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1. Introduction

In this paper, all graphs are simple graphs without isolated vertices. In [1], Kwong and the

third author considered a new labeling problem of graph theory. Let G be a graph with vertex

set V (G) and edge set E(G), and Z2 = {0, 1}. An edge labeling f induces a partial vertex

labeling f+: V (G) → Z2 defined by f+(v) = 0 if the number of the edges labeled by 0 incident

on v is more than the number of edges labeled by 1 incident on v and f+(v) = 1 if the number

of the edges labeled by 1 incident to v is more than the number of edges labeled by 0 incident to

v. f+(v) is not defined if the number of the edges labeled by 0 is equal to the number the edges

labeled by 1 incident on v. For i ∈ Z2, let vf (i) = |{v ∈ V (G) : f+(v) = i}| and ef (i) = |{e ∈

E(G) : f(e) = i}|. An edge labeling f is said to be edge-friendly if |ef (1) − ef(0)| ≤ 1. With

these notations, we now introduce the definition of an edge-balanced graph.

Definition 1.1 ([1]) A graph G is said to be an edge-balance graph if there is an edge-friendly

labeling f of G satisfying |vf (1)− vf (0)| ≤ 1.

Definition 1.2 ([1]) The edge-balance index set of the graph G, denoted by EBI(G), is defined

as {|vf (1)− vf (0)| : f is edge-friendly}.

Kwong and Lee investigated the edge-balance index sets of generalized theta graphs [1] and

flower graphs [2]. Lee, Su and Wang [3] investigated the edge-balance index sets of (p, p + 1)-

graphs. Chung and Lee [4] investigated the edge-balance index sets of the envelope graphs of
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stars, paths, and cycles. In [5, 6], the edge-balance index sets of L-product of cycles with stars

are investigated. Bouchard, Clark and Su [7] gave the exact values of the edge-balance index

sets of L-product of cycles with cycles. Chopra, Lee and Su [8] investigated the edge-balance

index sets of the fan Pn +K1. Lee, Su and Todt [9] investigated the edge-balance index sets of

broken wheels. Lee, Lee and Su [10] present a technique that determines the balance index sets

of a graph from its degree sequence.

One can see that if {0, 1} ⊆ EBI(G), then the graph is edge-balanced. Hence, the notion

of edge-balance indices generalizes that of edge-balanced labeling in the sense that if the edge-

balance index set for a graph G is known, then the edge-balances-ness of G is determined.

Notation 1.3 For graph Pm×Pn (m,n ≥ 2), the vertex set V = {ui,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n},

the edge set E = {(ui,j , ui,j+1) : 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1} ∪ {(us,t, us+1,t) : 1 ≤ s ≤ m − 1,

1 ≤ t ≤ n}.

P4 × P6 is shown in Figure 1.

Figure 1 P4 × P6

In Pm × Pn, |V | = mn, |E| = 2mn−m− n.

2. Preliminaries

Before we discuss the edge-balanced properties of Product of Paths, we present a result and

some notations which will be used to obtain our main results.

Notation 2.1 In the following discussions, for the vertices and edges on Pm ×Pn, the vertices

ui,j (i = 1,m, 1 ≤ j ≤ n and 2 ≤ i ≤ m − 1, j = 1, n) are said to be boundary vertices, the

others are said to be interior vertices. Similarly, the edges (ui,j , ui,j+1) (i = 1,m, 1 ≤ j ≤ n− 1)

and (us,t, us,t+1) (1 ≤ s ≤ m− 1, t = 1, n) are said to be boundary edges, the others are said to

be interior edges.

The degrees of the boundary vertices are 2 or 3, and the degrees of all interior vertices are 4.

Notation 2.2 For any friendly labeling f of Pm×Pn, the maximum value of all |vf (1)− vf (0)|

is denoted by M(m,n).

Without losing generality, assumem ≤ n on Pm×Pn. An edge e is called a k-edge if f(e) = k,

k ∈ {0, 1}, a vertex v is called a k-vertex if f+(v) = k, k ∈ {0, 1}, a vertex v is called a ∗-vertex

if f+(v) is not defined. We will use v(0), v(1), v(∗), e(0), e(1), instead of vf+(0), vf+(1), vf+(∗),

ef (0), ef(1), provided there is no ambiguity.
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Theorem 2.3 For any edge-friendly labeling f of graph G, v(1)− v(0) = 2v(1) + v(∗)− |V |.

Proof Let f be an edge-friendly labeling of graph G. Since v(1)+v(0)+v(∗) = |V |, v(1)−v(0) =

v(1)− (|V | − v(1)− v(∗)) = 2v(1) + v(∗)− |V |. 2

Notation 2.4 For a friendly labeling f of Pm ×Pn with index a, when a = M(m,n), then the

number of 1-vertices in the interior vertices is denoted by Am,n, the number of ∗-vertices in the

interior vertices is denoted by Bm,n.

Labeled graph A graph G with an edge labeling is called a labeled graph of G.

Notation 2.5 Embedding labeled graph method 1. Given a labeling of Pm×Pn, for some fixed

j with 1 ≤ j < n, let the label of the edge (ui,j , ui,j+1) be ki,j , where ≤ i ≤ m. Let the vertices

of a labeled path Pm be v1, v2, . . . , vm and the label of the edge (vi, vi+1) be li, where 1 ≤ i < m.

In the type 1 embedding labeled graph method, each edge (ui,j , ui,j+1) is subdivided into two

edges (ui,j , vi) and (vi, ui,j+1), both of them are labeled ki,j . The newly inserted vertices vis are

connected to form a path Pm, and the edges are labeled ai, bi and ci, respectively. The result is

a labeling of Pm × Pn+1.

Embedding labeled graph method 2. Let the vertices of a labeled Pm × P2 be vi,j , where

1 ≤ i ≤ m and j = 1, 2, and the labels of the edges (vi,1, vi,2), (vi,1, vi+1,1) and (vi,2, vi+1,2) be

ai, bi and ci, respectively. In a type 2 embedding labeled graph method, each edge (ui,j , ui,j+1)

is subdivided into three edges (ui,j , vi,1), (vi,1, vi,2) and (vi,2, ui,j+1), with both edges (ui,j , vi,1)

and (vi,2, ui,j+1) labeled ki,j . The vertices vi,j are connected to form a Pm × P2, and the edges

are labeled ai, bi and ci, respectively. The result is a labeling of Pm × Pn+2.

In general, given a labeled Pm ×Pk, in a type k embedding labeled graph method, each edge

(ui,j , ui,j+1) is split into two (while keeping the same label ki,j) and attached to the left-most and

right-most column, respectively, of the given labeled Pm × Pk to form a labeling of Pm × Pn+k.

For example, embedding a labeled graph of P2 on P2 × P2 resulting in a labeled graph of

P2 × P3, is shown in Figure 2.

Figure 2 Embedding P2 on P2 × P2

3. EBI(P2 × Pn)

When n = 2, the graph P2×P2 is cycle C4. The fact that EBI(C4) = {0} was obtained in [1].

So, in this section, we investigate the edge-balanced properties of P2 × Pn (n > 2).

Theorem 3.1 For any edge-friendly labeling f of P2 × Pn, M(2, n) =

{

n− 2, if n is even,

n− 1, if n is odd.

Proof First, in P2 × Pn, |E| = 3n − 2, all vertices are the boundary vertices. Next, all cycles
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are even. Finally, for any edge-friendly labeling f , if the label of any vertex ui,j is 1, then there

are at least two 1-edges incident on ui,j . Thereby, choose an even cycle that contains the edge

(u1,1, u2,1), and its length is: [ 3n+1
2 ] for n ≡ 0 or 1 (mod 4); [ 3n−1

2 ] for n ≡ 2 or 3 (mod 4).

When n ≡ 0 or 1 (mod 4), define the labels of the edges on the above cycle as 1 (except

edge (u1,1, u2,1)), the labels of the remaining edges as 0, then e(1) = e(0) for n ≡ 0 (mod 4);

e(1) = e(0) + 1 for n ≡ 1 (mod 4).

When n ≡ 2 or 3 (mod 4), define the labels of the edges on the cycle as 1, the labels of the

remaining edges as 0, then e(1) = e(0) for n ≡ 2 (mod 4); e(1) = e(0) + 1 for n ≡ 3 (mod 4).

(1) n ≡ 0 (mod 4).

Since e(1) = e(0) = 3n
2 −1, 3n

2 −1 is odd, the maximum length of a cycle formed by 1-edges is
3n
2 −2, two ∗-vertices can be obtained by one 1-edge and two 0-edges. Hence, the maximum value

of v(1) is 3n
2 − 2, at this time, the maximum value of v(∗) is 2. M(2, n) = 2v(1) + v(∗)− |V | =

2× 3n
2 − 4 + 2− 2n = n− 2.

(2) n ≡ 2 (mod 4).

v(1) = 3n−2
2 , 3n−2

2 is even, the maximum length of a cycle formed by 1-edges is 3n−2
2 . Hence,

the maximum value of v(1) is 3n−2
2 , at this time v(∗) = 0. M(2, n) = 2v(1) + v(∗) − |V | =

2× 3n−2
2 − 2n = n− 2.

(3) n ≡ 1 (mod 4).

Using the manner of the discussion in Case 1, the maximum value of v(1) is 3n+1
2 − 2, at this

time, the maximum value of v(∗) is 2, M(2, n) = 2v(1)+v(∗)−|V | = 2× 3n+1
2 −4+2−2n = n−1.

(4) n ≡ 3 (mod 4).

Using the manner of the discussion in Case 2, the maximum value of v(1) is 3n−1
2 , at this

time v(∗) = 0, M(2, n) = 2v(1) + v(∗)− |V | = 2× 3n−1
2 − 2n = n− 1. 2

Theorem 3.2 For any odd integer n ≥ 3,

EBI(P2 × Pn) =

{

{0, 1, . . . , n− 2}, if n is even,

{0, 1, . . . , n− 1}, if n is odd.

Proof The construction in Theorem 3.1 produces a labeling f with index M(2, n), where

M(2, n) = n− 2 for even n and M(2, n) = n− 1 for odd n. Starting with f with index M(2, n),

we can construct another labeling g by exchanging the labels of the two edges (u2,1, u2,2) and

(u1,n, u2,n), then

(1) when n ≡ 0 or 1 (mod 4), v(1) is decreased by 1, v(∗) is increased by 1, the labeling g

with index M(2, n)− 1 is obtained.

(2) when n ≡ 2 or 3 (mod 4), v(1) is decreased by 2, v(0) is decreased by 1, the labeling g

with index M(2, n)− 1 is obtained.

In the labeling f and g, there exist the edge labeling forms as illustrated in Figure 3.

Figure 3 Edge labeling form
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Starting with f and g, if exchanging 1-edge and 0-edge successively respectively, as illustrated

in Figure 4,

Figure 4 Exchange the edge labels

then in each exchange, v(1) is decreased by 1, v(∗) is increased by 1.

When n > 3, in the labeling f , there are at least M(2,n)
2 exchanges as illustrated in Figure

4, in the labeling g, there are at least M(2,n)−2
2 exchanges as illustrated in Figure 4. Once the

M(2,n)
2 exchanges in the labeling f and the M(2,n)−2

2 exchanges in the labeling g are completed,

then the labelings with indices n− 4, n− 5, . . . , 0 (since n is even) can be obtained; the labelings

with indices n− 3, n− 4, . . . , 0 (since n is odd) can be obtained.

When n = 3, starting with the labeling with index 2, exchange the labels of (u1,2, u2,2) and

(u1,3, u2,3), then the labeling with index 0 is obtained. The conclusion holds. 2

4. EBI(Pm × Pn)

When n > 2, there exist interior vertices on Pm×Pn. Since the degrees of the interior vertices

are 4, the degrees of the boundary vertices are 2 or 3. If index a = M(m,n), then the labels of all

boundary vertices must be 1, thus, when the number of 1-vertices on the interior vertices is the

greatest too, 2v(1) + v(∗) must be the greatest. We can see the contribution of two ∗-vertices is

the same as that of one 1-vertices for 2v(1)+v(∗), and when index a = M(m,n), 0-vertices must

be adjacent to each other, most of these 0-vertices associated with 0-edges, i.e., as illustrated in

Figure 5.

Figure 5 0-vertices in interior vertices

Now, we find the labeling with index M(m,n) by embedding a labeled graph method.
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Theorem 4.1 For Pm ×Pn and Pm ×P
n+ 6(m−2)

a

(m > 2), has M(m,n+ 6(m−2)
a

) = M(m,n) +

2m2
−8

a
, where a is the greatest common factor of 2m− 5 and 2m− 2.

Proof Define a graph with (0,1)-edge labeling of Pm × P2 and a graph with 0-edge labeling of

Pm as illustrated in Figure 6.

Figure 6 A graph with (0,1)-edge labeling of Pm × P2 and a graph with 0-edge labeling of Pm

Assume the labeling with index M(m,n) is obtained, e(1) = b, e(0) = c (b = c or |b− c| = 1).

First, embedding a graph with (0,1)-edge labeling of Pm×P2 as illustrated in Figure 7, then the

number of 1-edges is increased by 3m− 2, the number of 0-edges is increased by m.

Figure 7 Embedding a graph with (0,1)-edge labeling of Pm × P2

Since at most two ∗-vertices can be obtained by three interior 1-edges, at most one 1-vertices

and one ∗-vertices can be obtained by four interior 1-edges, at most two 1-vertices can be obtained

by five interior 1-edges, at most two 1-vertices and two ∗-vertices can be obtained by six interior

1-edges, . . . , at most 2(m− 2) 1-vertices can be obtained by 3m− 2 1-edges on interior 1-edges,

thereby, embedding a labeled graph with an (0,1)-edge labeling of Pm × P2 with 2m− 2 interior

1-vertices as shown in Figure 7, does not alter the 1-vertices and 0-vertices that have already be

obtained.

When embedding a labeled graph with 0-edge labeling of Pm on the label labeled graph with

index k as shown in Figure 5, this is equal to adding a row in interior of the label graph with

index k. The number of 1-edges is increased by 2, the number of 0-edges is increased by 2m− 3.

For e(1) = e(0) or |e(1) − e(0)| = 1 are satisfied, embedding some graphs with (0,1)-edge

labeling of Pm×P2 and some graphs with 0-edge labeling of Pm, the number of 1-edges increased

is equal to the number of 0-edges increased. Embedding a graph with (0,1)-edge labeling of

Pm ×P2, the number of 1-edges is 2m− 2 more than the number of 0-edges; embedding a graph

with 0-edge labeling of Pm, the number of 0-edges is 2m− 5 more than the number of 1-edges.

Hence, let a be the greatest common factor of 2m− 5 and 2m− 2, then when embedding 2m−5
a
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graphs with (0,1)-edge labeling of Pm × P2 and 2m−2
a

graphs with 0-edge labeling of Pm, the

number of 1-edges increased is equal to the number of 0-edges increased, the number of the rows

in interior of the labeled graph with index k is equal to 2× 2m−5
a

+ 2m−2
a

= 6(m−2)
a

. Thus, we have

M(m,n+ 6(m−2)
a

) = M(m,n)+ 2m× 2m−5
a

+2× 2m−2
a

− 2m−2
a

× (m− 2) = M(m,n)+ 2m2
−8

a
.2

By Theorem 4.1, we obtain the following labeling with index M(m,n).

Figure 8 The labeling form in M(m,n)

The labels of the edges and the vertices that are not yet labeled will be determined by the

concrete values of m and n.

By Theorem 4.1, if the labeling with index M(m,n) is obtained, then the labeling with index

M(m,n+ 6(m−2)
a

) is also obtained. Thus, when the labelings with indices M(m,m),M(m,m+

1), . . . ,M(m,m+ 6(m−2)
a

− 1) are obtained, then the labelings with indices M(m,m+ 6k(m−2)
a

),

M(m,m+1+ 6k(m−2)
a

), . . . ,M(m,m+ 6k(m−2)
a

−1) (k = 1, 2, . . . , ) are also obtained. By exhaust

algorithm, whenm is determined, the labelings with indicesM(m,m),M(m,m+1), . . . ,M(m,m+
6(m−2)

a
− 1) can be obtained.

When m > 4, starting with the labeling with index M(m,m+ t) (t = 0, 1, . . . , 6(m−2)
a

− 1),

exchange the labels of edge (u1,1, u2,1) and (u2,1, u2,2), then v(1) is decreased by 1, v(∗) is

increased by 1, the labeling with index M(m,m+ t)− 1 is obtained.

In the labeling with index M(m,m+ t) and the labeling with index M(m,n+ t) − 1, there

are some 1-edges and 0-edges associated with u1,j, um,s and ut,n as shown in Figure 3. These

1-edges and 0-edges can be exchanged, and these two exchanges do not influence each other,

refer to the following discussions of P3 × Pn, P4 × Pn, the edge-balance index sets of Pm × Pn

(m > 4) can be obtained.

EBI(Pm × Pn) = {0, 1, . . . ,M(m,n)}.

When m = 3 and 4, the 1-edges and 0-edges associated with u1,j , um,s cannot be exchanged

at the same time, in the following sections, the edge-balance index sets of P3 × Pn, P4 × Pn are

obtained, respectively.

5. EBI(P3 × Pn)

On P3 × Pn, |V | = 3n, |E| = 5n− 3. Since m = 3, 2m− 5 = 1, 2m− 2 = 4, by Theorem 4.1,

a = 1, M(3, n+ 6) = M(3, n) + 10. Hence, assume M(3, n) = C, then M(3, n+ 6t) = C + 10t.

When n > 5, the number of the boundary vertices is more than or equals to [ 5n−3
2 ], thereby, we
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investigate M(3, n) for n = 6, 7, . . . , 11. We obtain the following results.

(1) n = 6.

Define the labels of the boundary edges as 1 and the labels of the remaining edges as 0, then

e(1) = 14 = e(0) + 1, v(1) = 14, v(0) = 4, M(3, 6) = 10.

(2) n = 7.

Define the labels of the boundary edges as 1 and the labels of the remaining edges as 0, then

e(1) = 16 = e(0), v(1) = 16, v(0) = 5, M(3, 7) = 11.

(3) n = 8.

Define the labels of the boundary edges and (u1,2, u2,2) as 1 and the labels of the remaining

edges as 0, then e(1) = 19 = e(0) + 1, v(1) = 18, v(0) = 6, M(3, 8) = 12.

(4) n = 9.

Define the labels of the boundary edges and (u1,2, u2,2) as 1 and the labels of the remaining

edges as 0, then e(1) = 21 = e(0), v(1) = 20, v(0) = 7, M(3, 9) = 13.

(5) n = 10.

Define the labels of the boundary edges (except (u1,2, u1,3)), (u1,2, u2,2), (u1,3, u2,3) and

(u2,2, u2,3) as 1 and the labels of the remaining edges as 0, then e(1) = 24 = e(0)+ 1, v(1) = 22,

v(∗) = 2, v(0) = 6, M(3, 10) = 16.

(6) n = 11.

Define the labels of the boundary edges (except (u1,2, u1,3)), (u1,2, u2,2), (u1,3, u2,3) and

(u2,2, u2,3) as 1 and the labels of the remaining edges as 0, then e(1) = 26 = e(0), v(1) = 24,

v(∗) = 2, v(0) = 7, M(3, 11) = 17.

By the above results and Theorem 4.1, when n > 5,

M(3, n) = 10 + 10×
n− 6

6
=

5n

3
for n ≡ 0 (mod 6);

M(3, n) = 12 + 10×
n− 8

6
=

5n− 4

3
for n ≡ 2 (mod 6);

M(3, n) = 16 + 10×
n− 10

6
=

5n− 2

3
for n ≡ 4 (mod 6);

M(3, n) = 11 + 10×
n− 7

6
=

5n− 2

3
for n ≡ 1 (mod 6);

M(3, n) = 13 + 10×
n− 9

6
=

5n− 6

3
for n ≡ 3 (mod 6);

M(3, n) = 17 + 10×
n− 11

6
=

5n− 4

3
for n ≡ 5 (mod 6).

Theorem 5.1 For n ≡ 0 (mod 6), EBI(P3 × Pn) = {0, 1, . . . , 5n
3 }.

Proof (1) n > 6.

Step 1. Define the labels of the boundary edges (except (u1,j , u1,j+1), (u3,j , u3,j+1) (j =

2, 4, . . . , n3 − 2)), the interior edges (u2,j , u2,j+1), (u1,j , u2,j), (u2,j , u3,j), (u1,j+1, u2,j+1), (u2,j+1,

u3,j+1) (j = 2, 4, . . . , n3 − 2) as 1, the labels of the remaining edges as 0, then e(1) = 2n + 2 −

(n3 − 2) + (n6 − 1) + 2(n3 − 2) = 5n
2 − 1, e(0) = (5n3 − 2). v(1) = 2n + n

3 = 7n
3 , v(∗) = 0,

M(3, n) = 14n
3 − 3n = 5n

3 , the labeling with index M(3, n) is obtained.
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Step 2. Start with the labeling with index M(3, n), exchange the labels (u1,n
3
−2, u1,n

3
−1) and

(u1,n3 −1, u2,n3 −1), then v(1) is decreased by 1, v(0) is not changed and v(∗) is increased by 1, the

labeling with index 5n
3 − 1 is obtained.

Step 3. Start with the labelings with indices 5n
3 , 5n

3 − 1, successively exchange the labels of

(u2,j , u3,j) and (u3,j−1, u3,j) (
n
3 ≤ j ≤ n− 1), in each exchange such that v(1) is decreased by 1,

v(0) is increased by 1, there are (2n3 ) exchanges. Once all exchanges are completed, the labelings

with indices 5n
3 − 2, 5n

3 − 3, . . . , n
3 can be obtained.

Step 4. Start with the labelings with indices n
3 + 1, n

3 , exchange the labels of (u2,n−1, u2,n)

and (u2,n−1, u3,n−1), then the labelings with indices n
3 − 1, n

3 − 2 are obtained.

Step 5. Start with the labelings with indices n
3 − 1, n

3 − 2, successively exchange the labels

of (u2,t−1, u2,t) and (u2,t, u3,t) (t = 2, 4, . . . , n−6
3 ), in each exchange such that v(1) is decreased

by 1, v(0) is increased by 1, there are (n−6
6 ) exchanges. Once all exchanges are completed, the

labelings with indices n
3 − 3, n

3 − 4, . . . , 0 can be obtained.

(2) n = 6.

Define the labels of the boundary edges as 1, the labels of the remaining edges as 0, then the

labeling with index 10 is obtained.

Start with the labeling with index 10, exchange the labels of (u1,6, u2,6) and (u2,5, u2,6), the

labeling with index 9 is obtained. Start with the labelings with indices 10 and 9, successively

exchange the labels of (u2,j , u3,j) and (u3,j , u3,j+1) (j = 2, 3, 4), then the labelings with indices

8, 7, 6, 5, 4, 3 are obtained.

Start with the labeling with index 4, successively exchange the labels of (u2,2, u3,2) and

(u2,5, u2,6), (u1,2, u2,2) and (u1,2, u1,3), then the labelings with indices 2, 0 are obtained.

Start with the labeling with index 3, exchange the labels of (u1,5, u1,6) and (u1,2, u2,2), then

the labeling with index 1 is obtained. 2

Theorem 5.2 For n ≡ 2 (mod 6), EBI(P3 × Pn) = {0, 1, . . . , 5n−4
3 }.

Proof (1) n > 8.

Step 1. Define the labels of the boundary edges (except (u1,j , u1,j+1), (u3,j , u3,j+1) (j =

2, 4, . . . , n−8
3 )), the interior edges (u2,j, u2,j+1), (u1,j, u2,j), (u2,j, u3,j), (u1,j+1, u2,j+1), (u2,j+1,

u3,j+1) (j = 2, 4, . . . , n−8
3 ) as 1, the labels of the remaining edges as 0, then e(1) = 2n + 2 −

(n−2
3 − 2) + (n−2

6 − 1) + 2(n−2
3 − 2) + 1 = 5n

2 − 2, e(0) = (5n3 − 1). v(1) = 2n+ n−2
3 , v(∗) = 0,

M(3, n) = 4n+ 2n−4
3 − 3n = 5n−4

3 , the labeling with index 5n−4
3 is obtained.

Step 2. Start with the labeling with index 5n−4
3 , exchange the labels (u1,n−8

3
, u1,n−5

3
) and

(u1,n−5
3
, u2,n−5

3
), then v(∗) is increased by 1, v(1) is decreased by 1 and v(0) is not changed, the

labeling with index 5n−7
3 is obtained.

Step 3. Start with the labelings with indices 5n−4
3 , 5n−7

3 , successively exchange the labels of

(u2,j , u3,j) and (u3,j−1, u3,j) (n−2
3 ≤ j ≤ n − 1), in each exchange such that v(1) is decreased

by 1, v(0) is increased by 1, there are (2n+2
3 ) exchanges. Once all exchanges are completed, the

labelings with indices 5n−10
3 , 5n−13

3 , . . . , n−8
3 can be obtained.

Step 4. Start with the labelings with indices n−5
3 , n−8

3 , exchange the labels of (u2,n−1, u2,n)
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and (u1,n−1, u2,n−1), the labelings with indices n−11
3 , n−14

3 are obtained.

Step 5. Start with the labelings with indices n−11
3 , n−14

3 , successively exchange the labels

of (u2,t−1, u2,t) and (u2,t, u3,t) (t = 2, 4, . . . , n−14
3 ), in each exchange such that v(1) is decreased

by 1, v(0) is increased by 1, there are (n−14
6 ) exchanges. Once all exchanges are completed, the

labelings with indices n−17
3 , n−20

3 , . . . , 0 can be obtained.

(2) n = 8.

Define the labels of the boundary edges as 1, the labels of the remaining edges as 0, then the

labeling with index 12 is obtained.

Start with the labeling with index 12, exchange the labels of (u1,8, u2,8) and (u2,7, u2,8), the

labeling with index 11 is obtained.

Start with the labelings with indices 12, 11, successively exchange the labels of (u2,j , u3,j)

and (u3,j−1, u3,j) (3 ≤ j ≤ 7), the labelings with indices 10, 9, . . . , 1 are obtained.

Start with the labeling with index 2, exchange the labels of (u1,6, u1,7) and (u1,7, u2,7), the

labeling with index 0 is obtained. 2

Theorem 5.3 For n ≡ 4 (mod 6), EBI(P3 × Pn) = {0, 1, . . . , 5n−2
3 }.

Proof Step 1. Define the labels of the boundary edges (except (u1,j, u1,j+1), (u3,j, u3,j+1) (j =

2, 4, . . . , n−10
3 ), (u1,n−4

3
, u1,n−1

3
)), the interior edges (u2,j , u2,j+1), (u1,j , u2,j), (u2,j, u3,j), (u1,j+1,

u2,j+1), (u2,j+1, u3,j+1) (j = 2, 4, . . . , n−10
3 ), (u2,n−4

3
, u2,n−1

3
), (u1,n−4

3
, u2,n−4

3
), (u2,n−1

3
, u3,n−1

3
)

as 1, the labels of the remaining edges as 0, then

e(1) = 2n+ 2−
n− 4

3
+ 1 +

n− 4

6
+ 2(

n− 4

3
− 1) =

5n

2
− 1, e(0) = (

5n

3
− 2),

v(1) = 2n+ 2 +
n− 10

3
, v(∗) =, |v(1)− v(0)| = 4n+ 4 +

2n− 20

3
+ 2− 3n =

5n− 2

3
,

the labeling with index M(3, n) is obtained.

Step 2. Start with the labeling with index M(3, n), exchange the labels of (u1,n−4
3
, u1,n−1

3
)

and (u1,n−1
3
, u2,n−1

3
), v(∗) is decreased by 1, v(0) is increased by 1, v(1) is not changed, the

labeling with index 5n−2
3 − 1 is obtained.

Step 3. Start with the labelings with indices 5n−2
3 , 5n−2

3 −1, successively exchange the labels

of (u2,j, u3,j) and (u3,j−1, u3,j) (
n+2
3 ≤ j ≤ n− 1), in each exchange such that v(1) is decreased

by 1, v(0) is increased by 1, there are (2n−2
3 ) exchanges. Once all exchanges are completed, the

labelings with indices 5n−8
3 − 2, 5n−11

3 , . . . , n−1
3 can be obtained.

Step 4. Start with the labelings with indices n+2
3 , n−1

3 , exchange the labels of (u2,n−1, u3,n−1)

and (u2,n−1, u2,n), then the labelings with indices n−4
3 , n−7

3 are obtained

Step 5. Start with the labelings with indices n−4
3 , n−7

3 , successively the labels of (u2,t, u3,t)

and (u2,t−1, u2,t) (s = 2, 4, . . . , n−4
3 ), in each exchange such that v(1) is decreased by 1, v(0) is

increased by 1, there are n−4
6 exchanges. Once all exchanges are completed, the labelings with

indices n−10
3 , n−13

3 , . . . , 0, can be obtained. 2

Theorem 5.4 For n ≡ 1 (mod 6), EBI(P3 × Pn) = {0, 1, . . . , 5n−5
3 }.
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Proof n > 7.

Step 1. Define the labels of the boundary edges (except (u1,j , u1,j+1), (u3,j , u3,j+1) (j =

2, 4, . . . , n−7
3 )), the interior edges (u2,j, u2,j+1), (u1,j, u2,j), (u2,j, u3,j), (u1,j+1, u2,j+1), (u2,j+1,

u3,j+1) (j = 2, 4, . . . , n−7
3 ) as 1, the labels of the remaining edges as 0, then e(1) = 2n + 2 −

(n−1
3 − 2) + (n−1

6 − 1) + 2(n−1
3 − 2) = 5n−3

2 , e(0) = (5n−3
3 ), v(1) = 2n + n−1

3 , v(∗) = 0,

M(3, n) = 4n+ 2n−2
3 − 3n = 5n−2

3 , the labeling with index M(3, n) is obtained.

The steps 2–5 are similar to those in Theorem 5.1, we can know that the conclusion holds.

For n = 7, the discussions are similar to those about n = 6. 2

Theorem 5.5 For n ≡ 3 (mod 6), EBI(P3 × Pn) = {0, 1, . . . , 5n−6
3 }.

Proof n > 9.

Step 1. Define the labels of the boundary edges (except (u1,j , u1,j+1), (u3,j , u3,j+1) (j =

2, 4, . . . , n−9
3 )), the interior edges (u2,j, u2,j+1), (u1,j, u2,j), (u2,j, u3,j), (u1,j+1, u2,j+1), (u2,j+1,

u3,j+1) (j = 2, 4, . . . , n−9
3 ) as 1, the labels of the remaining edges as 0, then e(1) = 2n +

2 − (n−3
3 − 2) + (n−3

6 − 1) + 2(n−3
3 − 2) + 1 = 5n−3

2 = e(0), v(1) = 2n + n−3
3 , v(∗) = 0,

M(3, n) = 4n+ 2n−6
3 − 3n = 5n−6

3 , the labeling with index M(3, n) is obtained.

The steps 2–5 are similar to those in Theorem 5.2, we can know that the conclusion holds.

For n = 9, the discussions are similar to those about n = 8. 2

Theorem 5.6 For n ≡ 5 (mod 6), EBI(P3 × Pn) = {0, 1, . . . , 5n−4
3 }.

Proof Define the labels of the boundary edges (except (u1,j, u1,j+1), (u3,j , u3,j+1) (j = 2, 4, . . .,
n−11

3 ), (u1,n−5
3
, u1,n−2

3
)), the interior edges (u2,j , u2,j+1), (u1,j , u2,j), (u2,j, u3,j), (u1,j+1, u2,j+1),

(u2,j+1, u3,j+1) (j = 2, 4, . . . , n−11
3 ), (u2,n−5

3
, u2,n−2

3
), (u1,n−5

3
, u2,n−5

3
), (u2,n−2

3
, u3,n−2

3
) as 1, the

labels of the remaining edges as 0, then e(1) = 2n+2− n−5
3 +1+ n−5

6 +2(n−5
3 −1) = 5n−3

2 = e(0),

v(1) = 2n+ 2 + n−11
3 , v(∗) = 2, M(3, n) = 4n + 4 + 2n−22

3 + 2 − 3n = 5n−4
3 , the labeling with

index M(3, n) is obtained.

The steps 2–5 are similar to those in Theorem 5.3, and we can know that the conclusion

holds. 2

Theorem 5.7 EBI(P3 × P3) = {0, 1, 2, 3}; EBI(P3 × P4) = {0, 1, . . . , 5}; EBI(P3 × P5) =

{0, 1, . . . , 6}.

Proof (1) n = 3.

Define the labels of the boundary edges (except (u1,1, u2,1), (u2,1, u3,1)) as 1, the labels of

the remaining edges as 0, then M(3, 3) = 3, the labeling with index 3 is obtained.

Start with the labeling with index 3, exchange the labels of (u1,3, u2,3) and (u2,2, u2,3), the

labeling with index 2 is obtained. Start with the labelings with indices 3 and 2, exchange the

labels of (u2,1, u3,1) and (u3,1, u3,2), the labelings with indices 1 and 0 are obtained.

(2) n = 4.

Define the labels of the boundary edges (except (u1,1, u2,1)) as 1, the labels of the remaining
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edges as 0, then the labeling with index 5 is obtained. Start with the labeling with index 5,

exchange the labels of (u1,3, u1,4) and (u2,3, u2,4), the labeling with index 4 is obtained. Start

with the labelings with indexes 5 and 4, exchange the labels of (u3,2, u3,3) and (u2,2, u3,2), the

labelings with indices 3 and 2 are obtained. Start with the labeling with index 3, exchange

the labels of (u1,2, u1,3) and (u1,3, u2,3), the labeling with index 1 is obtained. Start with the

labeling with index 2, exchange the labels of (u1,3, u1,4) and (u1,2, u2,2), the labeling with index

0 is obtained.

(3) n = 5.

Define the labels of the boundary edges (except (u1,1, u2,1)) as 1, the labels of the remaining

edges as 0, then the labeling with index 6 is obtained. Start with the labeling with index 6,

exchange the labels of (u2,1, u3,1) and (u2,4, u2,5), the labeling with index 5 is obtained. Start

with the labelings with indices 6 and 5, successively exchange the labels of (u3,j, u3,j+1) and

(u2,j , u3,j) (j = 2, 3), then the labelings with indices 4, 3, 2, 1 are obtained. Start with the

labeling with index 2, exchange the labels of (u1,3, u1,4) and (u1,4, u2,4), the labeling with index

0 is obtained. 2

6. EBI(P4 × Pn)

On P4 × Pn, |V | = 4n, |E| = 7n− 4.

Since m = 4, 2m − 5 = 3, 2m − 2 = 6, It follows from Theorem 4.1, a = 3, M(3, n + 4) =

M(3, n) + 8. Hence, assume M(4, n) = C, then M(4, n+ 6t) = C + 8t. Thereby, we investigate

M(4, n) for n = 4, 5, 6 and 7. By exhaust algorithm, then

(1) n = 4.

Define the labels of all boundary edges as 1, the labels of the remaining edges as 0, then

e(1) = 12 = e(0), v(1) = 12, v(0) = 4, M(4, 4) = 8.

(2) n = 5.

Define the labels of the boundary edges (except (u1,2, u1,3)), the interior edges (u2,2, u2,3) and

(u1,j+1, u2,j+1) (j = 1, 2) as 1, the labels of the remaining edges as 0, then e(1) = 16 = e(0) + 1,

v(1) = 10, v(0) = 4, M(4, 5) = 10.

(3) n = 6.

Define the labels of the boundary edges (except (u1,2, u1,3)), the interior edges (u2,2, u2,3)

and (u1,j+1, u2,j+1), (u2,j+1, u3,j+1) (j = 1, 2), (u2,2, u3,2) as 1, the labels of the remaining edges

as 0, then e(1) = 19 = e(0), v(1) = 17, v(0) = 6, M(4, 6) = 11.

(4) n = 7.

Define the labels of the boundary edges (except (u1,2, u1,3)), the interior edges (ui,2, ui,3) (i =

2, 3) and (us,t, us+1,t) (s = 1, 2, t = 2, 3) as 1, the labels of the remaining edges as 0, then

e(1) = 23 = e(0) + 1, v(1) = 20, v(0) = 6, M(4, 7) = 14.

By the above results and Theorem 4.1, then

M(4, n) = 8 + 8×
n− 4

4
= 2n for n ≡ 0 (mod 4);
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M(4, n) = 10 + 8×
n− 5

4
= 2n for n ≡ 1 (mod 4);

M(4, n) = 11 + 8×
n− 6

4
= 2n− 1 for n ≡ 2 (mod 4);

M(4, n) = 14 + 8×
n− 7

4
= 2n for n ≡ 3 (mod 4).

Theorem 6.1 For even n, EBI(P4 × Pn) =

{

{0, 1, . . . , 2n}, if n ≡ 0 (mod 4),

{0, 1, . . . , 2n− 1}, if n ≡ 2 (mod 4).

Proof (1) n ≡ 0 (mod 4) and n > 4.

Step 1. Define the labels of the boundary edges (except (ui,2j , ui,2j+1) (i = 1, 4, j =

1, 2, . . . , n4−1)), the interior edges (ui,k, ui+1,k) (i = 1, 2, 3, k = 2, 3, . . . , n−2
2 ), (us,2j , us,2j+1) (s =

2, 3, j = 1, 2, . . . , n−4
4 ) as 1, the labels of the remaining edges as 0, then e(1) = 2n+4−2× n−4

4 +

6× n−4
4 +2× n−4

4 = 7n−4
2 = e(0). v(1) = 2n+4+n− 4 = 3n, v(∗) = 0, v(0) = n, M(4, n) = 2n,

the labeling with index M(4, n) is obtained.

Step 2. Start with the labeling with index M(4, n), exchange the labels of (u1,1, u2,1) and

(u2,1, u2,2), v(1) is decreased by 1, v(∗) is increased by 1, v(0) is not changed, then the labeling

with index 2n− 1 is obtained.

Step 3. Start with the labelings with indices 2n, 2n− 1, successively exchange the labels of

(u1,t, u1,t+1) and (u1,t+1, u2,t+1), (u4,t, u4,t+1) and (u3,t+1, u4,t+1) (t =
n−2
2 , n

2 , . . . , n− 2), there

are n exchanges, in each exchange such that v(1) is decreased by 1, v(0) is increased by 1. Once

all exchanges are completed, the labelings with indices 2n− 2, 2n− 3, . . . , 0 can be obtained.

(2) n = 4.

Define the labels of all boundary edges as 1,the labels of the remaining edges as 0, then the

labeling with index 8 is obtained. Start with the labeling with index 8, exchange the labels of

(u1,1, u2,1) and (u2,1, u2,2), the labeling with index 7 is obtained.

Start with the labelings with indices 8, 7, successively exchange the labels of (u1,2, u1,3) and

(u1,3, u2,3), (u2,1, u3,1) and (u3,1, u3,2), (u4,2, u4,3) and (u3,3, u4,3), (u3,3, u4,3) and (u3,3, u3,4), the

labelings with indices 6, 5, . . . , 0 can be obtained.

(3) n ≡ 2 (mod 4) and n > 6.

Step 1. Define the labels of the boundary edges (except (ui,2j , ui,2j+1), i = 1, 4, j =

1, 2, . . . , n−2
4 −1), (u1,n−2

4
, u1,n+2

4
)), the interior edges (ui,k, ui+1,k) (i = 1, 2, 3, k = 2, 3, . . . , n−4

2 ),

(us,2j , us,2j+1) (s = 2, 3, j = 1, 2, . . . , n−6
4 ), (u2,n−4

2
, u2,n−2

2
) and (u2,n−2

2
, u2,n

2
) as 1, the labels of

the remaining edges as 0, then e(1) = 2n+4−2× n−6
4 −1+6× n−6

4 +2× n−6
4 +4 = 7n−4

2 = e(0).

v(1) = 2n+4+n− 6+1 = 3n− 1, v(∗) = 1, v(0) = n, M(4, n) = 2n− 1, the labeling with index

M(4, n) is obtained.

Step 2. Start with the labeling with index M(4, n), exchange the labels of (u2,1, u2,2) and

(u2,2, u2,3), v(1) is decreased by 1, v(∗) is increased by 1, v(0) is not changed, then the labeling

with index 2n− 2 is obtained.

Step 3. Start with the labelings with indices 2n − 1, 2n − 2, successively exchange the

labels of (u4,n−2
2
, u4,n

2
) and (u3,n

2
, u4,n

2
), (u1,t, u1,t+1) and (u1,t+1, u2,t+1), (u4,t, u4,t+1) and
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(u3,t+1, u4,t+1) (t = n
2 ,

n+2
2 , . . . , n − 2), there are n − 1 exchanges, in each exchange such that

v(1) is decreased by 1, v(0) is increased by 1. Once all exchanges are completed, the labelings

with indices 2n− 3, 2n− 4, . . . , 0 can be obtained.

(4) n = 6.

Define the labels of the boundary edges (except (u1,2, u1,3)), the interior edges (ui,k, ui+1,k)

(i = 1, 2, 3, k = 2, 3), (u2,1, u2,2) and (u2,2, u2,3) as 1, the labels of the remaining edges as 0, then

the labeling with index 11 is obtained. Start with the labeling with 11, exchange the labels of

(u3,1, u4,1) and (u3,1, u3,2), the labeling with index 10 is obtained.

Start with the labelings with indices 11, 10, successively exchange the labels of (u4,2, u4,3)

and (u3,3, u4,3), (u1,t, u1,t+1) and (u1,t+1, u2,t+1), (u4,t, u4,t+1) and (u3,t+1, u4,t+1) (t = 3, 4), the

labelings with indices 9, 8, . . . , 0 can be obtained. 2

Theorem 6.2 If n > 3 is odd, then EBI(P4 × Pn) = {0, 1, . . . , 2n}.

Proof (1) n ≡ 1 (mod 4) and n > 5.

Step 1. Define the labels of the boundary edges (except (ui,2j , ui,2j+1) (i = 1, 4, j =

1, 2, . . . , n−5
4 ), (u1,n+3

4
, u1,n+7

4
)), the interior edges (ui,k, ui+1,k) (i = 1, 2, 3, k = 2, 3, . . . , n−5

2 ),

(u1,n−3
2
, u2,n−3

2
), (u1,n−1

2
, u2,n−1

2
), (us,2j , us,2j+1) (s = 2, 3, j = 1, 2, . . . , n−5

4 ), (u2,n−1
2
, u2,n+1

2
) as

1, the labels of the remaining edges as 0, then e(1) = 2n+4−2× n−5
4 −1+6× n−5

4 +2× n−5
4 +3 =

7n−3
2 = e(0) + 1. v(1) = 2n + 4 + n − 5 = 3n − 1, v(∗) = 2, v(0) = n − 1, M(4, n) = 2n, the

labeling with index M(4, n) is obtained.

Step 2. Start with the labeling with index M(4, n), exchange the labels of (u1,1, u2,1) and

(u2,1, u2,2), v(1) is decreased by 1, v(∗) is increased by 1, v(0) is not changed, then the labeling

with index 2n− 1 is obtained.

Step 3. Start with the labelings with indices 2n, 2n − 1, successively exchange the labels

of (u4,n−3
2
, u4,n−1

2
) and (u3,n−1

2
,u4,n−1

2
), (u4,n−1

2
, u4,n+1

2
) and (u3,n+1

2
, u4,n+1

2
), (u1,t, u1,t+1) and

(u1,t+1, u2,t+1), (u4,t,u4,t+1) and (u3,t+1, u4,t+1) (t = n+1
2 , n+3

2 , . . . , n − 2), (u3,n−1, u4,n−1) and

(u3,n−1, u3,n), there are n exchanges, in each exchange such that v(1) is decreased by 1, v(0) is

increased by 1. Once all exchanges are completed, the labelings with indices 2n− 2, 2n− 3, . . . , 0

can be obtained.

(2) n = 5.

Define the labels of the boundary edges (except (u1,2, u1,3)), the interior edges (ui,k, ui+1,k)

(i = 1, 2, 3, k = 2, 3), (u2,2, u2,3) as 1, the labels of the remaining edges as 0, then e(1) = 16 =

e(0) + 1. v(1) = 14, v(∗) = 2, v(0) = 4, M(4, 5) = 10, the labeling with index 10 is obtained.

Start with the labeling with index 10, exchange the labels of (u1,1, u2,1) and (u2,1, u2,2), the

labeling with index 9 is obtained.

Start with the labelings with indices 10, 9, exchange the labels of (u2,1, u3,1) and (u3,1, u3,2),

(u4,2, u4,3) and (u3,3, u4,3), (u1,3, u1,4) and (u1,4, u2,4), (u4,3, u4,4) and (u3,4, u4,4), (u3,4, u4,5) and

(u3,4, u3,5) successively, the labelings with indices 8, 7, . . . , 0 can be obtained.

(3) n ≡ 3 (mod 4) and n > 7.

Step 1. Define the labels of the boundary edges (except (ui,2j , ui,2j+1) (i = 1, 4, j =
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1, 2, . . . , n−7
4 ), (u1,n−3

2
, u1,n+1

2
)), the interior edges (ui,k, ui+1,k) (i = 1, 2, 3, k = 2, 3, . . . , n−1

2 ,

except (u3,n−3
2
, u4,n−3

2
), (u3,n−1

2
, u4,n−1

2
)), (us,2j , us,2j+1) (s = 2, 3, j = 1, 2, . . . , n−3

4 ) as 1, the

labels of the remaining edges as 0, then e(1) = 7n−3
2 = e(0) + 1. v(1) = 3n − 1, v(∗) = 2,

v(0) = n− 1, M(4, n) = 2n, the labeling with index M(4, n) is obtained.

Step 2. Start with the labeling with index M(4, n), exchange the labels of (u1,1, u2,1) and

(u2,1, u2,2), v(1) is decreased by 1, v(∗) is increased by 1, v(0) is not changed, then the labeling

with index 2n− 1 is obtained.

Step 3. Start with the labelings with indices 2n, 2n − 1, successively exchange the labels

of (u1,t, u1,t+1) and (u1,t+1, u2,t+1), (u4,t, u4,t+1) and (u3,t+1, u4,t+1) (t = n−1
2 , n+1

2 , . . . , n − 2),

(u3,n−1, u4,n−1) and (u3,n−1, u3,n), there are n exchanges, in each exchange such that v(1) is

decreased by 1, v(0) is increased by 1. Once all exchanges are completed, the labelings with

indices 2n− 2, 2n− 3, . . . , 0 can be obtained.

(2) n = 7.

Define the labels of the boundary edges (except (u1,2, u1,3)), the interior edges (ui,k, ui+1,k)

(i = 1, 2, k = 2, 3), (us,2j, us,2j+1) (s = 2, 3, j = 1) as 1, the labels of the remaining edges as 0,

then M(4, 7) = 14, the labeling with index 14 is obtained. Start with the labeling with index

14, exchange the labels of (u1,1, u2,1) and (u2,1, u2,2), the labeling with index 13 is obtained.

Start with the labelings with indices 14, 13, successively exchange the labels of (u1,t, u1,t+1)

and (u1,t+1, u2,t+1), (u4,t, u4,t+1) and (u3,t+1, u4,t+1) (t = 3, 4, 5), (u3,6, u4,6) and (u3,6, u3,7),

the labelings with indices 12, 11, . . ., 0 can be obtained. 2
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