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Abstract We study a new class of group inverses determined by right c-regular elements.

The new concept of right c-group inverses is introduced and studied. It is shown that every

right c-group invertible element is group invertible, and an example is given to show that group

invertible elements need not be right c-group invertible. The conditions that right c-group

invertible elements are precisely group invertible elements are investigated. We also study the

strongly clean decompositions of right c-group invertible elements. As applications, we give some

new characterizations of abelian rings and directly finite rings from the point of view of right

c-group inverses.
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1. Introduction

Throughout this paper, R is a unitary associative ring, the center of R is denoted by C(R)

and the group of units of the ring R is U(R). An involution ∗: R → R is an anti-isomorphism

which satisfies (a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗ for all a, b ∈ R. For any a ∈ R, we

use lann(a) = {x ∈ R : xa = 0} and rann(a) = {x ∈ R : ax = 0} to denote the left and right

annihilator of a, respectively. Recall that an element a ∈ R is Drazin invertible [1] if there is

x ∈ R such that xax = x, ax = xa, ak = ak+1x for some k ≥ 0. The least such k is called the

index of a. The Drazin inverse is called the group inverse of a when k = 1. It is well known

that an element a is group invertible if and only if a is strongly regular (that is, a ∈ a2R∩Ra2).

More results on group inverse of elements in various setting can be found in [2] and [3–5].

In [5], the Moore-Penrose inverse was introduced for a ring with involution. Also a detailed

study of core inverses and dual core inverses in rings was undertaken in [3]. For any element

a ∈ R, consider the following conditions:

(1) axa = a; (2) xax = x; (3) xa = ax; (4) (ax)∗ = ax; (5) (xa)∗ = xa; (6) xa2 = a; (7)

ax2 = x.

Any element x satisfying (1) is called an inner inverse of a, and is denoted by a−. If x

satisfies (1)–(3), then x is called the group inverse of a, denoted by a#. If x satisfies (1), (2),
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(4) and (5), then x is called the Moore-Penrose inverse of a and is denoted by a†. The set of

all group invertible elements and Moore-Penrose invertible elements are denoted by R# and R†,

respectively. It is well known that a is an EP element if a ∈ R# ∩ R† and a# = a†. Moreover,

x is the core inverse of a if it satisfies (1), (2), (4), (6) and (7), which is denoted by a#©. And

x is the dual core inverse of a if it satisfies (1), (2) and (5)–(7), which is denoted by a#©. The

set of all core invertible elements and dual core invertible elements are denoted by R#© and R#©,

respectively.

In 2012, Drazin defined a class of outer generalized inverses in [4]. Let a, b, c, y ∈ R. Then

y is called the (b, c)-inverse of a if y ∈ bRy ∩ yRc, yab = b and cay = c. Later, Drazin shed a

new light on (b, c)-inverse by introducing left and right (b, c)-inverses in [6]. Let a, b, c, x ∈ R.

Recalled from [6] that x is a left (resp., right) (b, c)-inverse of a if it satisfies xab = b, x ∈ Rc

(resp., cax = c, x ∈ bR). According to [7], for a, c ∈ R, a is right (resp., left) c-regular if there

exists x ∈ R such that a = axca (resp., a = acxa), and x is called a right (resp., left) c-regular

inverse of a. It is clear that every right c-regular element is regular, but in general a regular

element need not be right c-regular by [7, Example 2.1].

In this paper, we investigate a new class of group inverses in unitary associative rings. More

precisely, we give an explicit description of group inverse determined by left and right c-regular

elements. The concepts of right and left c-group inverses are defined and investigated. It is

proved that if a is right c-group invertible, then a is group invertible. However, we shall give

examples to show that group invertible elements need not be right c-group invertible, and right

c-group invertible elements need not be left c-group invertible. We also study the strongly clean

decompositions of right c-group invertible elements, and study the relationship between right c-

group inverses and other generalized inverses including group inverses, Moore-Penrose inverses,

core inverses, dual core inverses, one-sided (b, c)-inverses and (b, c)-inverses. As applications, we

give some new characterizations of abelian rings, directly finite rings and EP elements by using

right c-group inverses.

This paper is organized as follows:

In Section 2, we define and study right and left c-group inverses of an element in a ring R. We

show that an element a is right c-group invertible if and only if a is group invertible and Ra ⊆ Rc

(Proposition 2.8). In Section 3, we further study the properties of right c-group invertible

elements. Of particular interest are the new characterization of strongly clean decompositions

of elements with respect to right c-group invertible elements (Theorem 3.4). Also we show that

every right c-group invertible element of R has a unique right c-group inverse if and only if R is

abelian (Proposition 3.7). Section 4 is devoted to study the relationships between right c-group

inverse, Moore-Penrose inverse, core inverse and (b, c)-inverse. As applications, we give some

new characterizations of EP elements and directly finite rings from the point of view of right

c-group inverses (Proposition 4.4 and Theorem 4.14).
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2. Right and left c-group inverses

This section is dedicated to the question of exploring the properties of group inverses de-

termined by right c-regular elements. The new concepts of left and right c-group inverses are

defined and discussed. An example is given to show that group invertible elements need not

be right c-group invertible. We also study the condition under which right c-group invertibility

coincides with group invertibility.

We begin with the following definition.

Definition 2.1 Let a, c ∈ R. We say that a is right c-group invertible if there exists x ∈ R

such that a = axca, x = xcax, axc = xca. Any element x, which satisfies the above conditions,

is called a right c-group inverse of a and is denoted as a#
c
.

Dually, a is said to be left c-group invertible if there is y ∈ R such that a = acya, y = yacy,

cya = acy. Any element y satisfying the above conditions is called a left c-group inverse of a and

is defined as ca
#.

In what follows, we use R#
c (resp., cR

#) to denote the set of all right (resp., left) c-group

invertible elements of R. It is clear that if a is right (resp., left) c-group invertible, then a is

group invertible. However, the next example shows that a group invertible element need not be

right c-group invertible.

Example 2.2 Let R = M2(F) be the ring of all 2 by 2 matrices over a field F. Let

a = x =

(

1 1

0 0

)

, c =

(

0 1

0 0

)

∈ R.

Then it can be easily checked that a is group invertible and x is the group inverse of a. However,

it is clear

axca =

(

0 0

0 0

)

6= a

for any element x since ca =
(

0 0
0 0

)

. Thus, a is not right c-group invertible.

The following proposition gives a characterization of right c-group inverse.

Proposition 2.3 Let a, x, c ∈ R. Then the following statements are equivalent:

(1) x is a right c-group inverse of a;

(2) a = axca, Rxc = Ra, xR = aR;

(3) a = axca, rann(xc) = rann(a), lann(a) = lann(x);

(4) a = axca, Rxc ⊆ Ra, xR ⊆ aR;

(5) a = axca, rann(a) ⊆ rann(xc), lann(a) ⊆ lann(x).

Proof (1) ⇒ (2). Since x is a right c-group inverse of a, we have a = axca = xca2 ∈ xR and

x = xcax = axcx ∈ aR. This implies that aR = xR. Also, we have xc = xcaxc = (xc)2a ∈ Ra

and a = axca = a2xc ∈ Rxc. This shows that Rxc = Ra.

(2) ⇒ (3) and (4) ⇒ (5) are straightforward.
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(3) ⇒ (4). Since a = axca, we have (1 − xca) ∈ rann(a) = rann(xc). It follows that

xc = (xc)2a ∈ Ra. Therefore, we have Rxc ⊆ Ra. Similarly, since (axc−1) ∈ lann(a) = lann(x),

we get x = axcx ∈ aR, and hence xR ⊆ aR.

(5) ⇒ (1). Since a = axca, we deduce that (1 − xca) ∈ rann(a) ⊆ rann(xc). Then xc =

(xc)2a. Similarly, since (axc − 1) ∈ lann(a) ⊆ lann(x), we get x = axcx. Therefore, we have

axc = a(xc)2a = (axcx)ca = xca. This implies that x = axcx = xcax, as desired. 2

In particular, if c is a central element, then we can give a description of right c-group invertible

elements, which is closely related to the idempotents of R.

Theorem 2.4 Let a, c ∈ R and c ∈ C(R). Then the following statements are equivalent:

(1) a ∈ R#
c
;

(2) There exists a unique idempotent element p ∈ R such that aR = caR = pR, Ra = Rca =

Rp;

(3) ca ∈ R− and there is a unique idempotent element p ∈ R such that lann(a) = lann(ca) =

lann(p), rann(a) = rann(ca) = rann(p).

Proof (1) ⇒ (2). Let p = aa#
c
c. Then p2 = aa#

c
caa#

c
c = aa#

c
c = p. Since a = aa#

c
ca = pa ∈ pR

and p = aa#c c ∈ aR, we get aR = pR. Also since c ∈ C(R), we have

ca = caa#
c
ca = aa#

c
cac ∈ pR, p = aa#

c
c = caa#

c
∈ caR,

thus pR = caR. Next, since

p = aa#c c = a#c ca ∈ Ra, a = aa#c ca = aaa#c c = ap ∈ Rp,

we have Rp = Ra. Furthermore, since ca = caa#c ca ∈ Rp and p = a#c ca ∈ Rca, we conclude that

Rp = Rca.

(2) ⇒ (3). Since Rca = Rp, there exist s, t ∈ R such that ca = tp and p = sca. It follows

that ca = cap = casca since p is an idempotent, and thus ca ∈ R−. By [3, Lemma 2.5], we have

lann(a) = lann(ca) = lann(p), rann(a) = rann(ca) = rann(p),

as desired.

(3) ⇒ (1). By the assumption, it is clear that

(1− p) ∈ rann(p) = rann(a), [(ca)−ca− 1] ∈ rann(ca) = rann(a) = rann(p).

Then we conclude that a = ap = a(ca)−ca and p = p(ca)−ca. Also, since

(p− 1) ∈ lann(p) = lann(a), [1− ca(ca)−] ∈ lann(ca) = lann(a) = lann(p),

we get a = pa = ca(ca)−a and p = ca(ca)−p. Since a = ap and (p − 1) ∈ lann(ca), we have

ca = cap and pca = ca. Let x = p(ca)−p. Then we conclude that

axca = ap(ca)−pca = a(ca)−ca = a, xcax = p(ca)−pcap(ca)−p = p(ca)−p = x,

xca = p(ca)−pca = p, axc = ap(ca)−pc = ca(ca)−p = p.
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It remains to show the uniqueness of p. In fact, if there are two idempotent elements p1, p2 ∈ R

such that lann(p1) = lann(a) = lann(p2), rann(p1) = rann(a) = rann(p2). Then it can be easily

checked that

(1− p1) ∈ lann(p1) = lann(p2), (p2 − 1) ∈ rann(p2) = rann(p1),

which imply that p1 = p1p2 = p2. 2

It is a well-known fact that the group inverse of a group invertible element is unique. Similarly,

one may suspect that if a ∈ R#
c , then the right c-group inverse of a is also unique. However, the

following example eliminates the possibility.

Example 2.5 Let R = M2(F) be the ring of all 2 by 2 matrices over a field F. Take

a = c =

(

1 1

0 0

)

, x =

(

m n

s t

)

∈ R

for some m,n, s, t ∈ F. If xcax = x, a = axca and xca = axc, then

x =

(

1 n

0 0

)

.

This shows that
(

1 n
0 0

)

is the right c-group inverse of a for some n ∈ F. Therefore, the right

c-group inverse of a is not unique.

The following proposition gives a more straightforward way to show the right c-group invert-

ibility of an element.

Proposition 2.6 Let a, c ∈ R. Then a ∈ R#
c

if and only if a = a2xc = yca2 for some x, y ∈ R.

In this case, ycax = axcx is a right c-group inverse of a.

Proof If a ∈ R#
c and x, y are two right c-group inverses of a, then we have

a = axca = ayca, xca = axc, yca = ayc.

This implies that a = a2xc = xca2. Analogously, we get a = yca2 = a2yc, that is, a = yca2 =

a2xc. Conversely, if a = a2xc = yca2, then yca = yca2xc = axc. Let z = ycax. Then we get

zcaz = (ycax)ca(yca)x = ycaxca2xcx = yc(axc)ax = ycyca2x = ycax = z,

azca = a(yca)xca = a2xcxca = axca = yca2 = a.

Moreover, since we have

zca = yc(axc)a = ycycaa = yca = axc, azc = a(yca)xc = a2xcxc = axc.

We conclude that zca = azc. Therefore, a is right c-group invertible with a right c-group inverse

z = ycax = axcx. 2

Note that if the right c-group inverse of a is unique, then Proposition 2.6 can be rephrased

as a ∈ R#
c

if and only if a = a2xc = xca2 for some x ∈ R. In this case, a#
c
= xcax = axcx.

Similarly, we have the following proposition.
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Proposition 2.7 Let a, c ∈ R. Then a ∈ cR
# if and only if a = a2cx = cya2 for some x, y ∈ R.

In this case, yacx = ycya is a left c-group inverse of a.

The next proposition shows the condition under which right c-group invertibility coincides

with group invertibility.

Proposition 2.8 Let a, c ∈ R. Then a ∈ R#
c if and only if a ∈ R# and Ra ⊆ Rc.

Proof Since a ∈ R#
c , there is x ∈ R such that xcax = x. It is clear that xc is the group inverse

of a. Since xca = axc, we have a = axca = a2xc ∈ Rc. Thus Ra ⊆ Rc. Conversely, if a ∈ R#

and Ra ⊆ Rc, then there exist y, t ∈ R such that a = aya, ya = ay and a = tc. This implies that

a = ya2 = y2a3 = y2aa2 = y2tca2 ∈ Rca2,

a = ayaya = a2y2a = a2y2tc ∈ a2Rc.

Therefore, a ∈ R#
c

by Proposition 2.6. 2

The proof of the following proposition can be given similarly.

Proposition 2.9 Let a, c ∈ R. Then a ∈ cR
# if and only if a ∈ R# and aR ⊆ cR.

We next examine under what conditions the right (resp., left) c-group inverse of a right (resp.,

left) c-group invertible element is unique.

Theorem 2.10 Let a, c ∈ R. If a ∈ R#
c
∩ cR

# such that a#
c

= ca
#, then a has at most one

right (resp., left) c-group inverse.

Proof If a#c = ca
#, then there is x ∈ R such that a = axca = acxa and xcax = x = xacx. If y

is also a right c-group inverse of a with x 6= y. Then y = ycay = yacy. It follows that

y = ycay = ycaxcay = aycaxcy = axcy = xcay,

x = xacx = xacyacx = xcyaacx = xcyacxa = xcya = xacy.

Then we deduce that

ya = xcaya = axcya = axacy = ax,

y = yacy = yacxacy = yacx.

It follows that y = yacx = axcx = xcax = x. Therefore, a has at most one right c-group inverse.

Similarly, we can show the uniqueness of left c-group inverse. 2

Note that the condition in Theorem 2.10 is not superfluous. In fact, if a is right c-group

invertible, then a need not be left c-group invertible by the following example.

Example 2.11 Let R = M2(F) be the ring of all 2 by 2 matrices over a field F. Take

a =

(

0 0

0 1

)

, c =

(

0 1

0 0

)

∈ R.

Then it is clear that

a = a2

(

0 p

1 q

)

c =

(

0 m

1 n

)

ca2 ∈ a2Rc ∩Rca2
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for p, q,m, n ∈ F. Therefore, a is right c-group invertible by Proposition 2.6. However,

a2c =

(

0 0

0 0

)

.

This implies that a /∈ a2cR ∩ cRa2, that is, a is not left c-group invertible by Corollary 2.7.

Remark 2.12 In view of Example 2.5 and Theorem 2.10, we observe that in general the right

and left c-group inverses of an element a are not unique. However, a#c ca and acca
# are unique.

In fact, if x, y ∈ R are two right c-group inverses of a, then we have

xc = xcaxc = xcaycaxc = xcaaycxc = aycxc = ycaxc.

Therefore, xca = ycaxca = yca. Similarly, we can show that acca
# is also unique.

We next discuss some further properties related to right c-group invertible elements.

Proposition 2.13 Let a, c ∈ R. If a#
c
= ca

#, then (a#
c
)#
c

and c(ca
#)# exist. In this case, a is

both a left c-group inverse of ca
# and a right c-group inverse of a#c .

Proof If a#c = ca
#, then a#c is unique by Theorem 2.10. Let x = a#c = ca

#. Then a = axca =

acxa, x = xcax = xacx, axc = xca and cxa = acx. Then we conclude that

xa = xcaxa = axcxa = ax,

axc = xca = xcacxa = axccxa = axcacx = acx.

Let y = a. Then we have

ycxy = acxa = a = y, xycx = xacx = x, xyc = xac = axc, ycx = acx.

Since acx = axc, we get xyc = ycx. Therefore, (a#c )
#
c exists and a is a right c-group inverse of

a#
c
. Similarly, we conclude that

yxcy = axca = a = y, xcyx = xcax = x,

cyx = cax = cxa = acx, xcy = xca = axc.

Since acx = axc, we get xcy = cyx. This implies that c(ca
#)# exists and a is a left c-group

inverse of ca
#. 2

Corollary 2.14 Let a, c ∈ R. If a#c = ca
# such that (a#c )

#
c = c(ca

#)#, then ((a#c )
#
c )

#
c =

c(c(ca
#)#)# = ca

# = a#
c
.

If R is a ring with an involution ∗, then we have the following lemma.

Lemma 2.15 Let a, c ∈ R. If a ∈ R#
c , then a∗ ∈ c∗R

#.

The following theorem shows that if an element a is right c-group invertible, then a∗ may be

left c-group invertible under some mild conditions.

Theorem 2.16 Let a, c ∈ R such that (ca2)∗ = ca2. If a ∈ R#
c , then a∗ ∈ cR

#.

Proof If a ∈ R#
c , then by Proposition 2.6, there exist m,n ∈ R such that a = a2mc = nca2.
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Next, it suffices to show a∗ ∈ (a∗)2cR ∩ cR(a∗)2 by Corollary 2.7. Since (ca2)∗ = ca2 and

an∗ = nca2n∗, an∗ is symmetrical, thus (an∗)∗ = an∗ = na∗. Then we have

a = nca2 = n(ca2)∗ = na∗a∗c∗ = an∗a∗c∗ = a(can)∗.

This implies that a∗ = cana∗. Since a∗ = c∗m∗(a∗)2, we conclude that a∗ = cana∗ =

canc∗m∗(a∗)2 ∈ cR(a∗)2. Furthermore, since a = nca2, we have

a∗ = (a∗)2c∗n∗ = a∗a∗c∗n∗ = (a∗)2a∗c∗n∗c∗n∗

= (a∗)2canc∗m∗(a∗)2c∗n∗c∗n∗

= (a∗)2canc∗m∗a∗c∗n∗ ∈ (a∗)2cR,

proving a∗ is left c-group invertible. 2

3. Strongly clean decompositions for right c-group invertible elements

In this section, we study the strongly clean decompositions of right c-group invertible ele-

ments. A ring R is abelian if every idempotent element is central. An element a in a ring R is

called clean [8] if a = e + u where e2 = e and u ∈ U(R), and an element a is strongly clean if

a = e+u where e2 = e, u ∈ U(R) and eu = ue. Note that an element a is strongly regular if and

only if there is an idempotent e ∈ R and u ∈ U(R) such that a = e+ u, ae = ea and eae is zero.

Lemma 3.1 An element a ∈ R# if and only if a = ue, ue = eu for some u ∈ U(R) and

idempotent e = e2. In this case, u = a− 1 + a#a.

Proof If a ∈ R#, then a is strong regular. By [2, Lemma 3.5], we have a = ue, ue = eu and

u = a− 1 + a#a. Conversely, since ue = eu and u ∈ U(R), we get

a = ue = ueueu−1 = a2u−1 ∈ a2R, a = u−1eueu = u−1a2 ∈ Ra2.

This implies that a ∈ a2R ∩Ra2. Therefore, a ∈ R#. 2

The following theorem shows that an element is group invertible if and only if it is both left

c-group invertible and right c-group invertible.

Theorem 3.2 Let a, c ∈ R. Then the following statements are equivalent:

(1) a ∈ R#
c
∩ cR

#;

(2) a ∈ R#;

(3) There exist c ∈ U(R) and e = e2 such that a = ce and ce = ec.

In this case, c = a− 1 + a#a is unique.

Proof (1) ⇒ (2). If a ∈ R#
c
∩ cR

#, then a ∈ Rca2 ⊆ Ra2 and a ∈ a2cR ⊆ a2R by Propositon

2.6 and Corollary 2.7. It follows that a ∈ Ra2 ∩ a2R.

(2) ⇔ (3) is clear by Lemma 3.1. Since a# is unique, c is unique.

(3) ⇒ (1). Since a = ce = ec, we have Ra ⊆ Rc and aR ⊆ cR. Combining with a ∈ R#, we

get a ∈ R#
c ∩ cR

# by Propositon 2.8 and Corollary 2.9. 2
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By Proposition 4.4, Lemma 2.15 and Theorem 3.2, we can give the following corollary im-

mediately which shows the equivalence of right c-group invertible elements and group invertible

elements.

Corollary 3.3 If R is a ring with involution and a∗ = a, then a ∈ R#

a−1+a#a
if and only if

a ∈ R#.

The next result shows the relationship between right c-group invertible elements and strongly

clean elements.

Theorem 3.4 Let a, c ∈ R. Then the following statements are equivalent:

(1) a ∈ R#
c ;

(2) a ∈ R# and there exist c ∈ U(R) and f = f2 such that a = c + f is a strongly clean

element.

In this case, c = a− 1 + a#c ca.

Proof (1) ⇒ (2). Since a ∈ R#
c , it is clear that a ∈ R# and there is x ∈ R such that xcax = x.

It follows that xcaxca = xca. Let e = xca. Then e2 = e is an idempotent element. Since

a = axca = xca2, we have a = ae = ea. Let c = a− 1 + xca. Then c is a unit since

(a− 1 + xca)(xc − 1 + xca) = (xc− 1 + xca)(a− 1 + xca) = 1.

Therefore, a = c+ 1 − xca = c+ 1 − e. Let f = 1 − e. Then f2 = f = 1 − e is an idempotent

element. This implies that a = c+ f is a clean element. Since a = ae = ea, we have

af = a(1− e) = a− ae = a− ea = (1− e)a = fa.

It follows that cf = (a − f)f = af − f = fa − f = f(a − f) = fc. Therefore, a = c + f is a

strongly clean element.

(2) ⇒ (1). Since a = c+ f is a strongly clean element, we get a2 = a(c+ f) = ac+ af . Also

since a ∈ R#, there is y ∈ R such that a = ya2. This implies that

a = y(ac+ af) = yac+ yaf = yac+ yafc−1c = (ya+ yafc−1)c ∈ Rc.

By Proposition 2.8, we get a ∈ R#
c
. 2

Corollary 3.5 Let a, c ∈ R. Then the following statements are equivalent:

(1) a ∈ cR
#;

(2) a ∈ R# and there exist c ∈ U(R) and e = e2 such that a = c + e is a strongly clean

element.

In this case, c = a− 1 + acca
# and c−1 = cca

# − 1 + acca
#.

An element a ∈ R# if and only if there is e2 = e ∈ R and u ∈ U(R) such that a = e + u,

ae = ea and eae = 0. Accordingly, we have the following theorem for a ∈ R#
c
.

Theorem 3.6 Let a, c ∈ R. Then the following statements are equivalent:

(1) a ∈ R#
c
;

(2) There exist c ∈ U(R) and e = e2 such that a = e+ c, ec = ce and aR ∩ eR = {0};
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(3) There exist c ∈ U(R) and e = e2 such that a = e+ c, ec = ce and ae = ea = 0.

Proof (1) ⇒ (3). Let c = a − 1 + a#
c
ca and e = 1 − a#

c
ca. By Theorem 3.4, we have

ae = a− aa#c ca = a− a#c ca
2 = ea = 0, a = e+ c, ec = ce.

(3) ⇒ (1). Since there exist c ∈ U(R) and e = e2 such that a = e + c and ec = ce, a is

strongly clean. Also since ea = ae = 0, we get ae = e+ ce = e+ ec = 0. It follows that

a2 = (e+ c)2 = e+ 2ec+ c2 = ec+ c2 = (e+ c)c = ac.

Thus, a = a2c−1 ∈ a2R. Analogously, we get a = c−1a2 ∈ Ra2. Then a ∈ R#. Therefore,

a ∈ R#
c

by Theorem 3.4 again.

(2) ⇒ (3). Since ae = e+ ce = e+ ec = ea, we have ae ∈ aR∩ eR = {0}. Thus, ae = 0 = ea.

(3) ⇒ (2). Let x ∈ aR ∩ eR. Then there exist s, t ∈ R such that x = as = et. It follows that

ex = eas = 0 since ea = 0. Thus, x = et = ex = 0. Then aR ∩ eR = {0}. 2

We conclude this section by showing a particularly nice behaviour of the uniqueness of right

c-group inverse on abelian rings.

Proposition 3.7 Let c ∈ R. Then every right c-group invertible element of R has a unique

right c-group inverse if and only if R is abelian.

Proof If R is abelian and a ∈ R is right c-group invertible, then there exist x, y ∈ R such that

a = axca = ayca, xcax = x and yca = ayc with x 6= y. Since cax is an idempotent element, it

follows that

x = xcax = xcaycax = xcaaycx = aycx = ycax = caxy.

Moreover, because axc, cax and yca are idempotent elements, we also have

y = ycaxcay = (ayc)axcy = (axc)yayc = yaycaxc

= caxyayc = caxy(yca) = caxycay = caxy = x.

Therefore, every right c-group invertible element has a unique right c-group inverse in an abelian

ring.

Conversely, suppose that every right c-group invertible element of R has a unique right c-

group inverse. If R is not abelian, then there is e2 = e ∈ R such that e is not central. Then

ex 6= xe for some x ∈ R, and thus ex(1− e) 6= 0. This implies that e 6= e+ ex(1− e). Let c = e.

Then e is right e-group invertible with a right e-group inverse e. Moreover, we have

(e+ ex(1 − e))e(e+ ex(1− e)) = e+ ex(1 − e),

e(e+ ex(1− e))e = e = (e+ ex(1 − e))e.

This shows that e+ ex(1− e) is also a right e-group inverse of e, a contradiction. 2

4. Relationships of various generalized inverses

In this section, we investigate the relationships between right c-group inverses and other

various generalized inverses including group inverses, Moore-Penrose inverses, core inverses, dual



Right c-group inverses and their applications 69

core inverses, one-sided (b, c)-inverses and (b, c)-inverses. Some work has already been done in

this topic (for example, see [3]). We start with the following result which shows that a ∈ R#∩R†

implies a ∈ R#

aa# ∩ aa#R# under some conditions.

Theorem 4.1 Let a ∈ R. Then the following statements are equivalent:

(1) a ∈ R# ∩R†;

(2) There exist x, y ∈ R such that x is a right aa#-group inverse of a, y is a left aa#-group

inverse of a and ax, ya are projections.

Proof (1) ⇒ (2). If a ∈ R# ∩R†, then a# and a† exist. Let x = a#aa†. Then we have

xaa#ax = a#aa†aa#aa#aa† = a#aa† = x,

axaa#a = aa#aa†aa#a = a, xaa#a = a#aa†aa#a = a#a,

axaa# = aa#aa†aa# = aa# = a#a.

This implies that x is a right aa#-group inverse of a. Since ax = aa#aa† = aa† and axax =

aa†aa† = aa† = ax, it follows that ax is a projection. Similarly, if we let y = a†aa#, then

aaa#ya = aaa#a†aa#a = a, yaaa#y = y, aa#ya = aaa#y.

This shows that y is a left aa#-group inverse of a. Since ya = a†aa#a = a†a and yaya = ya, ya

is also a projection.

(2) ⇒ (1). If x is a right aa#-group inverse of a, then a = axaa#a = axa. Also, if y is a left

aa#-group inverse of a, then a = aaa#ya = aya. Combining with (ax)∗ = ax and (ya)∗ = ya,

we have a ∈ R† by [9, Lemma 2.18]. Therefore, a ∈ R# ∩R†. 2

Proposition 4.2 If a ∈ R†, then the following statements are equivalent:

(1) a ∈ REP ;

(2) There is x ∈ R such that x is a right aa†-group inverse of a with xa = ax.

Proof (1) ⇒ (2). Since a ∈ REP , aa† = a†a. Let x = a†. Then we have xa = ax and

xaa†ax = a†aa† = a† = x, axaa†a = a,

xaa†a = xa = a†a = aa† = axaa†.

Therefore, we deduce that x is a right aa†-group inverse of a.

(2) ⇒ (1). If x is a right aa†-group inverse of a such that ax = xa, then we have

axaa† = xaa†a = xa, a = ax(aa†)a = axa, xaa†ax = xax = x.

This implies that x is the group inverse of a and xa = aa†. Therefore, a#a = aa†, that is,

a ∈ REP . 2

Corollary 4.3 Let a ∈ R. If a ∈ R#

aa† ∩aa†R# such that a#
aa† = aa†a#, then a is an EP element.

Proof Since a#
aa† = aa†a#, there exists x ∈ R such that x = a#

aa† = aa†a#. Then we have

a = axaa†a = axa, x = xaa†ax = xax,



70 Jun JIAO and Liang ZHAO

axaa† = xaa†a = xa, aa†xa = aaa†x = a2a†x.

It follows that xa = axaa† = aa†, thus a2a† = axa = a and aa†xa = aa†. Then a2a†x = ax =

aa†. Hence, ax = aa† = xa. It follows that a is an EP element by Proposition 4.2. 2

If a∗ = a, then the next proposition shows that a being right c-group invertible implies the

EP property of a.

Proposition 4.4 If a = a∗, then a is EP if and only if there is c ∈ R such that a is right c-group

invertible. In this case, c = aa# = aa† = aa#© = aa#©.

Proof If a is EP, then a is right aa†-group invertible by Proposition 4.2. Let c = aa# = aa† =

aa#© = aa#© ∈ R. Then a is right c-group invertible. Conversely, if a is right c-group invertible,

then there is x ∈ R such that axc = xca and xcax = x. Since a∗ = a, we have (axc)∗ = (xc)∗a =

(xca)∗ = a(xc)∗. It follows that [a(xc)∗xc]∗ = a(xc)∗xc = (xc)∗xca. Since a = axca = xca2,

we have a(xc)∗xca = (xc)∗xca2 = (xc)∗a. Then [(xc)∗a]∗ = (xc)∗a = axc = xca. Therefore, we

have (xc)∗a(xc) = xcaxc = xc. Thus (xc)∗ = xc. Let z = xc. Then we have

(za)∗ = (xca)∗ = axc = xca = za, (az)∗ = (axc)∗ = xca = axc = az,

aza = a, zaz = z.

Therefore, z = a†. Moreover, it is clear that xc is the group inverse of a. Then a ∈ R# ∩R† and

xc = a# = a†, that is, a is EP. 2

Corollary 4.5 Let a ∈ R such that a = a∗. Then a is EP if and only if there is c ∈ R such that

a is left c-group invertible. In this case, c = aa# = aa† = aa#© = aa#©.

Proposition 4.4 together with Corollary 4.5 implies the following corollary valid in the rings

with an involution.

Corollary 4.6 Let a ∈ R such that a = a∗. Then there is c ∈ R such that a ∈ R#
c if and only

if a ∈ cR
#.

When a∗ = a and c = aa†, we next show that a ∈ REP is equivalent to a ∈ R#
c ∩ cR

#.

Proposition 4.7 If a∗ = a, then a is an EP element if and only if a ∈ R#

aa† ∩ aa†R#. In this

case, a† is both a left aa†-group inverse of a and a right aa†-group inverse of a.

Proof If a ∈ REP , then a is right aa†-group invertible by Proposition 4.2. Let x be a right

aa†-group inverse of a. Then we have

axaa†a = axa = a, xaa†ax = xax = x,

xaa†a = xa = axaa†.

Hence xa = aa† and a = xa2. Since a∗ = a and a ∈ R#

aa† , we conclude that a is left aa†-

group invertible by Lemma 2.15. Suppose that y ∈ R is a left aa†-group inverse of a. Then

a = aaa†ya and aa†ya = aaa†y = ay since a is an EP element. Thus a = a2y. This implies

that a = a2y = a2(aa†)y = (aa†)xa2. By Corollary 2.7, we get xay = xaa†xa = aa†a†aa† = a†.
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Therefore, a† is a left aa†-group inverse of a. Also since

a = a2y = a2y(aa†) = xa2 = x(aa†)a2,

we have xay is also a right aa†-group inverse of a by Proposition 2.6. This implies that a ∈

R#

aa† ∩ aa†R# and a† is both a left aa†-group inverse of a and a right aa†-group inverse of a.

Conversely, since a ∈ R#

aa† ∩ aa†R#, a is an EP element by Proposition 4.4 and Corollary 4.5. 2

We need the following lemma, which is closely related to EP elements and has been investi-

gated in [3, Theorem 3.1].

Lemma 4.8 Let a ∈ R# ∩R†. Then:

(1) a is EP if and only if a# = a† = a#© = a#©;

(2) a is EP if and only if aa# = aa† = aa#© = aa#©.

If c = aa†, then the following theorem not only gives a new characterization of EP elements,

but also reveals the relations between a#, a†, a#©, a#©, a#c , ca
# and EP elements.

Theorem 4.9 Let a ∈ R† and a∗ = a. Then the following statements are equivalent:

(1) a ∈ REP ;

(2) a ∈ R# ∩ aa†R# and a# is a left aa†-group inverse of a;

(3) a ∈ R# ∩R#

aa† and a# is a right aa†-group inverse of a;

(4) a ∈ R#© ∩ aa†R# and a#© is a left aa†-group inverse of a;

(5) a ∈ R#© ∩R#

aa† and a#© is a right aa†-group inverse of a;

(6) a ∈ R# ∩R† and a† is a left aa†-group inverse of a;

(7) a ∈ R# ∩R† and a† is a right aa†-group inverse of a;

(8) a ∈ R# ∩R† and a ∈ R#

aa† ∩ aa†R#.

Proof (1) ⇔ (8) is clear by Proposition 4.7.

(1) ⇒ (2)–(7). Since a ∈ REP , a† is both a left aa†-group inverse of a and a right aa†-

group inverse of a by Proposition 4.7. By Lemma 4.8, we get a† = a#© = a#© = a#. The other

implications are clear by Proposition 4.7 and [3, Theorem 3.1].

(7) ⇒ (1). Since a† is a right aa†-group inverse of a, a†aa† = a† is the group inverse of a, we

deduce that a† = a#. Hence a ∈ REP .

(6) ⇒ (1). Since a† is a left aa†-group inverse of a, aa†a† is the group inverse of a. Thus

aa†a† = a#. It follows that (a#)∗ = (a†)∗aa†, thus (a#)∗a = (a†)∗a. Since a∗ = a, we get

aa# = aa†. By Lemma 4.8, we get a ∈ REP .

(5) ⇒ (1). Since a ∈ R#

aa† , a is group invertible. Combining with a ∈ R†, we have a ∈

R# ∩R†. If a#© is a right aa†-group inverse of a, then a#©aa† = a#. Therefore, aa† = aa#, that

is, a ∈ REP .

(4) ⇒ (1). If a#© is a left aa†-group inverse of a, then aa†a#© = a#. Since a∗ = a, we deduce

that (aa#)∗ = [a(aa†)a#©]∗ = (a#©)∗aa†a = (a#©)∗a = (aa#©)∗. Thus aa# = aa#©, that is, a ∈ REP

by Lemma 4.8.
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(3) ⇒ (1). If a# is a right aa†-group inverse of a, then a#aa† = a#. It follows that aa# = aa†,

thus a ∈ REP .

(2) ⇒ (1). If a# is a left aa†-group inverse of a, then aa†a# = a# = (aa†)∗a# = (a†)∗aa#.

Therefore, aa# = a#a = (a†)∗a = aa† since a∗ = a, that is, a ∈ REP . 2

Now, we study the relationship between right c-group inverses and one-sided (b, c)-inverses.

Proposition 4.10 Let a, c ∈ R such that a = a∗. Then a is right c-group invertible if and only

if a is left (a, c)-invertible and Ra ⊆ Rc.

Proof Since a is right c-group invertible, there is y ∈ R such that a = a2yc ∈ Rc and a =

yca2 ∈ Rca2. This implies that a is left (a, c)-invertible. Conversely, if a is left (a, c)-invertible,

then there is x ∈ R such that a = xca2 ∈ Ra2. It follows that a = a2(xc)∗ ∈ a2R since a∗ = a.

Therefore, a ∈ Ra2 ∩ a2R, that is, a ∈ R#. Since Ra ⊆ Rc, a is right c-group invertible by

Proposition 2.8. 2

Corollary 4.11 Let a, c ∈ R such that a = a∗. Then a is left c-group invertible if and only if a

is right (c, a)-invertible and aR ⊆ cR.

In particular, we have the following corollary which is related to (b, c)-inverses.

Corollary 4.12 If a ∈ R such that a = a∗, then the following statements are equivalent:

(1) a is right (resp., left) a-group invertible;

(2) a is (a, a)-invertible;

(3) a ∈ R#.

Over a directly finite ring R, the following proposition shows that 1 may be the unique right

c-group inverse of a for some a, c ∈ R.

Proposition 4.13 Let a, c ∈ R. Then the following statements are equivalent:

(1) R is a directly finite ring;

(2) If ac = 1, then 1 is the unique right c-group inverse of a;

Proof (1) ⇒ (2). If ac = 1, then ca = 1 since R is directly finite. Therefore, we have

a = a(ca)ca, ca = cacaca, caca = acac = 1.

This implies that ca = 1 is a right c-group inverse of a. Let any x ∈ R such that x is a right

c-group inverse of a. Then we have a = axca = ax. Since ac = ca = 1, we have a ∈ U(R). It

follows that x = 1, and thus 1 is the unique right c-group inverse of a.

(2) ⇒ (1). It suffices to show ca = 1. In fact, since 1 is the unique right c-group inverse of a,

we have ca = (1c)a = a(1c) = ac = 1, as desired. 2

We conclude this section by giving a new characterization of directly finite rings.

Theorem 4.14 Let a, c ∈ R. Then the following statements are equivalent:

(1) R is a directly finite ring;

(2) If ac = 1, then a#c = c#a .
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Proof (1) ⇒ (2). If R is a directly finite ring and ac = 1, then 1 is the unique right c-group

inverse of a by Proposition 4.13. Moreover, since ca = ac = 1, 1 is also the unique right a-group

inverse of c again by Proposition 4.13. Therefore, we have a#
c
= c#

a
= 1.

(2) ⇒ (1). Let x ∈ R be a right c-group inverse of a. Since a#c = c#a and ac = 1, we have

axc = xca, cxa = x. Therefore, we get cxac = cx = xc. Then axca = acxa = xa = a, and hence

xac = ac = 1. This implies that ca = cxa = xac = 1. 2
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