Journal of Mathematical Research with Applications Jan., 2023, Vol. 43, No. 1, pp. 9–15 DOI:10.3770/j.issn:2095-2651.2023.01.002 Http://jmre.dlut.edu.cn

Least Common Multiple of Path, Star with Cartesian Product of Some Graphs

T. REJI, R. RUBY*, B. SNEHA

Department of Mathematics, Government College Chittur, Palakkad, Kerala, India

Abstract A graph G without isolated vertices is a least common multiple of two graphs H_1 and H_2 if G is a smallest graph, in terms of number of edges, such that there exists a decomposition of G into edge disjoint copies of H_1 and H_2 . The collection of all least common multiples of H_1 and H_2 is denoted by LCM (H_1, H_2) and the size of a least common multiple of H_1 and H_2 is denoted by lcm (H_1, H_2) . In this paper lcm $(P_4, P_m \Box P_n)$, lcm $(P_4, C_m \Box C_n)$ and lcm $(K_{1,3}, K_{1,m} \Box K_{1,n})$ are determined.

Keywords graph decomposition; least common multiple

MR(2020) Subject Classification 05C38; 05C51; 05C70

1. Introduction

All graphs considered in this paper are assumed to be simple and to have no isolated vertices. The number of vertices of a graph G denoted by v(G), is called the order of G and the number of edges of G denoted by e(G), is called the size of G.

A graph H is said to divide a graph G if there exists a set of subgraphs of G, each isomorphic to H, whose edge sets partition the edge set of G. Such a set of subgraphs is called an Hdecomposition of G. If G has an H-decomposition, we say that G is H-decomposable and write H|G.

A graph is called a common multiple of two graphs H_1 and H_2 if both $H_1|G$ and $H_2|G$. A graph G is a least common multiple of H_1 and H_2 if G is a common multiple of H_1 and H_2 and no other common multiple has fewer edges. Several authors have investigated the problem of finding least common multiples of pairs of graphs H_1 and H_2 ; that is graphs of minimum size which are both H_1 and H_2 decomposable. The problem was introduced by Chartrand et al. in [1] and they showed that every two nonempty graphs have a least common multiple. The problem of finding the size of least common multiples of graphs H_1 and complete graphs have a least common multiple. The problem of finding the size of least common multiples of graphs have a least common multiple. The problem of graphs: cycles and stars [1–3], paths and complete graphs [4], pairs of complete graphs, complete graphs and a 4-cycle, paths and stars and pairs of cycles. Least common multiple of digraphs were considered in [5].

Received March 20, 2022; Accepted May 22, 2022

^{*} Corresponding author

E-mail address: rejiaran@gmail.com (T. REJI); rubymathpkd@gmail.com (R. RUBY); sneharbkrishnan@gmail. com (B. SNEHA)

If G is a common multiple of H_1 and H_2 and G has q edges, then we call G a (q, H_1, H_2) graph. An obvious necessary condition for the existence of a (q, H_1, H_2) graph is that $e(H_1)|q$ and $e(H_2)|q$. This obvious necessary condition is not always sufficient. Therefore, we may ask: Given two graphs H_1 and H_2 , for which value of q does there exist a (q, H_1, H_2) graph? Adams, Bryant and Maenhaut [6] gave a complete solution to this problem in the case where H_1 is the 4-cycle and H_2 is a complete graph; Bryant and Maenhaut [7] gave a complete solution to this problem in the case where H_1 is the complete graph K_3 and H_2 is a complete graph. Thus the problem to find least common multiple of H_1 and H_2 is to find the least positive integer q such that there exists a (q, H_1, H_2) graph. We denote the set of all least common multiples of H_1 and H_2 by $\text{LCM}(H_1, H_2)$. The size of a least common multiple of H_1 and H_2 is denoted by $\text{lcm}(H_1, H_2)$. Since every two nonempty graphs have a least common multiple, $\text{LCM}(H_1, H_2)$ is nonempty. For many pairs of graphs number of elements of $\text{LCM}(H_1, H_2)$ is greater than one. For example both P_7 and C_6 are least common multiples of P_4 and P_3 . In fact Chartrand et al. [8] proved that for every positive integer n there exist two graphs having exactly n least common multiples.

2. Preliminaries

The path P_n having vertex set $\{v_1, v_2, \ldots, v_n\}$ and edge set $\{e_1, e_2, \ldots, e_{n-1}\}$ will be denoted by $\langle e_1, e_2, \ldots, e_{n-1} \rangle$ and a star $K_{1,n}$ having vertex set $\{v_1, v_2, \ldots, v_{n+1}\}$, where v_1 is the hub vertex, and edge set $\{e_1, e_2, \ldots, e_n\}$ will be denoted by $[v_1; e_1, e_2, \ldots, e_n]$. The cartesian product of two graphs G and H denoted by $G \Box H$ is a graph with vertex set $V(G) \times V(H)$ for which $\{(x, a), (y, b)\}$ is an edge if x = y and $\{a, b\} \in E(H)$ or $\{x, y\} \in E(G)$ and a = b. $v(G \Box H) =$ v(G)v(H) and $e(G \Box H) = v(G)e(H) + v(H)e(G)$.

Theorem 2.1 ([9]) A nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.

Theorem 2.2 ([9]) Let G and H be nontrivial connected graphs. Then $G \square H$ is Eulerian if and only if both G and H are Eulerian or every vertex of G and H is odd.

Theorem 2.3 ([9]) A nontrivial graph G is a bipartite graph if and only if G contains no odd cycles.

Theorem 2.4 ([10]) Let *E* be an Eulerian circuit in a graph *G*. If k_1, k_2, \ldots, k_m are positive integers such that $k_1 + k_2 + \cdots + k_m = e(G)$ and each less than g(E), where g(E) is the length of the minimal cycle contained in *E*, then *G* can be decomposed into paths of lengths k_1, k_2, \ldots, k_m .

Theorem 2.5 ([11]) A complete bipartite graph of size $q \equiv 0 \pmod{3}$ is $K_{1,3}$ -decomposable.

Theorem 2.6 ([12]) If the graphs G and H have an F-decomposition, then their cartesian product $G \square H$ also has an F-decomposition.

Theorem 2.7 ([13]) If the graphs G and H are bipartite, then $lcm(G, H) \leq e(G).e(H)$ where

10

Least common multiple of path, star with Cartesian product of some graphs

equality holds if gcd(e(G), e(H)) = 1.

For a graph G, let G^t for t = 1, 2, 3 denote the t-th copy of G. Let v^t denote a vertex and e^t denote an edge in G^t .

3. Main results

In this section we compute

 $\operatorname{lcm}(P_4, P_m \Box P_n), \operatorname{lcm}(P_4, C_m \Box C_n) \text{ and } \operatorname{lcm}(K_{1,3}, K_{1,m} \Box K_{1,n}).$

lcm of P_4 and $P_m \square P_n$

Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n be the vertices of P_m and P_n , respectively. $P_m \times \{b_j\}$, $1 \leq j \leq n$ are the P_m -fibers and $\{a_i\} \times P_n$, $1 \leq i \leq m$ are the P_n -fibers in $P_m \square P_n$. Label the vertices and edges of the *j*-th P_m -fiber, $P_m \times \{b_j\}$ as $\{v_{1,j}, v_{2,j}, \ldots, v_{m,j}\}$, $\{f_{1,j}, f_{2,j}, \ldots, f_{m-1,j}\}$ and that of the *i*-th P_n -fiber, $\{a_i\} \times P_n$ as $\{v_{i,1}, v_{i,2}, \ldots, v_{i,n}\}$, $\{e_{i,1}, e_{i,2}, \ldots, e_{i,n-1}\}$. A path on m vertices P_m has m - 1 edges and it is P_n -decomposable if and only if n - 1 divides m - 1.

Figure 1
$$P_m \square P_n$$

Theorem 3.1
$$\operatorname{lcm}(P_4, P_m \Box P_n) = \begin{cases} m(n-1) + n(m-1); & m, n \equiv 0 \pmod{3}, \\ & m, n \equiv 1 \pmod{3}, \\ 3(m(n-1) + n(m-1)); & otherwise. \end{cases}$$

Proof Least common multiple of P_4 and $P_m \square P_n$ is the number of edges in the graph F of least size that is both P_4 -decomposable and $P_m \square P_n$ -decomposable. Since $e(P_m \square P_n) = m(n-1) + n(m-1)$, e(F) must be a multiple of 3 and m(n-1) + n(m-1). We consider various cases for m and n in modulo 3 and will construct in each case a graph of least size that is P_4 -decomposable and $P_m \square P_n$ -decomposable. Let $G = P_m \square P_n$.

Let $X = \{(a, b) : a, b \equiv 0 \pmod{3} \text{ or } a, b \equiv 1 \pmod{3}\}$. Then $m(n-1) + n(m-1) \equiv 0 \pmod{3}$ if and only if $(m, n) \in X$.

Case 1. $(m, n) \in X$.

Subcase 1.1. Let $m, n \equiv 0 \pmod{3}$. The m-1 edges of the *j*-th P_m -fiber, where $1 \leq j \leq n-1$, together with the edge $e_{1,j}$ make a P_{m+1} , which is P_4 -decomposable. Similarly, the n-1 edges of the *i*-th P_n -fiber, where $2 \leq i \leq m$, together with the edge $f_{i,n}$ will make a P_{n+1} and it is P_4 -decomposable. Thus G is P_4 -decomposable and hence $\operatorname{lcm}(P_4, P_m \Box P_n) = m(n-1) + n(m-1)$.

Subcase 1.2. Let $m, n \equiv 1 \pmod{3}$. Then each P_m -fiber has 3k edges and each P_m -fiber has 3l edges for some positive integers k and l. So each fiber and hence $P_m \square P_n$ is P_4 -decomposable. Thus $\operatorname{lcm}(P_4, P_m \square P_n) = m(n-1) + n(m-1)$.

Case 2. $(m, n) \notin X$.

In this case $P_m \square P_n$ is not P_4 -decomposable. Since P_4 and $P_m \square P_n$ have no odd cycles by Theorem 2.3, both are bipartite. Also gcd(3, m(n-1) + n(m-1)) = 1. So by Theorem 2.7, $lcm(P_4, P_m \square P_n) = 3(m(n-1) + n(m-1))$. \square

From Theorem 3.1 the following result is obtained, which is a subcase of the open problem: The P_4 -decomposability of a graph.

Theorem 3.2 $P_m \square P_n$ is P_4 -decomposable if and only if $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$ or $m \equiv 1 \pmod{3}$ and $n \equiv 1 \pmod{3}$.

lcm of P_4 and $C_m \square C_n$

Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n be the vertices of C_m and C_n , respectively. $C_m \times \{b_j\}$, $1 \leq j \leq n$ are the C_m -fibers and $\{a_i\} \times C_n$, $1 \leq i \leq m$ are the C_n -fibers in $C_m \square C_n$. Label the vertices and edges of the *j*-th C_m -fiber, $C_m \times \{b_j\}$ as $\{v_{1,j}, v_{2,j}, \ldots, v_{m,j}\}$, $\{f_{1,j}, f_{2,j}, \ldots, f_{m,j}\}$ and that of the *i*-th C_n -fiber, $\{a_i\} \times C_n$ as $\{v_{i,1}, v_{i,2}, \ldots, v_{i,n}\}$, $\{e_{i,1}, e_{i,2}, \ldots, e_{i,n}\}$.

Theorem 3.3 $\operatorname{lcm}(P_4, C_m \Box C_n) = \begin{cases} 2mn & \text{if } mn \equiv 0 \pmod{3}, \\ 6mn & \text{otherwise.} \end{cases}$

Proof Least common multiple of P_4 and $C_m \square C_n$ is the number of edges in the graph F of least size that is both P_4 -decomposable and $C_m \square C_n$ -decomposable. Since $e(C_m \square C_n) = 2mn$, e(F) must be a multiple of 3 and 2mn.

Let $G = C_m \square C_n$. If G is P_4 -decomposable, then $G \in \text{LCM}(P_4, C_m \square C_n)$. Since deg(v) = 2 for all $v \in V(C_n)$, by Theorem 2.1, the cycle C_n is Eulerian for every n. So by Theorem 2.2, $G = C_m \square C_n$ is Eulerian. If m or n is a multiple of three, $e(C_m \square C_n) = 2mn$ is a multiple of three. Let $e(C_m \square C_n) = 3r$, for some $r \in \mathbb{Z}$. Then by Theorem 2.4, $C_m \square C_n$ can be decomposed into r copies of P_4 and hence $G = C_m \square C_n$ is P_4 -decomposable. Thus $\text{lcm}(P_4, C_m \square C_n) = 2mn$, if $mn \equiv 0 \pmod{3}$.

Suppose $mn \neq 0 \pmod{3}$. Then $C_m \square C_n$ is not P_4 -decomposable and the least positive integer which is a multiple of 3 and 2mn is 6mn. We will prove that $lcm(P_4, C_m \square C_n) = 6mn$ if $mn \neq 0 \pmod{3}$. For this consider various cases for m and n in modulo 3 and in each case we will construct a graph of size 6mn that is both P_4 -decomposable and $C_m \square C_n$ -decomposable. Let $G = C_m \square C_n$.

12

Least common multiple of path, star with Cartesian product of some graphs

Case 1. m = 3k + 1, n = 3l + 1.

Let H be the graph obtained by identifying the vertex $v_{m,n}^1$ of G^1 with the vertex $v_{1,1}^2$ of G^2 and the vertex $v_{m,n}^2$ of G^2 with $v_{1,1}^3$ of G^3 . Clearly, H is $C_m \square C_n$ -decomposable. A P_4 decomposition of H is given below. In each G^t consider the C_{3k+1} -fibers and the C_{3l+1} -fibers except the first and last fibers. The first 3k edges in the C_{3k+1} -fiber makes a P_{3k+1} and the first 3l edges in the C_{3l+1} -fiber makes a P_{3l+1} and both are P_4 -decomposable. A P_4 -decomposition of the remaining edges of H is obtained as follows. For $1 \le i \le m-1$, $1 \le j \le n-1$ and $1 \le t \le 3$,

$$\langle e_{1,j}^t, f_{m,j+1}^t, e_{m,j}^t \rangle \quad \langle f_{i,1}^t, e_{i,n}^t, f_{i,n}^t \rangle \quad \langle f_{m,1}^1, e_{m,n}^1, f_{m,1}^2 \rangle \quad \langle e_{m,n}^2, f_{m,1}^3, e_{m,n}^3 \rangle$$

Thus H is P_4 -decomposable.

Figure 2 m = 4, n = 4

Case 2. m = 3k + 2, n = 3l + 1.

Let H be the graph obtained by identifying the vertex $v_{m,n}^1$ of G^1 with the vertex $v_{m,1}^2$ of G^2 and the vertex $v_{m,n}^2$ of G^2 with $v_{m,1}^3$ of G^3 . Clearly, H is $C_m \square C_n$ -decomposable. A P_4 decomposition of H is given below. In each G^t consider the C_{3k+2} -fibers and the C_{3l+1} -fibers except the first and last fibers. The first 3k edges in the C_{3k+2} -fiber makes a P_{3k+1} and the first 3l edges in the C_{3l+1} -fiber makes a P_{3l+1} and both are P_4 -decomposable. A P_4 -decomposition of the remaining edges of H is obtained as follows. For $1 \le i \le m-1, 2 \le j \le n-1$ and $1 \le t \le 3$,

$$\begin{array}{ccc} \langle e_{1,j}^{t}, f_{m-1,j}^{t}, f_{m,j}^{t} \rangle & \langle f_{i,1}^{t}, e_{i,n}^{t}, f_{i,n}^{t} \rangle & \langle e_{1,1}^{t}, f_{m,1}^{t}, e_{m,1}^{t} \rangle \\ \langle f_{m,n}^{t}, e_{m,n-2}^{t}, e_{m,n-1}^{t} \rangle & \langle e_{1,n}^{1}, e_{m,n}^{2}, e_{m,n}^{3} \rangle \end{array}$$

The edges $\{e_{m,2}^t, e_{m,3}^t, \dots, e_{m,n-3}^t\}$ makes a P_{3l-2} and it has 3l-3 edges which is P_4 -decomposable. Thus H is P_4 -decomposable.

Case 3. m = 3k + 2, n = 3l + 2.

Let H be the graph obtained by identifying the vertex $v_{m,1}^1$ of G^1 with the vertex $v_{1,n}^2$ of G^2 and the vertex $v_{m,1}^2$ of G^2 with $v_{1,n}^3$ of G^3 . Clearly, H is $C_m \square C_n$ -decomposable. A P_4 decomposition of H is given below. In each G^t consider the C_{3k+2} -fibers except the last fiber and the C_{3l+2} -fibers except the first and last fibers. The 3k edges in the C_{3k+2} -fiber except the

edges $\{f_{1,j}, f_{m,j}; 1 \le j \le n-1\}$ makes a P_{3k+1} and the 3l edges in the C_{3l+2} -fiber except the edges $\{e_{i,1}, e_{i,n}; 2 \le i \le m-1\}$ makes a P_{3l+1} and both are P_4 -decomposable. A P_4 -decomposition of the remaining edges of H is obtained as follows. For $2 \le i \le m, 2 \le j \le n-1$ and $1 \le t \le 3$,

$$\begin{array}{ll} \langle f_{1,j}^t, f_{m,j}^t, e_{m,j}^t \rangle & \langle e_{i,1}^t, e_{i,n}^t, f_{i-1,n}^t \rangle & \langle f_{1,1}^t, e_{1,1}^t, e_{1,2}^t \rangle \\ \langle e_{1,n-2}^t, e_{1,n-1}^t, f_{m,n}^t \rangle & \langle e_{1,n}^1, f_{m,1}^1, e_{1,n}^2 \rangle & \langle f_{m,1}^2, e_{1,n}^3, f_{m,1}^3 \rangle \end{array}$$

The edges $\{e_{1,3}^t, e_{1,4}^t, \dots, e_{1,n-3}^t\}$ makes a P_{3l-2} and it has 3l-3 edges which is P_4 -decomposable. Thus H is P_4 -decomposable.

In all three cases e(H) = 6mn and $H \in LCM(P_4, C_m \square C_n)$. Thus $lcm(P_4, C_m \square C_n) = 6mn$ if $mn \neq 0 \pmod{3}$. \square

From Theorem 3.3, the following result is obtained.

Theorem 3.4 $C_m \square C_n$ is P_4 -decomposable if and only if the number of vertices of $C_m \square C_n$ is a multiple of three.

lcm of $K_{1,3}$ and $K_{1,m} \square K_{1,n}$.

Figure 3 $K_{1,m} \square K_{1,n}$

Let $a_1, a_2, \ldots, a_{m+1}$ and $b_1, b_2, \ldots, b_{n+1}$ be the vertices of $K_{1,m}$ and $K_{1,n}$ respectively. $K_{1,m} \times \{b_j\}$, $1 \leq j \leq n+1$ are the $K_{1,m}$ -fibers and $\{a_i\} \times K_{1,n}$, $1 \leq i \leq m+1$ are the $K_{1,n}$ -fibers in $K_{1,m} \square K_{1,n}$. Label the vertices and edges of the *j*-th $K_{1,m}$ -fiber, $K_{1,m} \times \{b_j\}$ as $\{v_{1,j}, v_{2,j}, \ldots, v_{m+1,j}\}$, $\{f_{1,j}, f_{2,j}, \ldots, f_{m,j}\}$ and that of the *i*-th $K_{1,n}$ -fiber, $\{a_i\} \times K_{1,n}$ as $\{v_{i,1}, v_{i,2}, \ldots, v_{i,n+1}\}$, $\{e_{i,1}, e_{i,2}, \ldots, e_{i,n}\}$.

Theorem 3.5 lcm
$$(K_{1,3}, K_{1,m} \Box K_{1,n}) = \begin{cases} (m+1)n + m(n+1); & m, n \equiv 0 \pmod{3}, \\ & m, n \equiv 2 \pmod{3}, \\ 3((m+1)n + m(n+1)); & otherwise. \end{cases}$$

Proof Least common multiple of $K_{1,3}$ and $K_{1,m} \square K_{1,n}$ is the number of edges in the graph of least size that is both $K_{1,3}$ -decomposable and $K_{1,m} \square K_{1,n}$ -decomposable. Let $G = K_{1,m} \square K_{1,n}$. Then e(G) = n(m+1)+m(n+1) = 2mn+m+n and e(G) is a multiple of 3 if and only if $m, n \equiv 0 \pmod{3}$ or $m, n \equiv 2 \pmod{3}$. Let $X = \{(a,b): m, n \equiv 0 \pmod{3} \text{ or } m, n \equiv 2 \pmod{3}\}$.

Case 1. $(m, n) \in X$.

Subcase 1.1. If $m, n \equiv 0 \pmod{3}$, by Theorem 2.5, $K_{1,m}$ and $K_{1,n}$ are $K_{1,3}$ -decomposable. Then by Theorem 2.6, $G = K_{1,m} \square K_{1,n}$ is $K_{1,3}$ -decomposable. So $G \in \text{LCM}(K_{1,3}, K_{1,m} \square K_{1,n})$ and $\text{lcm}(K_{1,3}, K_{1,m} \square K_{1,n}) = (m+1)n + m(n+1)$.

Subcase 1.2. If $m, n \equiv 2 \pmod{3}$, in G consider the first 3k edges of $K_{1,m}$ -fibers and the first 3l edges of the $K_{1,n}$ -fibers, except the first $K_{1,m}$ and $K_{1,n}$ -fibers. These edges will have a $K_{1,3}$ -decomposition. In any $K_{1,m}$ -fiber the edges $f_{3k+1,j}, f_{3k+2,j}$ for $2 \leq j \leq n+1$, in any $K_{1,n}$ -fiber the edges $e_{i,3l+1}, e_{i,3l+2}$ for $2 \leq i \leq m+1$ and the edges in the first $K_{1,m}$ -fiber and $K_{1,n}$ -fiber remains. A $K_{1,3}$ -decomposition of these edges are given below

$$[v_{i,1}; f_{i-1,1}, e_{i,3l+1}, e_{i,3l+2}]_{i=2}^{m+1} [v_{1,j}; e_{1,j-1}, f_{3k+1,j}, f_{3k+2,j}]_{j=2}^{n+1}.$$

Thus G is $K_{1,3}$ -decomposable.

Case 2. $(m, n) \notin X$.

In this case $K_{1,m} \square K_{1,n}$ is not P_4 -decomposable. Since P_4 and $K_{1,m} \square K_{1,n}$ have no odd cycles by Theorem 2.3, both are bipartite. Also gcd(3, (m+1)n + m(n+1)) = 1. So by Theorem 2.7, $lcm(P_4, K_{1,m} \square K_{1,n}) = 3((m+1)n + m(n+1))$. \square

Theorem 3.6 $K_{1,m} \square K_{1,n}$ is $K_{1,3}$ -decomposable if and only if number of edges of $K_{1,m} \square K_{1,n}$ is a multiple of three.

Proof From Theorem 3.5 the result follows. \Box

Acknowledgements The authors are grateful to the anonymous referees for their valuable comments.

References

- G. CHARTRAND, L. HOLLEY, G. KUBICKI, et al. Greatest common divisors and least common multiples of graphs. Period. Math. Hungar., 1993, 27(2): 95–104.
- [2] C. SUNIL KUMAR. Least Common Multiple of a Cycle and a Star. Elsevier Sci. B. V., Amsterdam, 2003.
- [3] Ping WANG. On the sizes of least common multiples of stars versus cycles. Util. Math., 1998, 53: 231–242.
- [4] C. M. MYNHARDT, F. SABA. On the sizes of least common multiples of paths versus complete graphs. Util. Math., 1994, 46: 117–128.
- [5] G. CHARTRAND, F. SABA. On least common multiples of digraphs. Uti. Math., 1996, 49: 45–63.
- [6] P. ADAMS, D. BRYANT, B. MAENHAUT. Common multiples of complete graphs and a 4-cycle. Discrete Math., 2004, 275(1-3): 289–297.
- [7] D. BRYANT, B. MAENHAUT. Common multiples of complete graphs. Proc. London Math. Soc. (3), 2003, 86(2): 302–326.
- [8] G. CHARTRAND, G. KUBICKI, C. M. MYNHARDT, et al. On graphs with a unique least common multiple. Ars Combin., 1997, 46: 177–190.
- [9] G. CHARTRAND, Ping ZHANG. A First Course in Graph Theory. Courier Corporation, 2013.
- [10] Zhenchun CHEN, T. W. SHYU. Common multiples of paths and stars. Ars Combin., 2019, 146: 115-122.
- [11] C. SUNIL KUMAR. Decomposition Problems in Graph theory. Thesis, 2002.
- [12] P. HELL, A. ROSA. Graph decompositions, handcuffed prisoners and balanced P-designs. Discrete Math., 1972, 2(3): 229–252.
- [13] O. FAVARON, C. M. MYNHARDT. On the sizes of least common multiples of several pairs of graphs. Ars Combin., 1996, 43: 181–190.