Partitioning Planar Graphs with Girth at Least 6 into Bounded Size Components

Chunyu TIAN, Lei SUN*
School of Mathematics and Statistics, Shandong Normal University, Shandong 250358, P. R. China

Abstract

An}\left(\mathcal{O}_{k_{1}}, \mathcal{O}_{k_{2}}\right)\)-partition of a graph G is the partition of $V(G)$ into two non-empty subsets V_{1} and V_{2}, such that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are graphs with components of order at most k_{1} and k_{2}, respectively. In this paper, we consider the problem of partitioning the vertex set of a planar graph with girth restriction such that each part induces a graph with components of bounded order. We prove that every planar graph with girth at least 6 and i-cycle is not intersecting with j-cycle admits an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition, where $i \in\{6,7,8\}$ and $j \in\{6,7,8,9\}$.

Keywords planar graph; face; girth; vertex partition; discharging procedure
MR(2020) Subject Classification 05C15

1. Introduction

In this paper, we only consider finite simple graphs. Given a graph G, let $V(G), E(G)$, and $F(G)$ denote the vertex set, edge set and face set, respectively. We say that two cycles are intersecting if they have at least one common vertex. We use $g(G)$ to denote the girth of G, which is the length of a shortest cycle in G. A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. Such a drawing is called a plane graph.

For each $i \in\{1,2, \ldots, m\}$, let \mathcal{G}_{i} be the class of graphs satisfying some special properties. Given a graph G, a $\left(\mathcal{G}_{1}, \mathcal{G}_{2}, \ldots, \mathcal{G}_{m}\right)$-partition of G is the partition of $V(G)$ into m sets $V_{1}, V_{2}, \ldots, V_{m}$, such that V_{i} induces a graph in \mathcal{G}_{i} for each $i \in\{1,2, \ldots, m\}$.

The following are notations of some graph classes.
\mathcal{I} : the class of edgeless graphs;
\mathcal{F} : the class of forests;
\mathcal{O}_{k} : the class of graphs whose components have order at most k;
\mathcal{P}_{k} : the class of graphs whose components are paths of order at most k;
\mathcal{F}_{d} : the class of forests with maximum degree $d ;$
Δ_{d} : the class of graphs with maximum degree d.

[^0]A k-vertex, k^{+}-vertex and k^{-}-vertex are a vertex of degree k, at least k and at most k, respectively. A k-neighbour of a vertex is a neighbour that is k-vertex, and k^{+}-neighbour and k^{-}-neighbour are defined analogously. A k-face, k^{+}-face, and k^{-}-face are defined in the same way. We use $N(v)$ to denote the set of the neighbours of v. Let $N[v]$ denote $N(v) \cup\{v\}$. For a vertex $v \in V(G)$ and a $f \in F(G)$, we use $d(v)$ to denote the degree of v and use $d(f)$ to denote the size of f. We use $d_{k}(f)$ to denote the number of k-vertices incident with f. We write $f=\left[v_{1} v_{2} \ldots v_{m}\right]$ if $v_{1}, v_{2}, \ldots, v_{m}$ are all vertices of f in cyclic order. An $\left(\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right)$-face is a k-face $\left[v_{1} v_{2} \cdots v_{k}\right]$ with $d\left(v_{i}\right)=\ell_{i}$ for every $i \in\{1,2, \ldots, k\}$.

For an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G, we suppose that $V(G)$ is partitioned into two parts \mathcal{O}_{2} and \mathcal{O}_{3} where \mathcal{O}_{2} and \mathcal{O}_{3} induce graphs whose components have order at most 2 , at most 3 , respectively. We also call the sets \mathcal{O}_{2} and \mathcal{O}_{3} color classes, and a vertex in \mathcal{O}_{2} and \mathcal{O}_{3} is said to have color \mathcal{O}_{2} and \mathcal{O}_{3}, respectively.

There are many results on partitions of planar graphs. The celebrated Four Color Theorem $[1,2]$ implies that every planar graph has an $(\mathcal{I}, \mathcal{I}, \mathcal{I}, \mathcal{I})$-partition. Poh [3] showed that every planar graph admits an $\left(\mathcal{F}_{2}, \mathcal{F}_{2}, \mathcal{F}_{2}\right)$-partition. Sittitrai and Nakprasit [4] showed that there does not exist an integer k such that every planar graph without 4 -cycles and 5 -cycles has a (Δ_{1}, Δ_{k})-partition. They also showed that every planar graph without 4 -cycles and 5 -cycles has a $\left(\Delta_{4}, \Delta_{4}\right)$-partition, a $\left(\Delta_{3}, \Delta_{5}\right)$-partition, and a $\left(\Delta_{2}, \Delta_{9}\right)$-partition. Liu and Lv [5] proved that every planar graph without 4 -cycles and 5 -cycles has a $\left(\Delta_{2}, \Delta_{6}\right)$-partition. Dross, Montassier, Pinlou [6] proved that every triangle-free planar graph admits an $\left(\mathcal{F}_{5}, \mathcal{F}\right)$-partition.

We are interested in the partition of planar graphs with girth restrictions. Montassier and Ochem [7] constructed graphs with girth 4 that do not admit $\left(\Delta_{d_{1}}, \Delta_{d_{2}}\right)$-partition for each $d_{1}, d_{2} \geq 0$. Borodin and Glebov [8] showed that every planar graph with girth 5 admits an $(\mathcal{I}$, $\mathcal{F})$-partition. Havet and Sereni [9] proved that graphs with girth 5 admit a $\left(\Delta_{4}, \Delta_{4}\right)$-partition. Choi and Raspaud [10] proved that graphs with girth 5 admit a $\left(\Delta_{3}, \Delta_{5}\right)$-partition. Axenovich, Ueckerdt and Weiner [11] showed that a planar graph with girth at least 6 has a ($\mathcal{P}_{15}, \mathcal{P}_{15}$)partition. Borodin and Ivanova [12] proved that every planar graph with girth at least 7 has a $\left(\mathcal{P}_{3}, \mathcal{P}_{3}\right)$-partition. Choi, Dross and Ochem [13] proved that every planar graph with girth at least 9 admits an $\left(\mathcal{I}, \mathcal{O}_{9}\right)$-partition. They also showed that every planar graph with girth at least 10 has an $\left(\mathcal{I}, \mathcal{P}_{3}\right)$-partition.

Our main result is stated as follows.
Theorem 1.1 Every planar graph with girth at least 6 and i-cycle not intersecting with j-cycle admits an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition, where $i \in\{6,7,8\}$ and $j \in\{6,7,8,9\}$.

2. Structure properties of minimum counterexample

In order to prove Theorem 1.1, we use the discharging technique. Let G be the counterexample to Theorem 1.1 with minimal number of $|V(G)|+|E(G)| . G$ is a plane graph. Clearly, the graph G is connected. According to the minimality of G, G has no $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partitions but every proper subgraph of G has. For an i-cycle with $i=6,7,8$ or a j-cycle with $j=6,7$
with a hanging 1-vertex, it is obvious that it has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. Therefore, they are not minimal counterexamples. Furthermore, if i-cycle is not intersecting with j-cycle in graph G, we can deduce that i-face is not intersecting with j-face, where $i \in\{6,7,8\}$ and $j \in\{6,7,8,9\}$.

Lemma 2.1 Every vertex in G has degree at least 2.
Proof Let v be a 1-vertex in G and $G^{\prime}=G-v$. According to the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. We can obtain an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G by giving v the color distinct from its neighbour, which is a contradiction.

Lemma 2.2 Every vertex v with $2 \leq d(v) \leq 4$ in G has at least one 3^{+}-neighbour.
Proof Suppose to the contrary that every neighbour of v has degree 2. Let $G^{\prime}=G-N[v]$. Since the girth of graph G is at least 6 , the neighbours of each 2-neighbour of v are different and can only be in G^{\prime}. Let v_{1}, \ldots, v_{m} with $2 \leq m \leq 4$ be the 2 -neighbours of v. According to the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. We color v_{i} with $i=1, \ldots, m$ with the color different from that of their neighbours in G^{\prime}, respectively. Then, if at least two of v_{i} are colored \mathcal{O}_{2}, then we assign \mathcal{O}_{3} to v, otherwise we assign \mathcal{O}_{2} to v. Therefore, we can obtain an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G, which is a contradiction.

Lemma 2.3 There are no adjacent 2-vertices in graph G.
Proof Suppose to the contrary that v_{1} and v_{2} are two adjacent 2-vertices. Let $G^{\prime}=G-\left\{v_{1}, v_{2}\right\}$. By the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. We color v_{1} and v_{2} with the color different from that of their neighbours in G^{\prime}, respectively. In this way, we get an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G, which is a contradiction.

In graph G, if a path is the longest induced path whose internal vertices all have degree 2 , then we call it a chain. A chain is a k-chain if it has k internal 2 -vertices. According to Lemma 2.3, we know there are no adjacent 2 -vertices in graph G, so G has only 1-chains.

We give some interpretations here. In all the following tables, if the position of the vertices is symmetrical, we only list one coloring method.

If v is incident with one 1 -chain and has two 3^{+}-neighbours, then we call it a good 3 -vertex; if v is incident with two 1 -chains and has one 3^{+}-neighbour, then we call it a weak 3 -vertex; if v has three 3^{+}-neighbours, then we call it a best 3-vertex. According to Lemmas 2.2 and 2.3, we can know that there are only the above types of 3 -vertices in G.

Lemma 2.4 Let v_{1} and v_{2} be two adjacent 3 -vertices. If v_{1} is a weak 3 -vertex, then v_{2} cannot be a weak 3-vertex.

Proof Suppose to the contrary that v_{2} is a weak 3 -vertex. Let u_{1} and u_{2} be two 2 -neighbours of v_{1}. Let u_{3} and u_{4} be two 2-neighbours of v_{2}. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$. By the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. Firstly, we color u_{i} with $i=1,2,3,4$ with the color different from that of their 3^{+}-neighbours in G^{\prime}, respectively. According to the colors of u_{i}
with $i=1,2,3,4$, we use the coloring methods in Table 1 to color v_{1} and v_{2}. Therefore, we can obtain an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G, which is a contradiction.

u_{1}	u_{2}	u_{3}	u_{4}	v_{1}	v_{2}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{2}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}

Table 1 Coloring method 1

Lemma 2.5 Let v_{1} and v_{2} be two adjacent 3 -vertices. If v_{1} is a good 3 -vertex, then v_{2} cannot be a weak 3 -vertex.

Proof Suppose to the contrary that v_{2} is a weak 3 -vertex. Let u_{1}, u_{2} be the 2-neighbours of v_{2} and u_{3} be the 2-neighbour of v_{1}. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, u_{1}, u_{2}, u_{3}\right\}$. By the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. Firstly, we color v_{1} and u_{i} with $i=1,2,3$ with the color different from that of their 3^{+}-neighbours in G^{\prime}, respectively. According to the colors of u_{1}, u_{2}, v_{1} and u_{3}, we use the coloring methods in Table 2 to color v_{2}. Therefore, we can obtain an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G, which is a contradiction.

u_{1}	u_{2}	v_{1}	u_{3}	v_{2}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{2}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{2}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}

Table 2 Coloring method 2

Lemma 2.6 Let v_{1} and v_{2} be two 3 -vertices and v_{3} be the common 2-neighbour of v_{1} and v_{2}. Then v_{1} and v_{2} cannot both be weak 3 -vertices.

Proof Suppose to the contrary that v_{1} and v_{2} are both weak 3 -vertices. Let w_{1} and w_{2} be the 2-neighbours of v_{1} and v_{2}, respectively. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, v_{3}, w_{1}, w_{2}\right\}$. By the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. Firstly, we color v_{i} and w_{i} with $i=1,2$ with the colors different from that of their 3^{+}-neighbours in G^{\prime}, respectively. According to the colors of w_{1}, w_{2}, v_{1} and v_{2}, we use the coloring methods in Table 3 to color v_{3}. Therefore, we can obtain an $\left(\mathcal{O}_{2}\right.$, \mathcal{O}_{3})-partition of G, which is a contradiction.

w_{1}	w_{2}	v_{1}	v_{2}	v_{3}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{2}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}

Table 3 Coloring method 3
Lemma 2.7 For a (3, 3, 2, 3, 2, 3)-face $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}\right]$, v_{1} can only be best 3 -vertex.
Proof Suppose to the contrary that v_{1} has a 2-neighbour z. By Lemma 2.6, we know v_{2} and v_{6} are good 3 -vertices. Let graph G^{\prime} be a graph obtained from G by deleting z and all vertices on f. By the minimality of G, G^{\prime} has an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition. Firstly, we color v_{2}, v_{4}, v_{6} and z with the color different from that of their neighbours in G^{\prime}, respectively. According to the colors of v_{2}, v_{4}, v_{6} and z, we use the coloring methods in Table 4 to color v_{1}, v_{3} and v_{5}. Therefore, we can obtain an $\left(\mathcal{O}_{2}, \mathcal{O}_{3}\right)$-partition of G, which is a contradiction.

v_{2}	v_{4}	v_{6}	z	v_{1}	v_{3}	v_{5}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}
\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}
\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{2}	\mathcal{O}_{3}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{2}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{3}	\mathcal{O}_{2}	\mathcal{O}_{3}
\mathcal{O}_{3}	\mathcal{O}_{3}	\mathcal{O}_{3}	$\mathcal{O}_{2} / \mathcal{O}_{3}$	\mathcal{O}_{2}	\mathcal{O}_{2}	\mathcal{O}_{2}

Table 4 Coloring method 4

3. Discharging procedure

In order to reach the final contradiction, we will apply a discharging procedure. According to Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$, and $\sum_{v \in V} d(v)=\sum_{f \in F} d(f)=2|E|$, we get:

$$
\begin{equation*}
\sum_{v \in V(G)}(2 d(v)-5)+\sum_{f \in F(G)}\left(\frac{1}{2} d(f)-5\right)=-10 \tag{3.1}
\end{equation*}
$$

For all $x \in V(G) \cup F(G)$, let $2 d(v)-5$ and $\frac{1}{2} d(f)-5$ be its initial charge $\omega(v)$ and $\omega(f)$, respectively. Let $\tau(v \rightarrow f)$ denote the charge v sends to f. From the above formula, we can know that the total initial charge is negative. Then we can design appropriate discharging rules and redistribute weights. Finally, we will prove that each $x \in V(G) \cup F(G)$ has final charge $\omega^{\prime}(v) \geq 0$ and $\omega^{\prime}(f) \geq 0$ by keeping the total sum of charges unchanged in discharging process. It leads to a contradiction that

$$
\begin{equation*}
0 \leq \sum_{x \in V(G) \cup F(G)} \omega^{\prime}(x)=\sum_{x \in V(G) \cup F(G)} \omega(x)=-10, \tag{3.2}
\end{equation*}
$$

and thus such counterexample does not exist. Our discharging rules are defined as follows.
(R1) Every 2-vertex gets charge $\frac{1}{2}$ from each of its 3^{+}-neighbour.
For each 3^{+}-vertex v, let $\alpha(v)$ be the remaining charge of v after rule (R1).
(R2) Every 3^{+}-vertex v sends charge $\alpha(v)$ to incident $d(f)$-face $(6 \leq d(f) \leq 8)$.
(R3) Every $d(v)$-vertex v sends charge $\frac{\alpha(v)}{d(v)}$ to each incident 9-face $(d(v) \geq 3)$.
In the following, we will prove that $\omega^{\prime}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.
Lemma 3.1 For each $v \in V(G)$, the final charge $\omega^{\prime}(v) \geq 0$.
Proof Let v be a 2 -vertex. We know $\omega^{\prime}(v)=-1+\frac{1}{2} \times 2=0$ by (R1).
By the discharging rules, we only need to show that $\alpha(v) \geq 0$ for 3^{+}-vertex.
Let v be a 3 -vertex. By Lemma 2.2, we know v has at least one 3^{+}-neighbour. If v is a weak 3 -vertex, then $\alpha(v)=1-\frac{1}{2} \times 2=0$ by (R1); if v is a good 3 -vertex, then $\alpha(v)=1-\frac{1}{2}=\frac{1}{2}$ by $R 1$; if v is a best 3 -vertex, then $\alpha(v)=1$ by (R1).

Let v be a 4 -vertex. By Lemma 2.2, we know v has at least one 3^{+}-neighbour. So $\alpha(v) \geq$ $3-\max \left\{\frac{1}{2} \times 3, \frac{1}{2} \times 2, \frac{1}{2} \times 1,0\right\}=\frac{3}{2}$ by (R1).

Let v be a 5^{+}-vertex. We know $\alpha(v) \geq 2 d(v)-5-d(v) \times \frac{1}{2}=\frac{3}{2} d(v)-5 \geq \frac{5}{2}$ by (R1).
Lemma 3.2 For each $f \in F(G)$, the final charge $\omega^{\prime}(f) \geq 0$.
Proof Let f be a 6 -face. If f is incident with at least two 4^{+}-vertices, then $\omega^{\prime}(f) \geq \frac{1}{2} \times 6-5+$ $\frac{3}{2} \times 2=1$ by (R2). If f is incident with a 5^{+}-vertex, then $\omega^{\prime}(f) \geq \frac{1}{2} \times 6-5+\frac{5}{2}=\frac{1}{2}$ by (R2). Therefore, we only need to consider the case that there is at most one 4 -vertex on the 6 -face, and the rest are 2 -vertices and 3 -vertices.

Case 1. $d_{2}(f)=0$.
For $(3,3,3,3,3,4)$-face, we know $\omega^{\prime}(f) \geq-2+\frac{1}{2} \times 5+2=\frac{5}{2}$ by (R2).
For $(3,3,3,3,3,3)$-face, we know $\omega^{\prime}(f) \geq-2+\frac{1}{2} \times 6=1$ by (R2).
Case 2. $d_{2}(f)=1$.
For ($3,3,3,3,3,2$)-face, we know v_{1} and v_{5} cannot be weak 3 -vertices at the same time by Lemma 2.6. So $\omega^{\prime}(f) \geq-2+\frac{1}{2} \times 4=0$ by (R2).

For $(4,3,3,3,3,2)$-face, we know $\tau\left(v_{1} \rightarrow f\right)+\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{3} \rightarrow f\right) \geq \frac{3}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}$ by (R2). So $\omega^{\prime}(f) \geq-2+\frac{5}{2}=\frac{1}{2}$.

For ($4,3,3,3,2,3$)-face and ($4,3,3,2,3,3$)-face, we know $\tau\left(v_{1} \rightarrow f\right) \geq 2$ by (R2). So $\omega^{\prime}(f) \geq$
$-2+2=0$.
Case 3. $d_{2}(f)=2$.
For (3, 3, 2, 3, 2, 3)-face, v_{1} can only be best 3 -vertex by Lemma 2.7. By Lemma 2.6, we know v_{2} and v_{6} are good 3 -vertices. So $\omega^{\prime}(f) \geq-2+1+\frac{1}{2} \times 2=0$ by (R2).

For $(4,3,2,3,2,3)$-face, we know $\tau\left(v_{1} \rightarrow f\right) \geq 2$ by (R2). So $\omega^{\prime}(f) \geq-2+2=0$.
For (3, 4, 2, 3, 2, 3)-face, we know v_{6} is a good 3 -vertex by Lemma 2.6. So $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{6} \rightarrow\right.$ $f) \geq \frac{3}{2}+\frac{1}{2}=2$ by (R2). So $\omega^{\prime}(f) \geq-2+2=0$.

For $(3,3,2,4,2,3)$-face, we know $\tau\left(v_{1} \rightarrow f\right)+\tau\left(v_{4} \rightarrow f\right) \geq \frac{1}{2}+\frac{3}{2}=2$ by (R2). So $\omega^{\prime}(f) \geq$ $-2+2=0$.

For (3, 3, 2, 3, 3, 2)-face, we know these 3 -vertices all are good 3 -vertices by Lemmas 2.4 and 2.5. So $\omega^{\prime}(f)=-2+\frac{1}{2} \times 4=0$ by (R2).

For (3, $3,2,3,4,2$-face, we know v_{1} and v_{2} are good 3 -vertices by Lemmas 2.4 and 2.5. So $\tau\left(v_{1} \rightarrow f\right)+\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{5} \rightarrow f\right) \geq \frac{1}{2}+\frac{1}{2}+\frac{3}{2}=\frac{5}{2}$ by (R2). So $\omega^{\prime}(f) \geq-2+\frac{5}{2}=\frac{1}{2}$.

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2)-faces and (4, 2, 3, 2, 3, 2)-faces in G. By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there is no case of $d_{2}(f) \geq 3$.

Let f be a 7 -face. If f is incident with at least one 4^{+}-vertex, then $\omega^{\prime}(f) \geq \frac{1}{2} \times 7-5+\frac{3}{2}=0$ by (R2). Therefore, we only need to consider the case that f is only incident with 2 -vertices and 3 -vertices.

Case 1. $d_{2}(f)=0$.
For $(3,3,3,3,3,3,3)$-face, we know $\omega^{\prime}(f) \geq-\frac{3}{2}+\frac{1}{2} \times 7=2$ by (R2).
Case 2. $d_{2}(f)=1$.
For $(3,3,3,3,3,3,2)$-face, we know $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{3} \rightarrow f\right)+\tau\left(v_{4} \rightarrow f\right)+\tau\left(v_{5} \rightarrow f\right) \geq \frac{1}{2} \times 4=2$ by (R2). So $\omega^{\prime}(f) \geq-\frac{3}{2}+2=\frac{1}{2}$.

Case 3. $d_{2}(f)=2$.
For (3, 3, 3, 2, 3, 3, 2)-face, we know v_{5} and v_{6} are good 3 -vertices by Lemmas 2.4 and 2.5. So $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{5} \rightarrow f\right)+\tau\left(v_{6} \rightarrow f\right) \geq \frac{1}{2} \times 3=\frac{3}{2}$ by (R2). So $\omega^{\prime}(f) \geq-\frac{3}{2}+\frac{3}{2}=0$.

For (3, 3, 3, 3, 2, 3, 2)-face, we know v_{1} and v_{4} are good 3 -vertices by Lemma 2.6. So $\tau\left(v_{1} \rightarrow\right.$ $f)+\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{3} \rightarrow f\right)+\tau\left(v_{4} \rightarrow f\right) \geq \frac{1}{2} \times 4=2$ by $(\mathrm{R} 2)$. So $\omega^{\prime}(f) \geq-\frac{3}{2}+2=\frac{1}{2}$.

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2, 3)-faces in G. By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there is no case of $d_{2}(f) \geq 3$.

Let f be a 8 -face. If f is incident with at least one 4^{+}-vertex, then $\omega^{\prime}(f) \geq \frac{1}{2} \times 8-5+\frac{3}{2}=\frac{1}{2}$ by (R2). Therefore, we only need to consider the case that f is only incident with 2 -vertices and 3 -vertices.

Case 1. $d_{2}(f)=0$.
For $(3,3,3,3,3,3,3,3)$-face, we know $\omega^{\prime}(f) \geq-1+\frac{1}{2} \times 8=3$ by (R2).
Case 2. $d_{2}(f)=1$.
For $(3,3,3,3,3,3,3,2)$-face, we know $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{3} \rightarrow f\right) \geq \frac{1}{2} \times 2=1$ by (R2). So $\omega^{\prime}(f) \geq-1+1=0$.

Case 3. $d_{2}(f)=2$.

For $(3,3,3,2,3,3,3,2)$-face, we know $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{6} \rightarrow f\right) \geq \frac{1}{2} \times 2=1$ by (R2). So $\omega^{\prime}(f) \geq-1+1=0$.

For $(3,3,3,3,2,3,3,2)$-face, we know v_{6} and v_{7} are good 3 -vertices by Lemmas 2.4 and 2.5 . So $\omega^{\prime}(f) \geq-1+\frac{1}{2} \times 2=0$ by (R2).

For $(3,3,3,3,3,2,3,2)$-face, we know v_{1} and v_{5} are good 3 -vertices by Lemma 2.6. So $\omega^{\prime}(f) \geq$ $-1+\frac{1}{2} \times 2=0$ by (R2).

Case 4. $d_{2}(f)=3$.
For $(3,2,3,3,2,3,3,2)$-face, we know v_{6} and v_{7} are good 3 -vertices by Lemmas 2.4 and 2.5. So $\omega^{\prime}(f) \geq-1+\frac{1}{2} \times 2=0$ by (R2).

By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2, 3, 3)-faces and (3, 2, 3, 2, 3, 2, 3, 2)faces in G. By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there is no case of $d_{2}(f) \geq 4$.

Let f be a 9 -face. If f is incident with at least two 4^{+}-vertices, then $\omega^{\prime}(f) \geq \frac{1}{2} \times 9-5+\frac{3}{8} \times 2=$ $\frac{1}{4}$ by (R3). If f is incident with a 5^{+}-vertex, then $\omega^{\prime}(f) \geq \frac{1}{2} \times 9-5+\frac{1}{2}=0$ by (R3). Therefore, we only need to consider the case that there is at most one 4 -vertex on the 9 -face, and the rest are 2 -vertices and 3 -vertices.

Case 1. $d_{2}(f)=0$.
For $(3,3,3,3,3,3,3,3,3)$-face and $(3,3,3,3,3,3,3,3,4)$-face, we know $\tau\left(v_{1} \rightarrow f\right)+\tau\left(v_{2} \rightarrow\right.$ $f)+\tau\left(v_{3} \rightarrow f\right) \geq \frac{1}{6} \times 3=\frac{1}{2}$ by (R3). So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{2}=0$.

Case 2. $d_{2}(f)=1$.
For $(3,3,3,3,3,3,3,3,2)$-face, $(3,3,3,3,4,3,3,3,2)$-face, $(3,3,3,3,3,4,3,3,2)$-face, $(3,3,3,3$, $3,3,4,3,2)$-face and ($3,3,3,3,3,3,3,4,2$-face, we know that at least five of these 3 -vertices are either good 3 -vertices or best 3 -vertices. So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{6} \times 5=\frac{1}{8}$ by (R3).

Case 3. $d_{2}(f)=2$.
For $(3,3,3,3,3,3,2,3,2)$-face and $(3,3,3,3,3,2,3,3,2)$-face, we know $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{3} \rightarrow\right.$ $f)+\tau\left(v_{4} \rightarrow f\right) \geq \frac{1}{6} \times 3=\frac{1}{2}$ by (R3). So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{2}=0$.

For $(3,3,3,3,2,3,3,3,2)$-face, we know $\tau\left(v_{2} \rightarrow f\right)+\tau\left(v_{3} \rightarrow f\right)+\tau\left(v_{7} \rightarrow f\right) \geq \frac{1}{6} \times 3=\frac{1}{2}$ by (R3). So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{2}=0$.

For $(3,3,3,3,3,3,2,4,2)$-face, $(3,3,3,3,3,4,2,3,2)$-face, $(3,3,3,3,4,3,2,3,2)$-face, $(3,3,3,4$, $3,3,2,3,2)$-face, $(3,3,3,3,3,2,3,4,2)$-face, $(3,3,3,3,4,2,3,3,2)$-face, $(3,3,3,4,3,2,3,3,2)$-face and ($3,3,4,3,3,2,3,3,2$)-face, $(3,3,3,3,2,3,3,4,2)$-face, $(3,3,3,3,2,3,4,3,2)$-face, $(3,3,3,4,2,3$, $3,3,2$)-face and ($3,3,4,3,2,3,3,3,2$)-face, we know 4 -vertex sends charge at least $\frac{3}{8}$ to face and $\tau\left(v_{2} \rightarrow f\right) \geq \frac{1}{6}$ by (R3). So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{6}+\frac{3}{8}=\frac{1}{24}$.

Case 4. $d_{2}(f)=3$.
For (3, 3, $3,2,3,3,2,3,2)$-face, we know v_{1} is a good 3 -vertex by Lemma 2.6. By Lemmas 2.4 and 2.5 , we know v_{5} and v_{6} are good 3 -vertices. So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{6} \times 3=0$ by (R3).

By Lemma 2.6, we know that there are no (3, 3, 3, 3, 2, 3, 2, 3, 2)-faces, (4, 3, 3, 3, 2, 3, 2, 3, 2)faces and ($3,4,3,3,2,3,2,3,2$)-faces in G.

For $(3,3,3,3,2,4,2,3,2)$-face, $(3,3,3,2,3,3,2,4,2)$-face, $(3,3,3,2,3,4,2,3,2)$-face, $(3,3,3,2$, $4,3,2,3,2)$-face and ($3,3,4,2,3,3,2,3,2$-face, we know v_{2} is either good 3 -vertex or best 3 -vertex.

So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{6}+\frac{3}{8}=\frac{1}{24}$ by (R3).
For ($3,4,3,2,3,3,2,3,2$)-face and ($4,3,3,2,3,3,2,3,2$)-face, we know v_{5} and v_{6} are good 3 -vertices by Lemmas 2.4 and 2.5. So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{6}+\frac{1}{6}+\frac{3}{8}=\frac{5}{24}$ by (R3).

For $(3,3,2,3,3,2,3,3,2)$-face and $(3,3,2,3,3,2,3,4,2)$-face, we know v_{1}, v_{2}, v_{4} and v_{5} are good 3 -vertices Lemmas 2.4 and 2.5. So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{1}{6} \times 4=\frac{1}{6}$ by (R3).

Case 5. $d_{2}(f)=4$.
By Lemma 2.6, we know that there are no (3, 2, 3, 2, 3, 2, 3, 2, 3)-faces, (3, 2, 4, 2, 3, 2, 3, 2, 3)faces and ($4,2,3,2,3,2,3,2,3$)-faces in G.

For (3, 2, 3, 2, 4, 2, 3, 2, 3)-face, we know v_{1} and v_{9} are good 3 -vertices by Lemmas 2.4 and 2.5. So $\omega^{\prime}(f) \geq-\frac{1}{2}+\frac{3}{8}+\frac{1}{6} \times 2=\frac{5}{24}$ by (R3).

By Lemma 2.3, we know that there are no adjacent 2-vertices in graph G. So there is no case of $d_{2}(f) \geq 5$.

Let f be a 10^{+}-face. We know that a 10^{+}-face is not involved in discharging rules, so $\omega^{\prime}(f)=\omega(f)=\frac{1}{2} d(f)-5 \geq \frac{1}{2} \times 10-5=0$.

Acknowledgements We thank the referees for their time and comments.

References

[1] K. APPEL, W. HAKEN. Every planar map is four colorable. I. Discharging, Illinois J. Math., 1977, 21(3): 429-490.
[2] K. APPEL, W. HAKEN, J. KOCH. Every planar map is four colorable. II. Reducibility, Illinois J. Math., 1977, 21(3): 491-567.
[3] K. S. POH. On the linear vertex-arboricity of a planar graph. J. Graph Theory, 1990, 14(1): 73-75.
[4] P. SITTITRAI, K. NAKPRASIT. Defective 2-colorings of planar graphs without 4-cycles and 5-cycles. Discrete Math., 2018, 341(8): 2142-2150.
[5] Jie LIU, Jianbo LV. Every planar graph without 4-cycles and 5-cycles is (2,6)-colorable. Bull. Malays. Math. Sci. Soc., 2020, 43(3): 2493-2507.
[6] F. DROSS, M. MONTASSIER, A. PINLOU. Partitioning a triangle-free planar graph into a forest and a forest of bounded degree. European J. Combin., 2017, 66: 81-94.
[7] M. MONTASSIER, P. OCHEM. Near-colorings: non-colorable graphs and NP-completeness. Electron. J. Combin., 2015, 22(1): Paper 1.57, 13 pp.
[8] O. V. BORODIN, A. N. GLEBOV. On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph. Diskretn. Anal. Issled. Oper. Ser. 1, 2001, 8(4): 34-53.
[9] F. HAVET, J. S. SERENI. Improper choosability of graphs and maximum average degree. J. Graph Theory, 2006, 52(3): 181-199.
[10] I. CHOI, A. RASPAUD. Planar graphs with girth at least 5 are (3, 5)-colorable. Discrete Math., 2015, 338(4): 661-667.
[11] M. AXENOVICH, T. UECKERDT, P. WEINER. Splitting planar graphs of girth 6 into two linear forests with short paths. J. Graph Theory, 2017, 85(3): 601-618.
[12] O. V. BORODIN, A. O. IVANOVA. List strong linear 2-arboricity of sparse graphs. J. Graph Theory, 2011, 67(2): 83-90.
[13] I. CHOI, F. DROSS, P. OCHEM. Partitioning sparse graphs into an independent set and a graph with bounded size components. Discrete Math., 2020, 343(8): 111921, 17 pp.

[^0]: Received January 7, 2022; Accepted June 25, 2022
 Supported by the National Natural Science Foundation of China (Grant Nos. 12071265; 12271331) and the Natural Science Foundation of Shandong Province (Grant No. ZR202102250232).

 * Corresponding author

 E-mail address: zx54521@163.com (Chunyu TIAN); sunlei@sdnu.edu.cn (Lei SUN)

