Right c-Group Inverses and Their Applications

Jun JIAO, Liang ZHAO*
School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract

We study a new class of group inverses determined by right c-regular elements. The new concept of right c-group inverses is introduced and studied. It is shown that every right c-group invertible element is group invertible, and an example is given to show that group invertible elements need not be right c-group invertible. The conditions that right c-group invertible elements are precisely group invertible elements are investigated. We also study the strongly clean decompositions of right c-group invertible elements. As applications, we give some new characterizations of abelian rings and directly finite rings from the point of view of right c-group inverses.

Keywords right c-group inverse; group inverse; right c-regular elements; strongly clean decomposition

MR(2020) Subject Classification 15A09; 16U90; 16W10

1. Introduction

Throughout this paper, R is a unitary associative ring, the center of R is denoted by $C(R)$ and the group of units of the ring R is $U(R)$. An involution $*: R \rightarrow R$ is an anti-isomorphism which satisfies $\left(a^{*}\right)^{*}=a,(a b)^{*}=b^{*} a^{*},(a+b)^{*}=a^{*}+b^{*}$ for all $a, b \in R$. For any $a \in R$, we use $\operatorname{lann}(a)=\{x \in R: x a=0\}$ and $\operatorname{rann}(a)=\{x \in R: a x=0\}$ to denote the left and right annihilator of a, respectively. Recall that an element $a \in R$ is Drazin invertible [1] if there is $x \in R$ such that $x a x=x, a x=x a, a^{k}=a^{k+1} x$ for some $k \geq 0$. The least such k is called the index of a. The Drazin inverse is called the group inverse of a when $k=1$. It is well known that an element a is group invertible if and only if a is strongly regular (that is, $a \in a^{2} R \cap R a^{2}$). More results on group inverse of elements in various setting can be found in [2] and [3-5].

In [5], the Moore-Penrose inverse was introduced for a ring with involution. Also a detailed study of core inverses and dual core inverses in rings was undertaken in [3]. For any element $a \in R$, consider the following conditions:
(1) $a x a=a$; (2) $x a x=x$; (3) $x a=a x$; (4) $(a x)^{*}=a x ;$ (5) $(x a)^{*}=x a$; (6) $x a^{2}=a$; (7) $a x^{2}=x$.

Any element x satisfying (1) is called an inner inverse of a, and is denoted by a^{-}. If x satisfies (1)-(3), then x is called the group inverse of a, denoted by $a^{\#}$. If x satisfies (1), (2),

[^0](4) and (5), then x is called the Moore-Penrose inverse of a and is denoted by a^{\dagger}. The set of all group invertible elements and Moore-Penrose invertible elements are denoted by $R^{\#}$ and R^{\dagger}, respectively. It is well known that a is an EP element if $a \in R^{\#} \cap R^{\dagger}$ and $a^{\#}=a^{\dagger}$. Moreover, x is the core inverse of a if it satisfies (1), (2), (4), (6) and (7), which is denoted by a^{\oplus}. And x is the dual core inverse of a if it satisfies (1), (2) and (5)-(7), which is denoted by a_{\oplus}. The set of all core invertible elements and dual core invertible elements are denoted by R^{\oplus} and R_{\oplus}, respectively.

In 2012, Drazin defined a class of outer generalized inverses in [4]. Let $a, b, c, y \in R$. Then y is called the (b, c)-inverse of a if $y \in b R y \cap y R c, y a b=b$ and $c a y=c$. Later, Drazin shed a new light on (b, c)-inverse by introducing left and right (b, c)-inverses in [6]. Let $a, b, c, x \in R$. Recalled from [6] that x is a left (resp., right) (b, c)-inverse of a if it satisfies $x a b=b, x \in R c$ (resp., $c a x=c, x \in b R$). According to [7], for $a, c \in R, a$ is right (resp., left) c-regular if there exists $x \in R$ such that $a=a x c a$ (resp., $a=a c x a$), and x is called a right (resp., left) c-regular inverse of a. It is clear that every right c-regular element is regular, but in general a regular element need not be right c-regular by [7, Example 2.1].

In this paper, we investigate a new class of group inverses in unitary associative rings. More precisely, we give an explicit description of group inverse determined by left and right c-regular elements. The concepts of right and left c-group inverses are defined and investigated. It is proved that if a is right c-group invertible, then a is group invertible. However, we shall give examples to show that group invertible elements need not be right c-group invertible, and right c-group invertible elements need not be left c-group invertible. We also study the strongly clean decompositions of right c-group invertible elements, and study the relationship between right c group inverses and other generalized inverses including group inverses, Moore-Penrose inverses, core inverses, dual core inverses, one-sided (b, c-inverses and (b, c)-inverses. As applications, we give some new characterizations of abelian rings, directly finite rings and EP elements by using right c-group inverses.

This paper is organized as follows:
In Section 2, we define and study right and left c-group inverses of an element in a ring R. We show that an element a is right c-group invertible if and only if a is group invertible and $R a \subseteq R c$ (Proposition 2.8). In Section 3, we further study the properties of right c-group invertible elements. Of particular interest are the new characterization of strongly clean decompositions of elements with respect to right c-group invertible elements (Theorem 3.4). Also we show that every right c-group invertible element of R has a unique right c-group inverse if and only if R is abelian (Proposition 3.7). Section 4 is devoted to study the relationships between right c-group inverse, Moore-Penrose inverse, core inverse and (b, c)-inverse. As applications, we give some new characterizations of EP elements and directly finite rings from the point of view of right c-group inverses (Proposition 4.4 and Theorem 4.14).

2. Right and left c-group inverses

This section is dedicated to the question of exploring the properties of group inverses determined by right c-regular elements. The new concepts of left and right c-group inverses are defined and discussed. An example is given to show that group invertible elements need not be right c-group invertible. We also study the condition under which right c-group invertibility coincides with group invertibility.

We begin with the following definition.
Definition 2.1 Let $a, c \in R$. We say that a is right c-group invertible if there exists $x \in R$ such that $a=a x c a, x=x c a x, a x c=x c a$. Any element x, which satisfies the above conditions, is called a right c-group inverse of a and is denoted as $a_{c}^{\#}$.

Dually, a is said to be left c-group invertible if there is $y \in R$ such that $a=$ acy $a, y=y a c y$, cya $=a c y$. Any element y satisfying the above conditions is called a left c-group inverse of a and is defined as ${ }_{c} a^{\#}$.

In what follows, we use $R_{c}^{\#}$ (resp., ${ }_{c} R^{\#}$) to denote the set of all right (resp., left) c-group invertible elements of R. It is clear that if a is right (resp., left) c-group invertible, then a is group invertible. However, the next example shows that a group invertible element need not be right c-group invertible.

Example 2.2 Let $R=M_{2}(\mathbb{F})$ be the ring of all 2 by 2 matrices over a field \mathbb{F}. Let

$$
a=x=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad c=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \in R .
$$

Then it can be easily checked that a is group invertible and x is the group inverse of a. However, it is clear

$$
a x c a=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \neq a
$$

for any element x since $c a=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. Thus, a is not right c-group invertible.
The following proposition gives a characterization of right c-group inverse.
Proposition 2.3 Let $a, x, c \in R$. Then the following statements are equivalent:
(1) x is a right c-group inverse of a;
(2) $a=a x c a, R x c=R a, x R=a R$;
(3) $a=a x c a, \operatorname{rann}(x c)=\operatorname{rann}(a), \operatorname{lann}(a)=\operatorname{lann}(x)$;
(4) $a=a x c a, R x c \subseteq R a, x R \subseteq a R$;
(5) $a=a x c a, \operatorname{rann}(a) \subseteq \operatorname{rann}(x c), \operatorname{lann}(a) \subseteq \operatorname{lann}(x)$.

Proof (1) \Rightarrow (2). Since x is a right c-group inverse of a, we have $a=a x c a=x c a^{2} \in x R$ and $x=x c a x=a x c x \in a R$. This implies that $a R=x R$. Also, we have $x c=x c a x c=(x c)^{2} a \in R a$ and $a=a x c a=a^{2} x c \in R x c$. This shows that $R x c=R a$.
$(2) \Rightarrow(3)$ and $(4) \Rightarrow(5)$ are straightforward.
(3) \Rightarrow (4). Since $a=a x c a$, we have $(1-x c a) \in \operatorname{rann}(a)=\operatorname{rann}(x c)$. It follows that $x c=(x c)^{2} a \in R a$. Therefore, we have $R x c \subseteq R a$. Similarly, since $(a x c-1) \in \operatorname{lann}(a)=\operatorname{lann}(x)$, we get $x=a x c x \in a R$, and hence $x R \subseteq a R$.
$(5) \Rightarrow(1)$. Since $a=a x c a$, we deduce that $(1-x c a) \in \operatorname{rann}(a) \subseteq \operatorname{rann}(x c)$. Then $x c=$ $(x c)^{2} a$. Similarly, since $(a x c-1) \in \operatorname{lann}(a) \subseteq \operatorname{lann}(x)$, we get $x=a x c x$. Therefore, we have $a x c=a(x c)^{2} a=(a x c x) c a=x c a$. This implies that $x=a x c x=x c a x$, as desired.

In particular, if c is a central element, then we can give a description of right c-group invertible elements, which is closely related to the idempotents of R.

Theorem 2.4 Let $a, c \in R$ and $c \in C(R)$. Then the following statements are equivalent:
(1) $a \in R_{c}^{\#}$;
(2) There exists a unique idempotent element $p \in R$ such that $a R=c a R=p R, R a=R c a=$ Rp;
(3) $c a \in R^{-}$and there is a unique idempotent element $p \in R$ such that $\operatorname{lann}(a)=\operatorname{lann}(c a)=$ $\operatorname{lann}(p), \operatorname{rann}(a)=\operatorname{rann}(c a)=\operatorname{rann}(p)$.

Proof (1) $\Rightarrow(2)$. Let $p=a a_{c}^{\#} c$. Then $p^{2}=a a_{c}^{\#} c a a_{c}^{\#} c=a a_{c}^{\#} c=p$. Since $a=a a_{c}^{\#} c a=p a \in p R$ and $p=a a_{c}^{\#} c \in a R$, we get $a R=p R$. Also since $c \in C(R)$, we have

$$
c a=c a a_{c}^{\#} c a=a a_{c}^{\#} c a c \in p R, \quad p=a a_{c}^{\#} c=c a a_{c}^{\#} \in c a R,
$$

thus $p R=c a R$. Next, since

$$
p=a a_{c}^{\#} c=a_{c}^{\#} c a \in R a, \quad a=a a_{c}^{\#} c a=a a a_{c}^{\#} c=a p \in R p,
$$

we have $R p=R a$. Furthermore, since $c a=c a a_{c}^{\#} c a \in R p$ and $p=a_{c}^{\#} c a \in R c a$, we conclude that $R p=R c a$.
$(2) \Rightarrow(3)$. Since $R c a=R p$, there exist $s, t \in R$ such that $c a=t p$ and $p=s c a$. It follows that $c a=c a p=c a s c a$ since p is an idempotent, and thus $c a \in R^{-}$. By [3, Lemma 2.5], we have

$$
\operatorname{lann}(a)=\operatorname{lann}(c a)=\operatorname{lann}(p), \quad \operatorname{rann}(a)=\operatorname{rann}(c a)=\operatorname{rann}(p),
$$

as desired.
$(3) \Rightarrow(1)$. By the assumption, it is clear that

$$
(1-p) \in \operatorname{rann}(p)=\operatorname{rann}(a), \quad\left[(c a)^{-} c a-1\right] \in \operatorname{rann}(c a)=\operatorname{rann}(a)=\operatorname{rann}(p)
$$

Then we conclude that $a=a p=a(c a)^{-} c a$ and $p=p(c a)^{-} c a$. Also, since

$$
(p-1) \in \operatorname{lann}(p)=\operatorname{lann}(a), \quad\left[1-c a(c a)^{-}\right] \in \operatorname{lann}(c a)=\operatorname{lann}(a)=\operatorname{lann}(p)
$$

we get $a=p a=c a(c a)^{-} a$ and $p=c a(c a)^{-} p$. Since $a=a p$ and $(p-1) \in \operatorname{lann}(c a)$, we have $c a=c a p$ and $p c a=c a$. Let $x=p(c a)^{-} p$. Then we conclude that

$$
\begin{gathered}
a x c a=a p(c a)^{-} p c a=a(c a)^{-} c a=a, \quad x c a x=p(c a)^{-} p c a p(c a)^{-} p=p(c a)^{-} p=x, \\
x c a=p(c a)^{-} p c a=p, \quad a x c=a p(c a)^{-} p c=c a(c a)^{-} p=p .
\end{gathered}
$$

It remains to show the uniqueness of p. In fact, if there are two idempotent elements $p_{1}, p_{2} \in R$ such that $\operatorname{lann}\left(p_{1}\right)=\operatorname{lann}(a)=\operatorname{lann}\left(p_{2}\right), \operatorname{rann}\left(p_{1}\right)=\operatorname{rann}(a)=\operatorname{rann}\left(p_{2}\right)$. Then it can be easily checked that

$$
\left(1-p_{1}\right) \in \operatorname{lann}\left(p_{1}\right)=\operatorname{lann}\left(p_{2}\right), \quad\left(p_{2}-1\right) \in \operatorname{rann}\left(p_{2}\right)=\operatorname{rann}\left(p_{1}\right)
$$

which imply that $p_{1}=p_{1} p_{2}=p_{2}$.
It is a well-known fact that the group inverse of a group invertible element is unique. Similarly, one may suspect that if $a \in R_{c}^{\#}$, then the right c-group inverse of a is also unique. However, the following example eliminates the possibility.

Example 2.5 Let $R=M_{2}(\mathbb{F})$ be the ring of all 2 by 2 matrices over a field \mathbb{F}. Take

$$
a=c=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad x=\left(\begin{array}{cc}
m & n \\
s & t
\end{array}\right) \in R
$$

for some $m, n, s, t \in \mathbb{F}$. If $x c a x=x, a=a x c a$ and $x c a=a x c$, then

$$
x=\left(\begin{array}{ll}
1 & n \\
0 & 0
\end{array}\right)
$$

This shows that $\left(\begin{array}{ll}1 & n \\ 0 & 0\end{array}\right)$ is the right c-group inverse of a for some $n \in \mathbb{F}$. Therefore, the right c-group inverse of a is not unique.

The following proposition gives a more straightforward way to show the right c-group invertibility of an element.

Proposition 2.6 Let $a, c \in R$. Then $a \in R_{c}^{\#}$ if and only if $a=a^{2} x c=y c a^{2}$ for some $x, y \in R$. In this case, ycax $=a x c x$ is a right c-group inverse of a.

Proof If $a \in R_{c}^{\#}$ and x, y are two right c-group inverses of a, then we have

$$
a=a x c a=a y c a, x c a=a x c, y c a=a y c .
$$

This implies that $a=a^{2} x c=x c a^{2}$. Analogously, we get $a=y c a^{2}=a^{2} y c$, that is, $a=y c a^{2}=$ $a^{2} x c$. Conversely, if $a=a^{2} x c=y c a^{2}$, then $y c a=y c a^{2} x c=a x c$. Let $z=y c a x$. Then we get

$$
\begin{gathered}
z c a z=(y c a x) c a(y c a) x=y c a x c a^{2} x c x=y c(a x c) a x=y c y c a^{2} x=y c a x=z, \\
a z c a=a(y c a) x c a=a^{2} x c x c a=a x c a=y c a^{2}=a .
\end{gathered}
$$

Moreover, since we have

$$
z c a=y c(a x c) a=y c y c a a=y c a=a x c, \quad a z c=a(y c a) x c=a^{2} x c x c=a x c .
$$

We conclude that $z c a=a z c$. Therefore, a is right c-group invertible with a right c-group inverse $z=y c a x=a x c x$.

Note that if the right c-group inverse of a is unique, then Proposition 2.6 can be rephrased as $a \in R_{c}^{\#}$ if and only if $a=a^{2} x c=x c a^{2}$ for some $x \in R$. In this case, $a_{c}^{\#}=x c a x=a x c x$.

Similarly, we have the following proposition.

Proposition 2.7 Let $a, c \in R$. Then $a \in{ }_{c} R^{\#}$ if and only if $a=a^{2} c x=c y a^{2}$ for some $x, y \in R$. In this case, yacx = ycya is a left c-group inverse of a.

The next proposition shows the condition under which right c-group invertibility coincides with group invertibility.

Proposition 2.8 Let $a, c \in R$. Then $a \in R_{c}^{\#}$ if and only if $a \in R^{\#}$ and $R a \subseteq R c$.
Proof Since $a \in R_{c}^{\#}$, there is $x \in R$ such that $x c a x=x$. It is clear that $x c$ is the group inverse of a. Since $x c a=a x c$, we have $a=a x c a=a^{2} x c \in R c$. Thus $R a \subseteq R c$. Conversely, if $a \in R^{\#}$ and $R a \subseteq R c$, then there exist $y, t \in R$ such that $a=a y a, y a=a y$ and $a=t c$. This implies that

$$
\begin{gathered}
a=y a^{2}=y^{2} a^{3}=y^{2} a a^{2}=y^{2} t c a^{2} \in R c a^{2}, \\
a=a y a y a=a^{2} y^{2} a=a^{2} y^{2} t c \in a^{2} R c .
\end{gathered}
$$

Therefore, $a \in R_{c}^{\#}$ by Proposition 2.6.
The proof of the following proposition can be given similarly.
Proposition 2.9 Let $a, c \in R$. Then $a \in{ }_{c} R^{\#}$ if and only if $a \in R^{\#}$ and $a R \subseteq c R$.
We next examine under what conditions the right (resp., left) c-group inverse of a right (resp., left) c-group invertible element is unique.

Theorem 2.10 Let $a, c \in R$. If $a \in R_{c}^{\#} \cap{ }_{c} R^{\#}$ such that $a_{c}^{\#}={ }_{c} a^{\#}$, then a has at most one right (resp., left) c-group inverse.

Proof If $a_{c}^{\#}={ }_{c} a^{\#}$, then there is $x \in R$ such that $a=a x c a=a c x a$ and $x c a x=x=x a c x$. If y is also a right c-group inverse of a with $x \neq y$. Then $y=y c a y=y a c y$. It follows that

$$
\begin{gathered}
y=y c a y=y c a x c a y=a y c a x c y=a x c y=x c a y \\
x=x a c x=x a c y a c x=x c y a a c x=x c y a c x a=x c y a=x a c y .
\end{gathered}
$$

Then we deduce that

$$
\begin{gathered}
y a=x c a y a=a x c y a=a x a c y=a x, \\
y=y a c y=y a c x a c y=y a c x .
\end{gathered}
$$

It follows that $y=y a c x=a x c x=x c a x=x$. Therefore, a has at most one right c-group inverse. Similarly, we can show the uniqueness of left c-group inverse.

Note that the condition in Theorem 2.10 is not superfluous. In fact, if a is right c-group invertible, then a need not be left c-group invertible by the following example.

Example 2.11 Let $R=M_{2}(\mathbb{F})$ be the ring of all 2 by 2 matrices over a field \mathbb{F}. Take

$$
a=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad c=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \in R .
$$

Then it is clear that

$$
a=a^{2}\left(\begin{array}{ll}
0 & p \\
1 & q
\end{array}\right) c=\left(\begin{array}{cc}
0 & m \\
1 & n
\end{array}\right) c a^{2} \in a^{2} R c \cap R c a^{2}
$$

for $p, q, m, n \in \mathbb{F}$. Therefore, a is right c-group invertible by Proposition 2.6. However,

$$
a^{2} c=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

This implies that $a \notin a^{2} c R \cap c R a^{2}$, that is, a is not left c-group invertible by Corollary 2.7.
Remark 2.12 In view of Example 2.5 and Theorem 2.10, we observe that in general the right and left c-group inverses of an element a are not unique. However, $a_{c}^{\#} c a$ and $a c_{c} a^{\#}$ are unique. In fact, if $x, y \in R$ are two right c-group inverses of a, then we have

$$
x c=x c a x c=x c a y c a x c=x c a a y c x c=a y c x c=y c a x c
$$

Therefore, $x c a=y c a x c a=y c a$. Similarly, we can show that $a c_{c} a^{\#}$ is also unique.
We next discuss some further properties related to right c-group invertible elements.
Proposition 2.13 Let $a, c \in R$. If $a_{c}^{\#}={ }_{c} a^{\#}$, then $\left(a_{c}^{\#}\right)_{c}^{\#}$ and ${ }_{c}\left({ }_{c} a^{\#}\right)^{\#}$ exist. In this case, a is both a left c-group inverse of ${ }_{c} a^{\#}$ and a right c-group inverse of $a_{c}^{\#}$.

Proof If $a_{c}^{\#}={ }_{c} a^{\#}$, then $a_{c}^{\#}$ is unique by Theorem 2.10. Let $x=a_{c}^{\#}={ }_{c} a^{\#}$. Then $a=a x c a=$ $a c x a, x=x c a x=x a c x, a x c=x c a$ and $c x a=a c x$. Then we conclude that

$$
\begin{gathered}
x a=x c a x a=a x c x a=a x \\
a x c=x c a=x c a c x a=a x c c x a=a x c a c x=a c x
\end{gathered}
$$

Let $y=a$. Then we have

$$
y c x y=a c x a=a=y, x y c x=x a c x=x, x y c=x a c=a x c, y c x=a c x .
$$

Since $a c x=a x c$, we get $x y c=y c x$. Therefore, $\left(a_{c}^{\#}\right)_{c}^{\#}$ exists and a is a right c-group inverse of $a_{c}^{\#}$. Similarly, we conclude that

$$
\begin{gathered}
y x c y=a x c a=a=y, \quad x c y x=x c a x=x \\
c y x=c a x=c x a=a c x, \quad x c y=x c a=a x c
\end{gathered}
$$

Since $a c x=a x c$, we get $x c y=c y x$. This implies that ${ }_{c}\left({ }_{c} a^{\#}\right)^{\#}$ exists and a is a left c-group inverse of ${ }_{c} a^{\#}$.

Corollary 2.14 Let $a, c \in R$. If $a_{c}^{\#}={ }_{c} a^{\#}$ such that $\left(a_{c}^{\#}\right)_{c}^{\#}={ }_{c}\left({ }_{c} a^{\#}\right)^{\#}$, then $\left(\left(a_{c}^{\#}\right)_{c}^{\#}\right)_{c}^{\#}=$ $c_{c}\left({ }_{c}\left(a^{\#}\right)^{\#}\right)^{\#}={ }_{c} a^{\#}=a_{c}^{\#}$.

If R is a ring with an involution $*$, then we have the following lemma.
Lemma 2.15 Let $a, c \in R$. If $a \in R_{c}^{\#}$, then $a^{*} \in_{c^{*}} R^{\#}$.
The following theorem shows that if an element a is right c-group invertible, then a^{*} may be left c-group invertible under some mild conditions.

Theorem 2.16 Let $a, c \in R$ such that $\left(c a^{2}\right)^{*}=c a^{2}$. If $a \in R_{c}^{\#}$, then $a^{*} \in{ }_{c} R^{\#}$.
Proof If $a \in R_{c}^{\#}$, then by Proposition 2.6, there exist $m, n \in R$ such that $a=a^{2} m c=n c a^{2}$.

Next, it suffices to show $a^{*} \in\left(a^{*}\right)^{2} c R \cap c R\left(a^{*}\right)^{2}$ by Corollary 2.7. Since $\left(c a^{2}\right)^{*}=c a^{2}$ and $a n^{*}=n c a^{2} n^{*}, a n^{*}$ is symmetrical, thus $\left(a n^{*}\right)^{*}=a n^{*}=n a^{*}$. Then we have

$$
a=n c a^{2}=n\left(c a^{2}\right)^{*}=n a^{*} a^{*} c^{*}=a n^{*} a^{*} c^{*}=a(c a n)^{*} .
$$

This implies that $a^{*}=$ cana* *. Since $a^{*}=c^{*} m^{*}\left(a^{*}\right)^{2}$, we conclude that $a^{*}=$ cana $^{*}=$ $\operatorname{canc}^{*} m^{*}\left(a^{*}\right)^{2} \in c R\left(a^{*}\right)^{2}$. Furthermore, since $a=n c a^{2}$, we have

$$
\begin{aligned}
a^{*} & =\left(a^{*}\right)^{2} c^{*} n^{*}=a^{*} a^{*} c^{*} n^{*}=\left(a^{*}\right)^{2} a^{*} c^{*} n^{*} c^{*} n^{*} \\
& =\left(a^{*}\right)^{2} \operatorname{canc} m^{*}\left(a^{*}\right)^{2} c^{*} n^{*} c^{*} n^{*} \\
& =\left(a^{*}\right)^{2} \operatorname{canc} c^{*} a^{*} c^{*} n^{*} \in\left(a^{*}\right)^{2} c R,
\end{aligned}
$$

proving a^{*} is left c-group invertible.

3. Strongly clean decompositions for right c-group invertible elements

In this section, we study the strongly clean decompositions of right c-group invertible elements. A ring R is abelian if every idempotent element is central. An element a in a ring R is called clean [8] if $a=e+u$ where $e^{2}=e$ and $u \in U(R)$, and an element a is strongly clean if $a=e+u$ where $e^{2}=e, u \in U(R)$ and $e u=u e$. Note that an element a is strongly regular if and only if there is an idempotent $e \in R$ and $u \in U(R)$ such that $a=e+u$, ae $=e a$ and eae is zero.

Lemma 3.1 An element $a \in R^{\#}$ if and only if $a=u e$, $u e=e u$ for some $u \in U(R)$ and idempotent $e=e^{2}$. In this case, $u=a-1+a^{\#} a$.

Proof If $a \in R^{\#}$, then a is strong regular. By [2, Lemma 3.5], we have $a=u e, u e=e u$ and $u=a-1+a^{\#} a$. Conversely, since $u e=e u$ and $u \in U(R)$, we get

$$
a=u e=\text { ueueu }^{-1}=a^{2} u^{-1} \in a^{2} R, \quad a=u^{-1} \text { eueu }=u^{-1} a^{2} \in R a^{2} .
$$

This implies that $a \in a^{2} R \cap R a^{2}$. Therefore, $a \in R^{\#}$.
The following theorem shows that an element is group invertible if and only if it is both left c-group invertible and right c-group invertible.

Theorem 3.2 Let $a, c \in R$. Then the following statements are equivalent:
(1) $a \in R_{c}^{\#} \cap{ }_{c} R^{\#}$;
(2) $a \in R^{\#}$;
(3) There exist $c \in U(R)$ and $e=e^{2}$ such that $a=c e$ and $c e=e c$.

In this case, $c=a-1+a^{\#} a$ is unique.
Proof (1) \Rightarrow (2). If $a \in R_{c}^{\#} \cap{ }_{c} R^{\#}$, then $a \in R c a^{2} \subseteq R a^{2}$ and $a \in a^{2} c R \subseteq a^{2} R$ by Propositon 2.6 and Corollary 2.7. It follows that $a \in R a^{2} \cap a^{2} R$.
$(2) \Leftrightarrow(3)$ is clear by Lemma 3.1. Since $a^{\#}$ is unique, c is unique.
$(3) \Rightarrow(1)$. Since $a=c e=e c$, we have $R a \subseteq R c$ and $a R \subseteq c R$. Combining with $a \in R^{\#}$, we get $a \in R_{c}^{\#} \cap{ }_{c} R^{\#}$ by Propositon 2.8 and Corollary 2.9.

By Proposition 4.4, Lemma 2.15 and Theorem 3.2, we can give the following corollary immediately which shows the equivalence of right c-group invertible elements and group invertible elements.

Corollary 3.3 If R is a ring with involution and $a^{*}=a$, then $a \in R_{a-1+a^{\#} a}^{\#}$ if and only if $a \in R^{\#}$.

The next result shows the relationship between right c-group invertible elements and strongly clean elements.

Theorem 3.4 Let $a, c \in R$. Then the following statements are equivalent:
(1) $a \in R_{c}^{\#}$;
(2) $a \in R^{\#}$ and there exist $c \in U(R)$ and $f=f^{2}$ such that $a=c+f$ is a strongly clean element.

In this case, $c=a-1+a_{c}^{\#} c a$.
Proof (1) \Rightarrow (2). Since $a \in R_{c}^{\#}$, it is clear that $a \in R^{\#}$ and there is $x \in R$ such that $x c a x=x$. It follows that xcaxca $=x c a$. Let $e=x c a$. Then $e^{2}=e$ is an idempotent element. Since $a=a x c a=x c a^{2}$, we have $a=a e=e a$. Let $c=a-1+x c a$. Then c is a unit since

$$
(a-1+x c a)(x c-1+x c a)=(x c-1+x c a)(a-1+x c a)=1
$$

Therefore, $a=c+1-x c a=c+1-e$. Let $f=1-e$. Then $f^{2}=f=1-e$ is an idempotent element. This implies that $a=c+f$ is a clean element. Since $a=a e=e a$, we have

$$
a f=a(1-e)=a-a e=a-e a=(1-e) a=f a .
$$

It follows that $c f=(a-f) f=a f-f=f a-f=f(a-f)=f c$. Therefore, $a=c+f$ is a strongly clean element.
$(2) \Rightarrow(1)$. Since $a=c+f$ is a strongly clean element, we get $a^{2}=a(c+f)=a c+a f$. Also since $a \in R^{\#}$, there is $y \in R$ such that $a=y a^{2}$. This implies that

$$
a=y(a c+a f)=y a c+y a f=y a c+y a f c^{-1} c=\left(y a+y a f c^{-1}\right) c \in R c
$$

By Proposition 2.8, we get $a \in R_{c}^{\#}$.
Corollary 3.5 Let $a, c \in R$. Then the following statements are equivalent:
(1) $a \in{ }_{c} R^{\#}$;
(2) $a \in R^{\#}$ and there exist $c \in U(R)$ and $e=e^{2}$ such that $a=c+e$ is a strongly clean element.

In this case, $c=a-1+a c_{c} a^{\#}$ and $c^{-1}=c_{c} a^{\#}-1+a c_{c} a^{\#}$.
An element $a \in R^{\#}$ if and only if there is $e^{2}=e \in R$ and $u \in U(R)$ such that $a=e+u$, $a e=e a$ and $e a e=0$. Accordingly, we have the following theorem for $a \in R_{c}^{\#}$.

Theorem 3.6 Let $a, c \in R$. Then the following statements are equivalent:
(1) $a \in R_{c}^{\#}$;
(2) There exist $c \in U(R)$ and $e=e^{2}$ such that $a=e+c$, ec $=c e$ and $a R \cap e R=\{0\}$;
(3) There exist $c \in U(R)$ and $e=e^{2}$ such that $a=e+c, e c=c e$ and $a e=e a=0$.

Proof (1) \Rightarrow (3). Let $c=a-1+a_{c}^{\#} c a$ and $e=1-a_{c}^{\#} c a$. By Theorem 3.4, we have $a e=a-a a_{c}^{\#} c a=a-a_{c}^{\#} c a^{2}=e a=0, a=e+c, e c=c e$.
$(3) \Rightarrow(1)$. Since there exist $c \in U(R)$ and $e=e^{2}$ such that $a=e+c$ and $e c=c e, a$ is strongly clean. Also since $e a=a e=0$, we get $a e=e+c e=e+e c=0$. It follows that

$$
a^{2}=(e+c)^{2}=e+2 e c+c^{2}=e c+c^{2}=(e+c) c=a c
$$

Thus, $a=a^{2} c^{-1} \in a^{2} R$. Analogously, we get $a=c^{-1} a^{2} \in R a^{2}$. Then $a \in R^{\#}$. Therefore, $a \in R_{c}^{\#}$ by Theorem 3.4 again.
$(2) \Rightarrow(3)$. Since $a e=e+c e=e+e c=e a$, we have $a e \in a R \cap e R=\{0\}$. Thus, $a e=0=e a$.
$(3) \Rightarrow(2)$. Let $x \in a R \cap e R$. Then there exist $s, t \in R$ such that $x=a s=e t$. It follows that $e x=e a s=0$ since $e a=0$. Thus, $x=e t=e x=0$. Then $a R \cap e R=\{0\}$.

We conclude this section by showing a particularly nice behaviour of the uniqueness of right c-group inverse on abelian rings.

Proposition 3.7 Let $c \in R$. Then every right c-group invertible element of R has a unique right c-group inverse if and only if R is abelian.

Proof If R is abelian and $a \in R$ is right c-group invertible, then there exist $x, y \in R$ such that $a=a x c a=a y c a, x c a x=x$ and $y c a=a y c$ with $x \neq y$. Since $c a x$ is an idempotent element, it follows that

$$
x=x c a x=x c a y c a x=x c a a y c x=a y c x=y c a x=c a x y .
$$

Moreover, because $a x c, c a x$ and $y c a$ are idempotent elements, we also have

$$
\begin{aligned}
y & =y c a x c a y=(a y c) a x c y=(a x c) y a y c=y a y c a x c \\
& =c a x y a y c=\operatorname{caxy}(y c a)=c a x y c a y=c a x y=x
\end{aligned}
$$

Therefore, every right c-group invertible element has a unique right c-group inverse in an abelian ring.

Conversely, suppose that every right c-group invertible element of R has a unique right c group inverse. If R is not abelian, then there is $e^{2}=e \in R$ such that e is not central. Then $e x \neq x e$ for some $x \in R$, and thus $e x(1-e) \neq 0$. This implies that $e \neq e+e x(1-e)$. Let $c=e$. Then e is right e-group invertible with a right e-group inverse e. Moreover, we have

$$
\begin{gathered}
(e+e x(1-e)) e(e+e x(1-e))=e+e x(1-e), \\
e(e+e x(1-e)) e=e=(e+e x(1-e)) e
\end{gathered}
$$

This shows that $e+e x(1-e)$ is also a right e-group inverse of e, a contradiction.

4. Relationships of various generalized inverses

In this section, we investigate the relationships between right c-group inverses and other various generalized inverses including group inverses, Moore-Penrose inverses, core inverses, dual
core inverses, one-sided (b, c)-inverses and (b, c)-inverses. Some work has already been done in this topic (for example, see [3]). We start with the following result which shows that $a \in R^{\#} \cap R^{\dagger}$ implies $a \in R_{a a \#}^{\#} \cap_{a a \#} R^{\#}$ under some conditions.

Theorem 4.1 Let $a \in R$. Then the following statements are equivalent:
(1) $a \in R^{\#} \cap R^{\dagger}$;
(2) There exist $x, y \in R$ such that x is a right aa ${ }^{\#}$-group inverse of a, y is a left $a a^{\#}$-group inverse of a and $a x$, $y a$ are projections.

Proof $(1) \Rightarrow(2)$. If $a \in R^{\#} \cap R^{\dagger}$, then $a^{\#}$ and a^{\dagger} exist. Let $x=a^{\#} a a^{\dagger}$. Then we have

$$
\begin{gathered}
x a a^{\#} a x=a^{\#} a a^{\dagger} a a^{\#} a a^{\#} a a^{\dagger}=a^{\#} a a^{\dagger}=x, \\
a x a a^{\#} a=a a^{\#} a a^{\dagger} a a^{\#} a=a, \quad x a a^{\#} a=a^{\#} a a^{\dagger} a a^{\#} a=a^{\#} a, \\
a x a a^{\#}=a a^{\#} a a^{\dagger} a a^{\#}=a a^{\#}=a^{\#} a .
\end{gathered}
$$

This implies that x is a right $a a^{\#}$-group inverse of a. Since $a x=a a^{\#} a a^{\dagger}=a a^{\dagger}$ and $a x a x=$ $a a^{\dagger} a a^{\dagger}=a a^{\dagger}=a x$, it follows that $a x$ is a projection. Similarly, if we let $y=a^{\dagger} a a^{\#}$, then

$$
a a a^{\#} y a=a a a^{\#} a^{\dagger} a a^{\#} a=a, y a a a^{\#} y=y, a a^{\#} y a=a a a^{\#} y .
$$

This shows that y is a left $a a^{\#}$-group inverse of a. Since $y a=a^{\dagger} a a^{\#} a=a^{\dagger} a$ and $y a y a=y a, y a$ is also a projection.
$(2) \Rightarrow(1)$. If x is a right $a a^{\#}$-group inverse of a, then $a=a x a a^{\#} a=a x a$. Also, if y is a left $a a^{\#}$-group inverse of a, then $a=a a a^{\#} y a=a y a$. Combining with $(a x)^{*}=a x$ and $(y a)^{*}=y a$, we have $a \in R^{\dagger}$ by [9, Lemma 2.18]. Therefore, $a \in R^{\#} \cap R^{\dagger}$.

Proposition 4.2 If $a \in R^{\dagger}$, then the following statements are equivalent:
(1) $a \in R^{E P}$;
(2) There is $x \in R$ such that x is a right $a a^{\dagger}$-group inverse of a with $x a=a x$.

Proof (1) $\Rightarrow(2)$. Since $a \in R^{E P}, a a^{\dagger}=a^{\dagger} a$. Let $x=a^{\dagger}$. Then we have $x a=a x$ and

$$
\begin{gathered}
x a a^{\dagger} a x=a^{\dagger} a a^{\dagger}=a^{\dagger}=x, \quad a x a a^{\dagger} a=a, \\
x a a^{\dagger} a=x a=a^{\dagger} a=a a^{\dagger}=a x a a^{\dagger} .
\end{gathered}
$$

Therefore, we deduce that x is a right $a a^{\dagger}$-group inverse of a.
$(2) \Rightarrow(1)$. If x is a right $a a^{\dagger}$-group inverse of a such that $a x=x a$, then we have

$$
a x a a^{\dagger}=x a a^{\dagger} a=x a, a=a x\left(a a^{\dagger}\right) a=a x a, x a a^{\dagger} a x=x a x=x
$$

This implies that x is the group inverse of a and $x a=a a^{\dagger}$. Therefore, $a^{\#} a=a a^{\dagger}$, that is, $a \in R^{E P}$ 。

Corollary 4.3 Let $a \in R$. If $a \in R_{a a^{\dagger}}^{\#} \cap_{a a^{\dagger}} R^{\#}$ such that $a_{a a^{\dagger}}^{\#}={ }_{a a^{\dagger}} a^{\#}$, then a is an EP element.
Proof Since $a_{a a^{\dagger}}^{\#}={ }_{a a^{\dagger}} a^{\#}$, there exists $x \in R$ such that $x=a_{a a^{\dagger}}^{\#}={ }_{a a^{\dagger}} a^{\#}$. Then we have

$$
a=a x a a^{\dagger} a=a x a, \quad x=x a a^{\dagger} a x=x a x
$$

$$
a x a a^{\dagger}=x a a^{\dagger} a=x a, \quad a a^{\dagger} x a=a a a^{\dagger} x=a^{2} a^{\dagger} x
$$

It follows that $x a=a x a a^{\dagger}=a a^{\dagger}$, thus $a^{2} a^{\dagger}=a x a=a$ and $a a^{\dagger} x a=a a^{\dagger}$. Then $a^{2} a^{\dagger} x=a x=$ $a a^{\dagger}$. Hence, $a x=a a^{\dagger}=x a$. It follows that a is an EP element by Proposition 4.2.

If $a^{*}=a$, then the next proposition shows that a being right c-group invertible implies the EP property of a.

Proposition 4.4 If $a=a^{*}$, then a is $E P$ if and only if there is $c \in R$ such that a is right c-group invertible. In this case, $c=a a^{\#}=a a^{\dagger}=a a^{\oplus}=a a_{\oplus}$.

Proof If a is EP, then a is right $a a^{\dagger}$-group invertible by Proposition 4.2. Let $c=a a^{\#}=a a^{\dagger}=$ $a a^{\oplus}=a a_{\oplus} \in R$. Then a is right c-group invertible. Conversely, if a is right c-group invertible, then there is $x \in R$ such that $a x c=x c a$ and $x c a x=x$. Since $a^{*}=a$, we have $(a x c)^{*}=(x c)^{*} a=$ $(x c a)^{*}=a(x c)^{*}$. It follows that $\left[a(x c)^{*} x c\right]^{*}=a(x c)^{*} x c=(x c)^{*} x c a$. Since $a=a x c a=x c a^{2}$, we have $a(x c)^{*} x c a=(x c)^{*} x c a^{2}=(x c)^{*} a$. Then $\left[(x c)^{*} a\right]^{*}=(x c)^{*} a=a x c=x c a$. Therefore, we have $(x c)^{*} a(x c)=x c a x c=x c$. Thus $(x c)^{*}=x c$. Let $z=x c$. Then we have

$$
\begin{gathered}
(z a)^{*}=(x c a)^{*}=a x c=x c a=z a, \quad(a z)^{*}=(a x c)^{*}=x c a=a x c=a z, \\
a z a=a, \quad z a z=z .
\end{gathered}
$$

Therefore, $z=a^{\dagger}$. Moreover, it is clear that $x c$ is the group inverse of a. Then $a \in R^{\#} \cap R^{\dagger}$ and $x c=a^{\#}=a^{\dagger}$, that is, a is EP.

Corollary 4.5 Let $a \in R$ such that $a=a^{*}$. Then a is EP if and only if there is $c \in R$ such that a is left c-group invertible. In this case, $c=a a^{\#}=a a^{\dagger}=a a^{\oplus}=a a_{\oplus}$.

Proposition 4.4 together with Corollary 4.5 implies the following corollary valid in the rings with an involution.

Corollary 4.6 Let $a \in R$ such that $a=a^{*}$. Then there is $c \in R$ such that $a \in R_{c}^{\#}$ if and only if $a \in{ }_{c} R^{\#}$.

When $a^{*}=a$ and $c=a a^{\dagger}$, we next show that $a \in R^{E P}$ is equivalent to $a \in R_{c}^{\#} \cap_{c} R^{\#}$.
Proposition 4.7 If $a^{*}=a$, then a is an EP element if and only if $a \in R_{a a^{\dagger}}^{\#} \cap_{a a^{\dagger}} R^{\#}$. In this case, a^{\dagger} is both a left $a a^{\dagger}$-group inverse of a and a right $a a^{\dagger}$-group inverse of a.

Proof If $a \in R^{E P}$, then a is right $a a^{\dagger}$-group invertible by Proposition 4.2. Let x be a right $a a^{\dagger}$-group inverse of a. Then we have

$$
\begin{gathered}
a x a a^{\dagger} a=a x a=a, \quad x a a^{\dagger} a x=x a x=x, \\
x a a^{\dagger} a=x a=a x a a^{\dagger} .
\end{gathered}
$$

Hence $x a=a a^{\dagger}$ and $a=x a^{2}$. Since $a^{*}=a$ and $a \in R_{a a^{\dagger}}^{\#}$, we conclude that a is left $a a^{\dagger}$ group invertible by Lemma 2.15. Suppose that $y \in R$ is a left $a a^{\dagger}$-group inverse of a. Then $a=a a a^{\dagger} y a$ and $a a^{\dagger} y a=a a a^{\dagger} y=a y$ since a is an EP element. Thus $a=a^{2} y$. This implies that $a=a^{2} y=a^{2}\left(a a^{\dagger}\right) y=\left(a a^{\dagger}\right) x a^{2}$. By Corollary 2.7, we get $x a y=x a a^{\dagger} x a=a a^{\dagger} a^{\dagger} a a^{\dagger}=a^{\dagger}$.

Therefore, a^{\dagger} is a left $a a^{\dagger}$-group inverse of a. Also since

$$
a=a^{2} y=a^{2} y\left(a a^{\dagger}\right)=x a^{2}=x\left(a a^{\dagger}\right) a^{2}
$$

we have $x a y$ is also a right $a a^{\dagger}$-group inverse of a by Proposition 2.6. This implies that $a \in$ $R_{a a^{\dagger}}^{\#} \cap a a^{\dagger} R^{\#}$ and a^{\dagger} is both a left $a a^{\dagger}$-group inverse of a and a right $a a^{\dagger}$-group inverse of a. Conversely, since $a \in R_{a a^{\dagger}}^{\#} \cap_{a a^{\dagger}} R^{\#}, a$ is an EP element by Proposition 4.4 and Corollary 4.5.

We need the following lemma, which is closely related to EP elements and has been investigated in [3, Theorem 3.1].

Lemma 4.8 Let $a \in R^{\#} \cap R^{\dagger}$. Then:
(1) a is EP if and only if $a^{\#}=a^{\dagger}=a^{\oplus}=a_{\oplus}$;
(2) a is EP if and only if $a a^{\#}=a a^{\dagger}=a a^{\oplus}=a a_{\oplus}$.

If $c=a a^{\dagger}$, then the following theorem not only gives a new characterization of EP elements, but also reveals the relations between $a^{\#}, a^{\dagger}, a^{\oplus}, a_{\oplus}, a_{c}^{\#},{ }_{c} a^{\#}$ and EP elements.

Theorem 4.9 Let $a \in R^{\dagger}$ and $a^{*}=a$. Then the following statements are equivalent:
(1) $a \in R^{E P}$;
(2) $a \in R^{\#} \cap_{a a^{\dagger}} R^{\#}$ and $a^{\#}$ is a left $a a^{\dagger}$-group inverse of a;
(3) $a \in R^{\#} \cap R_{a a^{\dagger}}^{\#}$ and $a^{\#}$ is a right a a^{\dagger}-group inverse of a;
(4) $a \in R^{\oplus} \cap a_{a} R^{\#}$ and a^{\oplus} is a left aa a^{\dagger}-group inverse of a;
(5) $a \in R_{\oplus} \cap R_{a a^{\dagger}}^{\#}$ and a_{\oplus} is a right a a^{\dagger}-group inverse of a;
(6) $a \in R^{\#} \cap R^{\dagger}$ and a^{\dagger} is a left a a^{\dagger}-group inverse of a;
(7) $a \in R^{\#} \cap R^{\dagger}$ and a^{\dagger} is a right a a^{\dagger}-group inverse of a;
(8) $a \in R^{\#} \cap R^{\dagger}$ and $a \in R_{a a^{\dagger}}^{\#} \cap a a^{\dagger} R^{\#}$.

Proof $(1) \Leftrightarrow(8)$ is clear by Proposition 4.7.
$(1) \Rightarrow(2)-(7)$. Since $a \in R^{E P}, a^{\dagger}$ is both a left $a a^{\dagger}$-group inverse of a and a right $a a^{\dagger}-$ group inverse of a by Proposition 4.7. By Lemma 4.8, we get $a^{\dagger}=a^{\oplus}=a_{\oplus}=a^{\#}$. The other implications are clear by Proposition 4.7 and [3, Theorem 3.1].
$(7) \Rightarrow(1)$. Since a^{\dagger} is a right $a a^{\dagger}$-group inverse of $a, a^{\dagger} a a^{\dagger}=a^{\dagger}$ is the group inverse of a, we deduce that $a^{\dagger}=a^{\#}$. Hence $a \in R^{E P}$.
$(6) \Rightarrow(1)$. Since a^{\dagger} is a left $a a^{\dagger}$-group inverse of $a, a a^{\dagger} a^{\dagger}$ is the group inverse of a. Thus $a a^{\dagger} a^{\dagger}=a^{\#}$. It follows that $\left(a^{\#}\right)^{*}=\left(a^{\dagger}\right)^{*} a a^{\dagger}$, thus $\left(a^{\#}\right)^{*} a=\left(a^{\dagger}\right)^{*} a$. Since $a^{*}=a$, we get $a a^{\#}=a a^{\dagger}$. By Lemma 4.8, we get $a \in R^{E P}$.
$(5) \Rightarrow(1)$. Since $a \in R_{a a^{\dagger}}^{\#}, a$ is group invertible. Combining with $a \in R^{\dagger}$, we have $a \in$ $R^{\#} \cap R^{\dagger}$. If $a_{\text {® }}$ is a right $a a^{\dagger}$-group inverse of a, then $a_{\oplus} a a^{\dagger}=a^{\#}$. Therefore, $a a^{\dagger}=a a^{\#}$, that is, $a \in R^{E P}$.
$(4) \Rightarrow(1)$. If a^{\oplus} is a left $a a^{\dagger}$-group inverse of a, then $a a^{\dagger} a^{\oplus}=a^{\#}$. Since $a^{*}=a$, we deduce that $\left(a a^{\#}\right)^{*}=\left[a\left(a a^{\dagger}\right) a^{\oplus}\right]^{*}=\left(a^{\oplus}\right)^{*} a a^{\dagger} a=\left(a^{\oplus}\right)^{*} a=\left(a a^{\oplus}\right)^{*}$. Thus $a a^{\#}=a a^{\oplus}$, that is, $a \in R^{E P}$ by Lemma 4.8.
$(3) \Rightarrow(1)$. If $a^{\#}$ is a right $a a^{\dagger}$-group inverse of a, then $a^{\#} a a^{\dagger}=a^{\#}$. It follows that $a a^{\#}=a a^{\dagger}$, thus $a \in R^{E P}$.
$(2) \Rightarrow(1)$. If $a^{\#}$ is a left $a a^{\dagger}$-group inverse of a, then $a a^{\dagger} a^{\#}=a^{\#}=\left(a a^{\dagger}\right)^{*} a^{\#}=\left(a^{\dagger}\right)^{*} a a^{\#}$. Therefore, $a a^{\#}=a^{\#} a=\left(a^{\dagger}\right)^{*} a=a a^{\dagger}$ since $a^{*}=a$, that is, $a \in R^{E P}$.

Now, we study the relationship between right c-group inverses and one-sided (b, c)-inverses.
Proposition 4.10 Let $a, c \in R$ such that $a=a^{*}$. Then a is right c-group invertible if and only if a is left (a, c)-invertible and $R a \subseteq R c$.

Proof Since a is right c-group invertible, there is $y \in R$ such that $a=a^{2} y c \in R c$ and $a=$ $y c a^{2} \in R c a^{2}$. This implies that a is left (a, c)-invertible. Conversely, if a is left (a, c)-invertible, then there is $x \in R$ such that $a=x c a^{2} \in R a^{2}$. It follows that $a=a^{2}(x c)^{*} \in a^{2} R$ since $a^{*}=a$. Therefore, $a \in R a^{2} \cap a^{2} R$, that is, $a \in R^{\#}$. Since $R a \subseteq R c, a$ is right c-group invertible by Proposition 2.8.

Corollary 4.11 Let $a, c \in R$ such that $a=a^{*}$. Then a is left c-group invertible if and only if a is right (c, a)-invertible and $a R \subseteq c R$.

In particular, we have the following corollary which is related to (b, c)-inverses.
Corollary 4.12 If $a \in R$ such that $a=a^{*}$, then the following statements are equivalent:
(1) a is right (resp., left) a-group invertible;
(2) a is (a, a)-invertible;
(3) $a \in R^{\#}$.

Over a directly finite ring R, the following proposition shows that 1 may be the unique right c-group inverse of a for some $a, c \in R$.

Proposition 4.13 Let $a, c \in R$. Then the following statements are equivalent:
(1) R is a directly finite ring;
(2) If $a c=1$, then 1 is the unique right c-group inverse of a;

Proof $(1) \Rightarrow(2)$. If $a c=1$, then $c a=1$ since R is directly finite. Therefore, we have

$$
a=a(c a) c a, c a=c a c a c a, c a c a=a c a c=1 .
$$

This implies that $c a=1$ is a right c-group inverse of a. Let any $x \in R$ such that x is a right c-group inverse of a. Then we have $a=a x c a=a x$. Since $a c=c a=1$, we have $a \in U(R)$. It follows that $x=1$, and thus 1 is the unique right c-group inverse of a.
$(2) \Rightarrow(1)$. It suffices to show $c a=1$. In fact, since 1 is the unique right c-group inverse of a, we have $c a=(1 c) a=a(1 c)=a c=1$, as desired.

We conclude this section by giving a new characterization of directly finite rings.
Theorem 4.14 Let $a, c \in R$. Then the following statements are equivalent:
(1) R is a directly finite ring;
(2) If $a c=1$, then $a_{c}^{\#}=c_{a}^{\#}$.

Proof $(1) \Rightarrow(2)$. If R is a directly finite ring and $a c=1$, then 1 is the unique right c-group inverse of a by Proposition 4.13. Moreover, since $c a=a c=1,1$ is also the unique right a-group inverse of c again by Proposition 4.13. Therefore, we have $a_{c}^{\#}=c_{a}^{\#}=1$.
$(2) \Rightarrow(1)$. Let $x \in R$ be a right c-group inverse of a. Since $a_{c}^{\#}=c_{a}^{\#}$ and $a c=1$, we have $a x c=x c a, c x a=x$. Therefore, we get $c x a c=c x=x c$. Then $a x c a=a c x a=x a=a$, and hence $x a c=a c=1$. This implies that $c a=c x a=x a c=1$.

References

[1] M. P. DRAZIN. Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly, 1958, 65(7): 506-514.
[2] Cang WU, Liang ZHAO. Central drazin inverses. J. Algebra Appl., 2019, 18(4): 1950065.
[3] D. S. RAKIĆ, N. Č. DINČIĆ, et al. Group, moore-penrose, core and dual core inverse in rings with involution. Linear Algebra Appl., 2014, 463: 115-133.
[4] M. P. DRAZIN. A class of outer generalized inverses. Linear Algebra Appl., 2012, 436(7): 1909-1923.
[5] J. J. KOLIHA, D. DJORDJEVIĆ, D. CVETKOVIĆ. Moore-penrose inverse in rings with involution. Linear Algebra Appl., 2007, 426(2-3): 371-381.
[6] M. P. DRAZIN. Left and right generalized inverses. Linear Algebra Appl., 2016, 510: 64-78.
[7] Ruju ZHAO, Hua YAO, Long WANG, et al. Some characterizations of right c-regularity and (b, c)-inverse. Turkish J. Math., 2018, 42(6): 3078-3089.
[8] W. K. NICHOLSON. Strongly clean rings and fitting's lemma. Comm. Algebra, 1999, 27(8): 3583-3592.
[9] Huihui ZHU, Jianlong CHEN, P. PATRÍCIO. Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra, 2015, 64(3): 393-403.

[^0]: Received December 9, 2021; Accepted May 8, 2022
 Supported by the National Natural Science Foundation of China (Grant No. 12161049).

 * Corresponding author

 E-mail address: lzhao@ahut.edu.cn (Liang ZHAO)

