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Abstract An integral domain R is called a locally almost perfect domain provided that Rm

is an almost perfect domain for any maximal ideal m of R. In this paper, we give several

characterizations of locally almost perfect domains in terms of locally perfect rings, almost

projective modules, weak-injective modules, almost strongly flat modules and strongly Matlis

cotorsion modules.
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1. Introduction

Throughout this paper, R is always a commutative integral domain with identity and Q :=

Q(R) is the quotient field of R. Recall from [1] that an integral domain R is called an almost per-

fect domain if all its proper homomorphic images are perfect. It first emerged in the investigation

of the existence of strongly flat covers of modules over integral domains. Actually, Bazzoni [2]

showed that an integral domain R is almost perfect if and only if any R-module has a strongly flat

cover, if and only if any flat R-module is strongly flat. In 2009, Fuchs and Lee [3] obtained that

an integral domain R is almost perfect if and only if any divisible R-module is weak-injective,

if and only if homomorphic images of weak-injective R-modules are weak-injective, if and only

if the class F1 of R-modules with weak dimension at most 1 is equal to the class P1 of R-

modules with projective dimension at most 1. In 2010, Bazzoni [4] characterized almost perfect

domains R as integral domains over which any R-module has an P1-cover, or any R-module has

a divisible envelope, or any direct sum of weak-injective R-modules is weak-injective. Recent-

ly, Hrbek [5] showed that an integral domain R is almost perfect if and only if the class of all

divisible R-modules is closed under flat covers.

It is an important approach to study integral domains via their localizations at all maxi-

mal ideals. For example, almost Dedekind domains are defined to be integral domains whose

localizations at all maximal ideals are Dedekind domains. Certainly, any Dedekind domain is an

almost Dedekind domain. However, an almost Dedekind domain is a Dedekind domain exactly
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when it is also of finite character [6, Corollary 3.4.8]. In 2019, Zhou et. al [7] introduced almost

global dimensions of commutative rings using almost projective modules and then characterized

almost Dedekind domains as integral domains with almost global dimension at most 1. Very

recently, Zhou et. al [8] introduced locally perfect rings whose localization at any maximal ideal

are perfect rings. They characterized locally perfect rings as commutative rings over which the

classes of all almost projective modules have covers, or all flat modules are almost projective.

Recall from [1] that an integral domain R is called a locally almost perfect domain (LAPD for

short) provided that Rm is an almost perfect domain for any maximal ideal m of R. Certainly,

every almost perfect domain is an LAPD. However, an LAPD is an almost perfect domain if

and only if it is h-local [1, Theorem 3.6]. In this paper, we give some new characterizations of

LAPDs in terms of locally perfect rings, the class AP1 of all R-modules with almost projective

dimensions at most 1, the class F1 of all R-modules with flat dimensions at most 1, the class WI

of all weak-injective modules, the class ASF of all almost strongly flat modules and the class

SMC of all strongly Matlis cotorsion modules. In conclusion, we mainly prove the following

result.

Theorem 1.1 Let R be a non-field integral domain. Then the following statements are equiv-

alent for R:

(1) R is an LAPD;

(2) R/〈u〉 is locally perfect for any nonzero non-unit element u in R;

(3) R/I is locally perfect for any nonzero proper ideal I of R;

(4) AP1 = F1;

(5) AP⊥

1 = WI;

(6) (AP1,AP⊥

1 ) is a perfect cotorsion pair;

(7) any R-module has an AP1-cover;

(8) any R-module has an AP⊥

1 -envelope;

(9) any flat R-module is almost strongly flat;

(10) any direct limit of almost strongly flat R-modules is almost strongly flat;

(11) any direct limit of projective R-modules is almost strongly flat;

(12) any R-module has an ASF -cover;

(13) any Rm-module viewed as an R-module has an almost strongly flat cover for any

maximal ideal m of R;

(14) (ASF ,SMC) is a perfect cotorsion pair;

(15) any strongly Matlis cotorsion module is cotorsion.

2. Almost strongly flat modules

Recall from [9] that an R-module M satisfying Ext1R(Q,M) = 0 is said to be a Matlis cotor-

sion module (denoted by M ∈ MC), and an R-module F is said to be strongly flat, denoted by

F ∈ SF , if Ext1R(F,M) = 0 for any M ∈ MC. Obviously, any strongly flat module is flat. Re-

call from [7] that an R-module M is said to be almost projective provided that Ext1R(M,N) = 0
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for any Rm-module N , where m ∈ Max(R). By [7, Theorem 2.3], an R-module M is almost

projective if and only if Mm is free over Rm for any m ∈ Max(R), if and only if Mp is free over

Rp for any p ∈ Spec(R). Now we introduce almost strongly flat modules which can be seen as

generations of both almost projective modules and strongly flat modules.

Definition 2.1 LetM be an R-module. ThenM is said to be almost strongly flat if Ext1R(M,N) =

0 for any Matlis cotorsion Rm-module N and any m ∈ Max(R). Denote by ASF the class of all

almost strongly flat modules.

First we recall some basic notions on (pre)covers and (pre)envelopes. Given a class F of R-

modules, denote by ⊥F (resp., F⊥) the class of R-modules N such that Ext1R(N,F ) = 0 (resp.,

Ext1R(F,N) = 0) for all F ∈ F . Let M be an R-module. An R-homomorphism f : F → M

with F ∈ F is an F -precover of M , provided that the natural homomorphism HomR(F
′, f) :

HomR(F
′, F ) → HomR(F

′,M) is surjective for any F ′ ∈ F . That is, for any R-homomorphism

f ′ : F ′ → M there exists an R-homomorphism g : F ′ → F such that f ′ = gf :

F ′

g

~~

f ′

  
B

B

B

B

B

B

B

B

F
f

// M

An F -precover f : F → M is said to be special provided that f is an epimorphism and Ker(f) ∈

F⊥. An F -precover f : F → M is said to be an F -cover if f is left minimal, that is, provided

f = gf implies g is an automorphism for each g ∈ HomR(F, F ). The definitions of (special)

preenvelopes and envelopes can be given dually.

Lemma 2.2 ([10, Corollary 7.2]) Let R be an integral domain. Then each R-module has an

MC-envelope and a special SF -precover.

Lemma 2.3 ([10, Corollary 7.51]) An R-module is strongly flat if and only if it is a direct

summand of a module which is an extension of a free module by a divisible torsionfree module.

Moreover, if M is a strongly flat R-module, then Mp is a strongly flat Rp-module for any

p ∈ Spec(R).

Proposition 2.4 Let R be an integral domain and M be an R-module. Then the following

statements are equivalent:

(1) M is almost strongly flat over R;

(2) Mm is strongly flat over Rm for any m ∈ Max(R);

(3) Mp is strongly flat over Rp for any p ∈ Spec(R).

Consequently, any strongly flat module is almost strongly flat, and any almost strongly flat

module is flat.

Proof (1) ⇒ (2). Suppose M is almost strongly flat over R. Let m ∈ Max(R) and 0 → Cm →

Fm → Mm → 0 be a special strongly flat precover of Mm over Rm (see Lemma 2.2). Then Cm is

Matlis cotorsion over Rm. Since M is almost strongly flat, Ext1R(M,Cm) ∼= Ext1Rm

(Mm, Cm) = 0
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for any m ∈ Max(R) (see [11, Chapter VI, Proposition 4.1.3]). Thus the exact sequence 0 →

Cm → Fm → Mm → 0 splits. Consequently, Mm is strongly flat over Rm.

(2)⇒ (3). For any p ∈ Spec(R), there exists a maximal ideal m such that p ⊆ m. Thus

Mp = (Mm)p is strongly flat over Rp by Lemma 2.3.

(3)⇒ (2). Trivial.

(2)⇒ (1). Let m ∈ Max(R) and N a Matlis cotorsion Rm-module. Then by [11, Chapter

VI Proposition 4.1.3] again, Ext1R(M,N) ∼= Ext1Rm

(Mm, N) = 0. Thus M is almost strongly flat

over R.

For the consequence, we first suppose M is a strongly flat R-module. Then Mp is strongly flat

over Rp for any p ∈ Spec(R) by Lemma 2.3. Thus M is almost strongly flat over R by (3) ⇒ (1).

Then we suppose N is an almost strongly flat R-module. It follows that Np is strongly flat over

Rp by (3) ⇒ (1). Thus Np is flat over Rp. So N is flat over R. 2

Definition 2.5 Let R be an integral domain. An R-module is said to be strongly Matlis

cotorsion if Ext1R(M,N) = 0 for any M ∈ ASF . Denote by SMC the class of all strongly Matlis

cotorsion modules.

By Proposition 2.4, any cotorsion module is strongly Matlis cotorsion and any strongly Matlis

cotorsion is Matlis cotorsion.

Next, we recall some basic notions on cotorsion pairs. A pair (A,B) of classes of R-modules

is called a cotorsion pair, if A =⊥ B and B = A⊥. Let (A,B) be a cotorsion pair. If each

R-module has a special A-precover, then (A,B) is called complete. If each R-module has an

A-cover and a B-envelope, then (A,B) is called perfect. If there exists a class C of R-modules

such that A =⊥ C (resp., B = C⊥), then (A,B) is said to be cogenerated (resp., generated) by

C. By [10, Theorem 6.11], if a cotorsion pair is generated by a set, then it is complete. It is

well-known that (SF ,MC) is a cotorsion pair generated by Q, so it is a complete cotorsion pair.

Lemma 2.6 Let M := {M ∈ R-Mod | M is a Matlis cotorsion Rm-module for some m ∈

Max(R)}. Then (ASF ,SMC) is a cotorsion pair cogenerated by M.

Proof By Proposition 2.4, we have ASF =⊥ M. Then SMC = ASF⊥ = (⊥M)⊥. Thus

M ⊆ SMC, and so ASF =⊥ M ⊇⊥ SMC. Since ASF ⊆⊥ (ASF⊥) =⊥ SMC, we have

ASF =⊥ SMC. 2

Proposition 2.7 Let R be an integral domain. Then the following statements are equivalent

for R:

(1) R is a field;

(2) any almost strongly flat module is almost projective;

(3) any R-module is almost strongly flat;

(4) any R-module is strongly Matlis cotorsion.

Proof (1)⇒ (2), (1)⇒ (3) and (1)⇒ (4). Trivial.

(2)⇒ (1). Let m be a maximal ideal of R. Since Q is a strongly flat R-module, Q is almost
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projective by (2). Then, for any m ∈ Max(R), we have Q = Q(Rm) is projective, and thus free

over Rm. Hence Rm is a field for any m ∈ Max(R). So R is a von Neumann regular ring. Since

R is an integral domain, R is a field.

(3)⇒ (1). By (3), any R-module is flat. So R is a von Neumann regular ring. Since R is an

integral domain, R is a field.

(4)⇒ (2). Since any R-module is strongly Matlis cotorsion by (4), any almost strongly flat

module is projective by Lemma 2.6, thus almost projective. 2

Recall from [12] that an integral domain R is called an almost Dedekind domain if Rm is a

Dedekind domain for any maximal ideal m of R.

Proposition 2.8 Let R be an integral domain. Then the following statements are equivalent

for R:

(1) R is an almost Dedekind domain;

(2) any ideal of R is almost projective;

(3) any submodule of a projective module is almost projective;

(4) any ideal of R is almost strongly flat;

(5) any submodule of a projective module is almost strongly flat.

Proof (1)⇔ (2)⇔ (3). Refer to [7, Theorem 4.4].

(3)⇒ (5)⇒ (4). Trivial.

(4)⇒ (2). By (4), any ideal of R is flat. So R is a Prüfer domain. If R is a field, then (2)

trivially holds. Now, suppose R is not a field. Let I be a nonzero ideal R and m be a maximal

ideal of R. Then Im is strongly flat over Rm. Since Rm is a valuation domain, by [10, Theorem

7.64] there is an Rm-exact sequence 0 → R
(κ1)
m → Im → Q(κ2) → 0, where R 6= Q = Q(Rm).

Since I is a nonzero ideal R, the rank of Im over Rm is 1. Thus κ1 = 1 and hence Im ∼= Rm. So

I is almost projective. 2

3. Locally almost perfect domains

Recall from [13] that a commutative ring T is said to be locally perfect provided that Tm

is perfect for any maximal ideal m of T . The locally perfect rings can be characterized as

commutative rings T over which any T -module has a maximal submodule [13, Theorem A]. It is

certain that a commutative ring T is perfect if and only if T is semi-perfect and locally perfect.

Recall from [1] that an integral domain R is said to be an almost perfect domain (APD for short)

if all its proper homomorphic images are perfect. In 2011, Salce [1] introduced the notion of

locally almost perfect domains.

Definition 3.1 ([1, P. 369]) An integral domain R is called a locally almost perfect domain

(LAPD for short) provided that Rm is an almost perfect domain for any maximal ideal m of R.

Recall from [9, P. 131] that an integral domain R is said to be h-local if it satisfies the following

two conditions:
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(1) R is of finite character;

(2) any nonzero prime ideal is contained in only one maximal ideal.

Theorem 3.2 ([1, Theorem 3.6]) An integral domain R is an APD if and only if it is h-local

and an LAPD.

Note that Salce [1, Example 3.7] showed there exist LAPDs which fail to be h-local, and thus

provided examples of LAPDs are not almost perfect.

Proposition 3.3 Let R be a non-field integral domain. Then the following statements are

equivalent for R:

(1) R is an LAPD;

(2) R/〈u〉 is locally perfect for any nonzero non-unit element u in R;

(3) R/I is locally perfect for any nonzero proper ideal I of R.

Proof (1)⇒ (2). Let u be a nonzero non-unit in R and m a maximal ideal of R. Then 〈u〉m is

a nonzero ideal over Rm as R is an integral domain. Thus (R/〈u〉)m ∼= Rm/〈u〉m is perfect, and

so R/〈u〉 is locally perfect.

(2)⇒ (3). Let I be a proper nonzero ideal I of R. Then there exist a nonzero non-unit u

in I and a natural epimorphism R/〈u〉 ։ R/I. Localizing at any maximal ideal m, there is

an epimorphism (R/〈u〉)m ։ (R/I)m. Since (R/〈u〉)m is perfect by (2), (R/I)m is also perfect

by [14, Corollary 3.10.23(2)]. Hence R/I is locally perfect.

(3)⇒ (1). Let m be a maximal ideal of R and Im a nonzero proper ideal of Rm. Then

obviously I is also a nonzero ideal of R. Then Rm/Im ∼= (R/I)m is perfect. Thus Rm is an

almost perfect domain. 2

Recall from [7] that an R-module M has almost projective dimension A.pdR(M) ≤ n if there

is an exact sequence of R-modules

0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0, (♦)

where each Pi is almost projective. The exact sequence (♦) is said to be an almost projective

resolution of length n of M . Define A.pdR(M) = n if n is the length of the shortest almost

projective resolution of M . If no such finite resolution exists, then A.pdR(M) = ∞. Since every

projective module is locally projective, A.pdR(M) ≤ pdR(M) for any R-module M . We denote

by AP1 the class of R-modules M with A.pdR(M) ≤ 1. By [7, Theorem 3.3], we have

AP1 = {M ∈ R-Mod| pdRm

Mm ≤ 1 for any m ∈ Max(R)}.

Denote by P1 the class of R-modules with projective dimensions at most 1 and by DI the

class of all divisible modules.

Lemma 3.4 ([10, Theorem 8.6(a), Theorem 9.1(a)]) Let R be an integral domain and M an R-

module. Then M has projective dimension ≤ 1 if and only if Ext1R(M,D) = 0 for each divisible

module D. Hence, (P1,DI) is a complete cotorsion pair.

Proposition 3.5 Let R be an integral domain and D := {N ∈ R-Mod|N is an divisible Rm-
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module for some m ∈ Max(R)}. Then (AP1,AP⊥

1 ) is a cotorsion pair cogenerated by D.

Proof Let M be an R-module in AP1. Then pdRm

Mm ≤ 1 for any m ∈ Max(R). Let m be

a maximal ideal of R and N a divisible Rm-module. Then Ext1R(M,N) ∼= Ext1Rm

(Mm, N) = 0

by Lemma 3.4. Thus AP1 ⊆⊥ D. Let N be a divisible Rm-module for some m ∈ Max(R) and

M an R-module such that Ext1R(M,N) = 0. Then Ext1Rm

(Mm, N) = 0, and thus Mm is an Rm-

module with projective dimension at most 1 by Lemma 3.4 again. It follows that AP1 =⊥ D.

Consequently, (AP1,AP⊥

1 ) is a cotorsion pair cogenerated by D. 2

Lemma 3.6 ([4, Lemma 4.2]) Let R be an integral domain and S a multiplicative subset of

R. Denote by P1(RS) the class of RS-modules with projective dimensions at most 1. If M is

an RS-module and 0 → D → A → M → 0 is a P1-cover of M viewed as an R-module, then

0 → D → A → M → 0 is a P1(RS)-cover of M viewed as an RS-module.

Lemma 3.7 ([4, Lemma 3.7]) Let R be an integral domain and S a multiplicative subset of

R. Denote by DI(RS) the class of divisible RS-modules. If M is an RS-module and 0 → M →

D → D/M → 0 is a DI-envelope of M viewed as an R-module, then 0 → M → D → D/M → 0

is a DI(RS)-envelope of M viewed as an RS-module.

Let R be an integral domain. Denote by F1 the class of R-modules with flat dimensions at

most 1 and by WI := F⊥
1 the class of all weak-injective modules. Then (F1,WI) is a perfect

cotorsion pair by [10, Theorem 8.3].

Theorem 3.8 Let R be an integral domain. Then the following statements are equivalent:

(1) R is an LAPD;

(2) AP1 = F1;

(3) AP⊥

1 = WI;

(4) (AP1,AP⊥

1 ) is a perfect cotorsion pair;

(5) any R-module has an AP1-cover;

(6) any R-module has an AP⊥

1 -envelope.

Proof (1)⇒ (2). By [7, Theorem 3.3], AP1 ⊆ F1. On the other hand, let M be an R-module

with fdR(M) ≤ 1. Then fdRm
Mm ≤ 1 for each m ∈ Max(R). Since Rm is an APD, pdRm

Mm ≤ 1

for each m ∈ Max(R) (see [4, Proposition 3.5]). Hence, M has almost projective dimension at

most 1 by [7, Theorem 3.3] again.

(2)⇔ (3). It follows from that (AP1,AP⊥

1 ) and (F1,WI) are both cotorsion pairs (see

Proposition 3.5 and [10, Theorem 8.3]).

(2)⇒(4). It follows from that (F1,F
⊥
1 ) is a perfect cotorsion pair [10, Theorem 8.3].

(4)⇒(5) and (4)⇒(6). Trivial.

(5)⇒(1). Let m be a maximal ideal of R and M an Rm-module. Let f : A → M be an

AP1-cover over R. Then f : A → M is a P1-cover over Rm by Lemma 3.6. It follows that Rm is

an APD by [4, Theorem 4.3].

(6)⇒(1). Let m be a maximal ideal of R and M an Rm-module. Let f : M → D be a
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DI-envelope over R. Then f : M → D is a DI(Rm)-envelope over Rm by Lemma 3.7. It follows

that Rm is an APD by [4, Theorem 3.6]. 2

Similarly to [4, Lemma 3.7], we have the following result.

Lemma 3.9 Let R be an integral domain and S a multiplicative subset of R. Denote by SF(RS)

the class of strongly flat RS-modules. If M is an RS-module and 0 → K → F → M → 0 is an

SF -cover of M viewed as an R-module, then 0 → K → F → M → 0 is an SF(RS)-cover of M

viewed as an RS-module.

Proof Let M be an RS-module and

0 → K → F → M → 0 (∗)

an SF -cover of M viewed as an R-module. Then by [4, Proposition 4.1], F is an RS-module,

and thus K is also an RS-module. Since for any RS-module N , we have HomR(M,N) ∼=

HomRS
(M,N). So it is easy to verify (∗) is also an SF(RS)-cover of M viewed as an RS-

module. 2

Theorem 3.10 Let R be an integral domain. Then the following statements are equivalent:

(1) R is an LAPD;

(2) any flat R-module is almost strongly flat;

(3) any direct limit of almost strongly flat R-modules is almost strongly flat;

(4) any direct limit of projective R-modules is almost strongly flat;

(5) any R-module has an ASF -cover;

(6) any Rm-module viewed as an R-module has an almost strongly flat cover for any maximal

ideal m of R;

(7) (ASF ,SMC) is a perfect cotorsion pair;

(8) any strongly Matlis cotorsion module is cotorsion.

Proof (1)⇒ (2). Let M be a flat R-module. By (1), Rm is an APD for any m ∈ Max(R). Thus

Mm is a strongly flat Rm-module. Thus M is almost strongly flat by Proposition 2.4.

(2)⇒ (1). Let m be a maximal ideal of R. Let M be a flat Rm-module. Then M ∼= Mm is a

strongly flat Rm-module by (2). Thus Rm is an APD. So R is an LAPD.

(2)⇒ (3). Since any almost strongly flat R-module is flat and the class of all flat modules is

closed under direct limits, we have any direct limit of almost strongly flat R-modules is flat.

(3)⇒ (4), (5)⇒ (6) and (7)⇒ (5). Trivial.

(4)⇒ (2). Let M be a flat R-module. Then there exists a direct system {Fi}i∈Γ of finitely

generated projective R-modules such that M = lim−→ Fi. Thus M is almost strongly flat by (4).

(2)⇒ (5). Since any almost strongly flat R-module is flat, the class of almost strongly flat

R-modules coincides with that of flat R-modules. Thus any R-module has an almost strongly

flat cover by [15, Theorem 3].

(5)⇒ (1). Let M be an Rm-module and f : A → M be an almost strongly flat cover over R.

Then f : A → M is a strongly flat cover over Rm by Lemma 3.9. Thus the class of strongly flat
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Rm-modules is covering. It follows that Rm is an APD for any m ∈ Max(R) by [2, Theorem 4.5].

So R is an LAPD.

(2)⇔ (8). It follows that (ASF ,SMC) and (F , C) are both cotorsion pair.

(2)⇒ (7). We just note that (F , C) is a perfect cotorsion pair [15, Theorem 3]. 2
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