �K1,n isK1,3-decomposable. SoG ∈ LCM(K1,3,K1,m �K1,n)

and lcm(K1,3,K1,m � K1,n) = (m+ 1)n+m(n+ 1).

Subcase 1.2. If m,n ≡ 2 (mod 3), in G consider the first 3k edges of K1,m-fibers and the

first 3l edges of the K1,n-fibers, except the first K1,m and K1,n-fibers. These edges will have

a K1,3-decomposition. In any K1,m-fiber the edges f3k+1,j , f3k+2,j for 2 ≤ j ≤ n + 1, in any

K1,n-fiber the edges ei,3l+1, ei,3l+2 for 2 ≤ i ≤ m + 1 and the edges in the first K1,m-fiber and

K1,n-fiber remains. A K1,3-decomposition of these edges are given below

[vi,1; fi−1,1, ei,3l+1, ei,3l+2]
m+1

i=2 [v1,j ; e1,j−1, f3k+1,j , f3k+2,j ]
n+1

j=2 .

Thus G is K1,3-decomposable.

Case 2. (m,n) /∈ X .

In this case K1,m � K1,n is not P4-decomposable. Since P4 and K1,m � K1,n have no odd

cycles by Theorem 2.3, both are bipartite. Also gcd(3, (m+1)n+m(n+1)) = 1. So by Theorem

2.7, lcm(P4,K1,m � K1,n) = 3((m+ 1)n+m(n+ 1)). 2

Theorem 3.6 K1,m � K1,n is K1,3-decomposable if and only if number of edges ofK1,m � K1,n

is a multiple of three.

Proof From Theorem 3.5 the result follows. 2
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