Journal of Mathematical Research with Applications Jan., 2023, Vol. 43, No. 1, pp. 74–82 DOI:10.3770/j.issn:2095-2651.2023.01.008 Http://jmre.dlut.edu.cn

Finite Groups with Some c_p -Supplemented Subgroups

Yubo LV^1 , Yangming $LI^{2,*}$

School of Mathematical Sciences, Guizhou Normal University, Guizhou 550001, P. R. China;
School of Mathematics, Guangdong University of Education, Guangdong 510310, P. R. China

Abstract Let H be a subgroup of a finite group G and p a prime divisor dividing the order of G. We say H is c_p -supplemented in G if there exists a supplement T to H in G containing H_G such that $H \cap T/H_G$ is a p'-group, where H_G is the core of H in G. A CS_p -group is a group in which every p-subgroup is c_p -supplemented. In this paper, we characterize the p-solvability and p-supersolvability of groups G with some certain p-subgroups being c_p -supplemented. Furthermore, we give some equivalent conditions of CS_p -group in p-solvable universe. Finally, we give some criteria of CS_p -groups for the direct product of two CS_p -groups. Our results extend some recent conclusions.

Keywords c-supplemented subgroup; c_p -normal subgroup; c_p -supplemented subgroup; CS_p -group; p-supersolvable group

MR(2020) Subject Classification 20D15; 20D20; 20D40

1. Introduction

In this paper, all groups are assumed to be finite. The symbol G always means a group. For convenience, we denote by |G| the order of group G, $\pi(G)$ the set of prime divisors dividing |G|and $\operatorname{Exp}(G)$ the exponent of G. For some fixed $p \in \pi(G)$, G_p stands for the Sylow *p*-subgroup of G meanwhile $G_{p'}$ stands for the Hall p'-subgroup of G. Further, we denote by $\operatorname{Syl}_p(G)$ the set of all Sylow *p*-subgroups of G. Other unspecified notions and natation are standard as in [1, 2].

As a generalization of normality, a subgroup H of G is called a c-normal subgroup of G if G = HT and $H \cap T \leq H_G$ (see [3]), where T is a normal subgroup of G and H_G is the core of H in G. There are many extensions of c-normality, a subgroup H is called c-supplemented in G if G = HT and $H \cap T \leq H_G$ for which T is a subgroup of G and H_G is the core of H in G (see [4]). Following Li et al.[5], G is called a CN-group if all of whose subgroups are c-normal. In [4], G is called a c-supplemented group if all of whose subgroups are c-supplemented. Recently, many results involving the structure of a CN-group or c-supplemented group are investigated [5–7].

On the other hand, the authors in [8] extended the *c*-normality from a quantitative aspect: a subgroup *H* is said to be c_p -normal in *G* if there exists a normal supplement *T* to *H* in *G* such that $H_G \leq T$ and $H \cap T/H_G$ is a p'-group, where $p \in \pi(G)$. *G* is called a CN_p -group

Received February 24, 2022; Accepted June 26, 2022

Supported by the National Natural Science Foundation of China (Grant No. 12071092) and the Science and Technology Program of Guangzhou Municipality (Grant No. 201804010088).

^{*} Corresponding author

E-mail address: liyangming@gdei.edu.cn (Yangming LI)

if all of whose p-subgroups are c_p -normal. Following this idea, we can extend the concepts of c-supplemented subgroup and CN_p -group:

Definition 1.1 Let $p \in \pi(G)$ be a fixed prime and let H be a subgroup of G.

(1) *H* is said to be c_p -supplemented in *G* if G = HT and $H \cap T/H_G$ is a p'-group, where $H_G \leq T \leq G$. We also call *T* the c_p -supplement to *H* in *G*;

(2) G is said to be a CS_p -group if all of whose p-subgroups are c_p -supplemented in G.

Obviously, a *c*-supplemented subgroup or a c_p -normal subgroup is c_p -supplemented and a CN_p -group or a *c*-supplemented group is a CS_p -group, but the converse is not true in general, see Examples 1.2–1.4.

Example 1.2 Let $G = A_5 = \langle (1,2,3), (1,2,4), (1,2,5) \rangle$ and $H = \langle (1,2)(3,4), (2,3)(4,5) \rangle \cong D_{10}$. Then $H_G = 1$ and H has proper supplemented subgroups T_i (i = 1,2,3,4,5) in G, where $T_1 = \langle (3,4,5), (2,4)(3,5) \rangle$, $T_2 = \langle (1,4,5), (1,4)(3,5) \rangle$, $T_3 = \langle (2,3,4), (1,3)(2,4) \rangle$, $T_4 = \langle (1,2,3), (1,3)(2,5) \rangle$, $T_5 = \langle (1,2,5), (1,4)(2,5) \rangle$. Note that $H \cap T_i \cong C_2$ (i = 1,2,3,4,5), so H is c_5 -supplemented in G but H is neither c-supplemented nor c_5 -normal in G.

Example 1.3 Let $G = S_4$, the symmetric group of degree 4. It is well known that every element in $\text{Syl}_2(G)$ and $\text{Syl}_3(G)$ is not normal in G. Let p = 3. Clearly, G is a CS_3 -group. Let $H \in \text{Syl}_3(G)$. Assume that H is c-normal in G. Then there is a $T \in \text{Syl}_2(G)$ and $T \trianglelefteq G$ such that G = HT and $H \cap T = 1$. The contradiction indicates that G is not a CN_3 -group.

Example 1.4 Let $G = A_4$, the alternating group of degree 4. Let p = 3. Then every 3-subgroup of G is c-supplemented, so G is a CS_3 -group. Let $C_2 \cong H \leq G$. Then H is not c-supplemented in G since G has no subgroup of order 6. So G is not a c-supplemented group.

Remark 1.5 In [8], the authors obtained some results about *p*-solvable groups under the assumption of some maximal subgroups being c_p -normal, for example, a group *G* is *p*-solvable if and only if in which every maximal subgroup of *G* is c_p -normal in *G* (see [8, Corollary 3.3]). But the following two simple groups indicate we cannot weaken the condition to c_p -supplemented subgroup.

Example 1.6 (1) Let $G = A_5$ be the alternating group of degree 5. Clearly, every subgroup of G is c_5 -supplemented in G.

(2) Let G = PSL(3, 2) be the simple group of order 168. Note that all maximal subgroups of G are complemented. Then they are c_2 -supplemented in G.

In Section 2, we first give some elementary properties of c_p -supplemented subgroup and then some preliminary results we need. In Section 3, we first discuss the structure of G with some minimal subgroups c_p -supplemented (or, c-supplemented), then characterize the structure of CS_p -groups and give some criteria for a group to be a CS_p -group. Many of our results may be regarded as the generalizations of results in [5, 7, 8] in p-solvable universe.

2. Preliminaries

In this section, we give some basic results which are essential in the sequel.

Lemma 2.1 Let G be a group and $p \in \pi(G)$ be a fixed prime. Let N, H, K be subgroups of G.

(1) If $H \leq K$ and H is c_p -supplemented in G, then H is c_p -supplemented in K.

(2) Assume that N is normal in G and $N \leq H$. Then H is c_p -supplemented in G if and only if H/N is c_p -supplemented in G/N.

(3) If H is a c-supplemented subgroup of G, then H is c_q -supplemented in G for every $q \in \pi(G)$.

(4) If H is a p-group, then H is c-supplemented in G if and only if H is c_p -supplemented in G.

(5) Assume that N is a normal p'-subgroup of G and H is a c_p -supplemented p-subgroup of G. Then HN/N is c_p -supplemented in G/N.

(6) Let $P \in Syl_p(G)$. Then P is complemented in G if and only if P is c_p -supplemented in G.

(7) Let $M \leq G$ and $H \leq \Phi(M)$. If H is a c_p -supplemented p-subgroup of G, then $H \leq G$ and $H \leq \Phi(G)$.

Proof (1) Assume that H is c_p -supplemented in G and T is a c_p -supplement to H in G. Then $H \cap T/H_G$ is a p'-group. Note that $K = H(T \cap K)$. Now we have

$$K = HH_K(T \cap K) = H(H_KT \cap K) = H(T_0 \cap K),$$

where $T_0 = H_K T$. Furthermore, $H_K \leq T_0 \cap K$ and $H \cap (T_0 \cap K)/H_K = (H_K T \cap H)/H_K = (H \cap T)H_K/H_K \cong (H \cap T)/(H_K \cap T)$. Since $H_G \leq K$ and $H_G \cap T \leq H_K \cap T$, it follows that $H_G = H_G \cap T \leq H_K \cap T$. So $(H \cap T)/(H_K \cap T) \leq (H \cap T)/(H_G \cap T) = (H \cap T)/H_G$ is a p'-group. Therefore, $H \cap (K \cap T_0)/H_K$ is a p'-group, that is, H is c_p -supplemented in K.

(2) Assume first that H is c_p -supplemented in G and T is a c_p -supplement to H in G. Then $H \cap T/H_G$ is a p'-group. Note that $G/N = H/N \cdot T/N$ and $(H/N \cap T/N)/(H/N)_{(G/N)} = ((H \cap T)/N)/(H_G/N) \cong (H \cap T)/H_G$ is a p'-group. Therefore, H/N is c_p -supplemented in G/N.

Conversely, let $(H/N)_{G/N} \leq T/N \leq G/N$ such that $G/N = H/N \cdot T/N$ and $((H/N) \cap (T/N))/(H/N)_{(G/N)}$ is a p'-group. Then G = HT and $H_G \leq T$. Since

$$((H/N) \cap (T/N))/(H/N)_{G/N} = ((H \cap T)/N)/(H_G/N) \cong H \cap T/H_G,$$

 $H \cap T/H_G$ is a p'-group. Hence H is c_p -supplemented in G.

(3) Assume that H is c-supplemented in G. There then exists a supplement T to H in G such that $H \cap T \leq H_G$. Denote $T_0 = TH_G$, then $G = HT_0$ and $H_G \leq T_0$. Note that

$$H \cap T_0/H_G = H \cap H_G T/H_G = (H \cap T)H_G/H_G = 1,$$

so H is c_q -supplemented in G for any $q \in \pi(G)$.

(4) If H is c-supplemented in G, then H is c_p -supplemented in G by (3). Now assume that H is c_p -supplemented in G. Then there exists a subgroup $H_G \leq T$ such that G = HT and

76

 $H \cap T/H_G$ is a p'-group, so $H \cap T = H_G$ since H is a p-group. We have H is c-supplemented in G.

(5) It follows from (4) and [4, Lemma 2.1(3)].

(6) If P is complemented in G, then P is c-supplemented in G. So P is c_p -supplemented in G by (4). Now if P is c_p -supplemented in G, then we have a subgroup $P_G \leq T$ of G such that G = PT and $P \cap T/P_G$ is a p'-group. So $P \cap T = P_G$. Note that

$$|G:P| = |PT:P| = |T:P \cap T| = |T:P_G|,$$

thus $P_G \in \text{Syl}_p(T)$. Now by Schur-Zassenhaus Theorem, $T = P_G T_{p'}$. So $G = PT = PP_G T_{p'} = PT_{p'}$, P is complemented in G.

(7) It follows from [4, Lemma 2.1(4)] and (4). \Box

Lemma 2.2 ([9, Lemma 2.6], [10, Lemma 2.9]) Let G be a group and let $P \in \text{Syl}_p(G)$, where $p = \min \pi(G)$. Then G is p-nilpotent if every cyclic subgroup of P of order p and 4 (if p = 2) is c-supplemented in G.

Lemma 2.3 ([1]) Let $p \in \pi(G)$. Then G is p-nilpotent if each element of G of order p lies in Z(G) and in addition, each element of G of order 4 still lies in Z(G) when p = 2.

As a special case of [11, Lemma 2.4], we have

Lemma 2.4 Let N be a minimal normal p-subgroup of a group G. Then |N| = p if N has a subgroup H such that |H| = p and H is c-supplemented in G.

Lemma 2.5 ([7, Corollary 3.1]) Assume that P is a c-supplemented 2-group. Then $|P : C_P(\Phi(P))| \leq 2$.

Lemma 2.6 ([7, Theorem 3.5]) Let G be a c-supplemented p-group and $a \in G$. If p > 2, then $g^a = g$ for any $g \in \Phi(G)$. If p = 2, then either $g^a = g$ for any $g \in \Phi(G)$ or $g^a = g^{-1}$ for any $g \in \Phi(G)$.

Recall that G is a p-complemented group if every p-subgroup of G is complemented [8].

Lemma 2.7 ([8, Lemma 2.8]) Assume that G is a p-solvable group for some prime $p \in \pi(G)$. Then G is a p-complemented group if and only if G is p-supersolvable and every Sylow p-subgroup of G is elementary abelian.

Lemma 2.8 Let G be a p-solvable group. Then G has a Hall p'-subgroup, say $G_{p'}$. In addition, if $G_{p'}$ is solvable, then G is solvable.

Proof Since G is p-solvable, then G is p-separable. Hence G is p'-separable. By [2, Theorem 3.5], G possesses a Hall p'-subgroup $G_{p'}$.

Note that every chief factor of G is either an elementary abelian p-group or a p'-group. If $G_{p'}$ is solvable, then every non-p-chief factor of G is an elementary abelian q-group for some $q \in \pi(G)$. So G is solvable. \Box

3. Main results

In the literature, people usually assume that $p = \min \pi(G)$ to obtain the *p*-nilpotence or *p*-solvability of *G*, here we extend this discussion to the second minimal prime in $\pi(G)$.

Theorem 3.1 Let G be a group and $\pi(G) = \{p_1, p_2, \ldots, p_n\}$ with $p_n > \cdots > p_2 > p_1$. If every subgroup of G of order p and 4 (if p = 2) is c_p -supplemented (c-supplemented) in G, then G is p-solvable, where $p \in \{p_1, p_2\}$.

Proof If $p = p_1$, by Lemma 2.2, obviously, G is p-solvable. Henceforth we may assume that $p = p_2$ is odd. Let K < G. If $p_1 \notin \pi(K)$ or $p_1 \in \pi(K)$ and $p \notin \pi(K)$, obviously, K is p-solvable. If $\{p_1, p\} \subseteq \pi(K)$, then by Lemma 2.1, K satisfies our hypothesis. Hence K is p-solvable by induction. Therefore, we may suppose that G is a non-p-solvable group all of whose proper subgroups are p-solvable. Pick $H \leq G$ and |H| = p. By hypothesis, H is either normal in G or complemented in G. Assume that G has a complemented subgroup H with order p. Then G = HT and $H \cap T = 1$ for some $T \leq G$. So |G : T| = p and $G/T_G \leq S_p$. Thus G/T_G is solvable since $|G/T_G| = p_1^{\alpha} p_2^{\beta}$ for which α, β are nonnegative integers. If $T_G > 1$, then T_G is p-solvable. It follows that G is p-solvable, a contradiction. If $T_G = 1$, obviously, G is p-solvable, a contradiction again. This implies that every subgroup of G of order p is normal in G. Now assume that G has a subgroup H of order prime p such that $H \notin Z(G)$. Then $C_G(H) < G$ and $G/C_G(H)$ is solvable. It follows that G is p-solvable, a contradiction. Therefore, we may assume that Z(G) contains every subgroup of G of order p. By Lemma 2.3, G is p-nilpotent, contrary to the choice of G. \Box

Theorem 3.2 Let G be a group and $\pi(G) = \{p_1, p_2, \ldots, p_n\}$ with $p_n > \cdots > p_2 > p_1$. Assume that G is a CS_p -group for which $p = \min(\pi(G) \setminus \{r\})$. Then G is p-supersolvable and $\Phi(G)_p = \Phi(G_p)$.

Proof Clearly, G is a p-solvable group by Theorem 3.1. Let N be a minimal normal subgroup of G. We have N is either an elementary abelian p-group or a p'-group. It follows from Lemma 2.1 that G/N inherits our conditions, therefore, G/N is p-supersolvable. Hence we may assume N is unique and N is an elementary abelian p-group. Let $x \in N$ and |x| = p. By hypothesis, $H = \langle x \rangle$ is c-supplemented in G. Then |N| = p by Lemma 2.4. Thus G is p-supersolvable.

We now prove that $\Phi(G)_p = \Phi(G_p)$. Since G is p-solvable, we can write $G = G_p G_{p'}$ by Lemma 2.8. We first claim that $\Phi(G)_p \leq \Phi(G_p)$. If $\Phi(G)_p \nleq \Phi(G_p)$, note that $\Phi(G)_p \leq G_p$, there then exists a subgroup $T \ll G_p$ such that $G_p = \Phi(G)_p T$. Hence $G = G_p G_{p'} = \Phi(G)_p T G_{p'} = T G_{p'} \ll G$, a contradiction. We now prove that $\Phi(G_p) \leq \Phi(G)_p$. Let $M = G_p$ and $H = \Phi(G_p)$ in Lemma 2.1. Then $\Phi(G_p) \leq \Phi(G)$ since G is a CS_p -group. Hence, $\Phi(G_p) \leq \Phi(G)_p$. \Box

Corollary 3.3 Let G be a group and $\pi(G) = \{p_1, p_2, \ldots, p_n\}$ with $p_n > \cdots > p_2 > p_1$. Assume that there exists a subgroup $M \leq G$ such that |G:M| = p and every p-subgroup of M is c-supplemented in G, where $p \in \{p_1, p_2\}$. Then G is p-supersolvable.

Proof Clearly, M is a CS_p -group by Lemma 2.1. By Theorem 3.2, M is p-supersolvable. So G is p-solvable since $G/M_G \leq S_p$, where $p \in \{p_1, p_2\}$. Let N be a minimal normal subgroup of G. Then N is either an elementary abelian p-group or a p'-group. Assume that $N \leq M$. Then G/N inherits our conditions by Lemma 2.1. Hence G/N is p-supersolvable by induction on the order of G. If $p \notin \pi(N)$, obviously, G is p-supersolvable. If $p \in \pi(N)$, then N is an elementary abelian p-group. By Lemma 2.4, we have that |N| = p. So G is p-supersolvable. Assume now that $N \nleq M$. Then G = MN and |N| = p since |G : M| = p. So G is p-supersolvable since $G/N \cong M$ is p-supersolvable. \Box

Now we give some characterizations of CS_p -groups, the following theorem is a local vision of [4, Theorem 3.3].

Theorem 3.4 The following statements are pairwise equivalent for a p-solvable group G.

(1) G is a CS_p -group;

(2) Every p-subgroup of G is c-supplemented in G;

(3) G is p-supersolvable. Let $M \leq G$ and $L \leq \Phi(M)$ be a p-subgroup of G. Then $L \leq G$ and $L \leq \Phi(G)$;

(4) G is p-supersolvable, every element in $\text{Syl}_p(G/\Phi(G))$ is elementary abelian and every p-subgroup of $\Phi(G)$ is normal in G;

(5) $G/\Phi(G)$ is a *p*-complemented group in which every *p*-subgroup of $\Phi(G)$ is normal in G.

Proof $(1) \Leftrightarrow (2)$. It is obvious.

 $(2)\Rightarrow(3)$. The proof of *p*-supersolvability is similar to Theorem 3.2. Furthermore, if $L \leq \Phi(M) \leq G$, then by Lemma 2.1, $L \leq G$ and $L \leq \Phi(G)$.

(3) \Rightarrow (4). By hypotheses every *p*-subgroup of $\Phi(G)$ is normal in *G*. Since $\Phi(P) \leq \Phi(G)$, we have $P\Phi(G)/\Phi(G)$ is elementary abelian.

 $(4) \Rightarrow (5)$. It follows from Lemma 2.7.

 $(5)\Rightarrow(1)$. Let $H \leq G$ be a *p*-subgroup. Then $G/\Phi(G) = H\Phi(G)/\Phi(G) \cdot T/\Phi(G)$ and $H\Phi(G)/\Phi(G) \cap T/\Phi(G) = \overline{1}$ since $G/\Phi(G)$ is *p*-complemented. So G = HT and $H \cap T \leq \Phi(G)$. By hypothesis, $H \cap T \leq H_G$. Denote $K = H_GT$, then G = HK and $H \cap K = H_G$. Hence, G is a CS_p -group. \Box

Corollary 3.5 Let G be a group. Then the following statements are pairwise equivalent.

- (1) G is a CS_p -group for any $p \in \pi(G)$;
- (2) G is a group whose every p-subgroup is c-supplemented for every $p \in \pi(G)$;
- (3) G is a group whose every cyclic p-subgroup is c-supplemented in G for every $p \in \pi(G)$;
- (4) G is supersolvable. Let $L \leq \Phi(G) \leq G$. Then $L \leq G$;

(5) G is supersolvable, every subgroup of $\Phi(G)$ is normal in G and every element of $\operatorname{Syl}_n(G/\Phi(G))$ is elementary abelian for every $p \in \pi(G)$;

(6) $G/\Phi(G)$ is p-complemented in which every subgroup of $\Phi(G)$ is normal in G for every $p \in \pi(G)$.

Proof The proofs of $(4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3)$ follow from Theorem 3.4. Applying

the similar arguments as in [11, Theorem 2.8], we have $(3) \Rightarrow (4)$. \Box

Denote by $G^{\mathcal{E}_{\pi}}$ the smallest normal subgroup N of G such that every Sylow p-subgroup of G/N is elementary abelian, where $p \in \pi$. In particular, if $\pi = \{p\}$ for some $p \in \pi(G)$, we denote $G^{\mathcal{E}_{\{p\}}} = G^{\mathcal{E}_p}$.

Theorem 3.6 The following statements are pairwise equivalent for a nilpotent group G.

- (1) G is a CS_p -group;
- (2) G_p is a c-supplemented group;
- (3) c-supplemented property is a transitive relationship in G_p ;
- (4) Every subgroup of $\Phi(G_p)$ is normal in G_p ;
- (5) Every subgroup of $G_p^{\mathcal{E}_p}$ is normal in G_p .

Proof (1) \Leftrightarrow (2). Assume that G is a CS_p -group. Clearly, by Lemma 2.1, G_p is a c-supplemented group. Conversely, assume that G_p is a c-supplemented group. Let H be any p-subgroup of G. Then $H \leq G_p$. By hypothesis, there exists a subgroup $H_{G_p} \leq T \leq G_p$ such that $G_p = HT$ and $H \cap T = H_{G_p}$. Denote $K = G_{p'}T$, then $G = G_pG_{p'} = HK$ and $H \cap K = H \cap TG_{p'} = H \cap T = H_{G_p}$. Note that

$$H_G = \bigcap_{g \in G} H^g = \bigcap_{x \in G \setminus G_p, y \in G_p} H^{xy} = \bigcap_{y \in G_p} H^y = H_{G_p},$$

then H is c-supplemented in G. Hence, G is a CS_p -group.

 $(2) \Leftrightarrow (3)$. It follows from [7, Theorem 3.3].

(2) \Leftrightarrow (4). Since $G_p/\Phi(G_p)$ is an elementary abelian *p*-group, then $G_p/\Phi(G_p)$ is a complemented group. So the assertion follows from Theorem 3.4.

(4) \Leftrightarrow (5). We only need to prove that $\Phi(G_p) = G_p^{\mathcal{E}_p}$. By Theorem 3.4, $G_p^{\mathcal{E}_p} \leq \Phi(G_p)$. On the other hand, since $\Phi(G_p/G_p^{\mathcal{E}_p}) = 1$, we have $\Phi(G_p) \leq G_p^{\mathcal{E}_p}$. \Box

Let A, B be two CS_p -groups. Now we give some criteria of the direct product $A \times B$ to be a CS_p -group. First, we give a local vision of [7, Theorem 3.7] in the *p*-solvable universe.

Theorem 3.7 Let A, B be two *p*-solvable CS_p -groups. Then $A \times B$ is a CS_p -group if and only if every *p*-subgroup of $\Phi(A) \times \Phi(B)$ is normal in $A \times B$.

Proof By Theorem 3.4, $A \times B$ is a CS_p -group if and only if $A \times B/\Phi(A \times B)$ is a *p*-complemented group and every *p*-subgroup of $\Phi(A \times B)$ is normal in $A \times B$. Since $\Phi(A \times B) = \Phi(A) \times \Phi(B)$, then $A \times B/\Phi(A \times B) \cong A/\Phi(A) \times B/\Phi(B)$. Hence $A \times B$ is a CS_p -group if and only if every *p*-subgroup of $\Phi(A) \times \Phi(B)$ is normal in $A \times B$. \Box

Applying the similar arguments as in [8, Theorem 4.5], we have

Theorem 3.8 Assume that $A \times B$ is a p-solvable CS_p -group, where $p \in \pi(\Phi(A)) \cap \pi(\Phi(B))$ and p is odd. Denote $p^e = \text{Exp}(\Phi(A)_p)$, $p^f = \text{Exp}(\Phi(B)_p)$. Then one of the following statements holds:

- (1) $\Phi(A)_p \times \Phi(B)_p \le Z(A \times B);$
- (2) $\Phi(A)_p \leq Z(A)$ and $\Phi(B)_p$ centralizes $B_{p'}$ and e < f;

(3) $\Phi(B)_p \leq Z(B)$ and $\Phi(A)_p$ centralizes $A_{p'}$ and f < e.

Theorem 3.9 Assume that $A \times B$ is a CS_2 -group, where $2 \in \pi(\Phi(A)) \cap \pi(\Phi(B))$. Then one of the following statements holds:

- (1) $\Phi(A)_2 \times \Phi(B)_2 \le Z(A \times B);$
- (2) $\Phi(A)_2 \times \Phi(B)_2 \leq Z(A) \times Z(\Phi(B)_2);$
- (3) $\Phi(A)_2 \times \Phi(B)_2 \le Z(\Phi(A)_2) \times Z(B).$

Proof By Lemma 2.1 and Theorem 3.1, $A \times B$ is solvable. Furthermore, A, B are CS_2 -groups by Lemma 2.1. By Theorem 3.4, $\Phi(A)_2 \leq A$. So $\Phi(A)_2A_{2'}$ is 2-nilpotent by Theorem 3.2 since $\Phi(A)_2A_{2'}$ is a CS_2 -group. Therefore, $A_{2'}$ centralizes $\Phi(A)_2$. Similarly, $B_{2'}$ centralizes $\Phi(B)_2$. On the other hand, since $A \times B$ is a CS_2 -group, then A_2, B_2 are *c*-supplemented groups. By Lemma 2.5, we have $|A_2 : C_{A_2}(\Phi(A_2))| \leq 2$ and $|B_2 : C_{B_2}(\Phi(B_2))| \leq 2$. Now Theorem 3.2 implies that $\Phi(A)_2 = \Phi(A_2)$ and $\Phi(B)_2 = \Phi(B_2)$, therefore, $|A_2 : C_{A_2}(\Phi(A)_2)| \leq 2$ and $|B_2 : C_{B_2}(\Phi(B)_2)| \leq 2$. If $|A_2 : C_{A_2}(\Phi(A)_2)| = |B_2 : C_{B_2}(\Phi(B)_2)| = 1$, then $\Phi(A)_2 \leq Z(A_2)$ and $\Phi(B)_2 \leq Z(B_2)$. Hence, (1) holds. If $|A_2 : C_{A_2}(\Phi(A)_2)| = 1$ and $|B_2 : C_{B_2}(\Phi(B)_2)| = 2$, then $\Phi(A)_2 \leq Z(A_2)$ and $\Phi(B)_2 \leq Z(\Phi(B_2))$. Hence $\Phi(B)_2 = Z(\Phi(B)_2)$. So (2) holds. Similarly, we have (3) if $|A_2 : C_{A_2}(\Phi(A)_2)| = 2$ and $|B_2 : C_{B_2}(\Phi(B)_2)| = 1$. \Box

Theorem 3.10 Let A, B be two *p*-solvable CS_p -groups, $p \in \pi(\Phi(A)) \cap \pi(\Phi(B))$. Denote $p^e = \operatorname{Exp}(\Phi(A)_p), p^f = \operatorname{Exp}(\Phi(B)_p)$. Then $A \times B$ is a CS_p -group if one of the following holds:

(1) $\Phi(A)_p \times \Phi(B)_p \le Z(A \times B);$

(2) If p > 2, either $\Phi(A)_p \leq Z(A)$ and $\Phi(B)_p$ centralizes $B_{p'}$ and e < f or $\Phi(B)_p \leq Z(B)$ and $\Phi(A)_p$ centralizes $A_{p'}$ and f < e;

(3) If $p = \min(\pi(A) \cup \pi(B)), \min\{e, f\} \le 1$.

Proof Obviously, $A \times B$ is a CS_p -group if (1) holds by Theorem 3.7. In case (2), its proof is similar to [8, Theorem 4.6].

(3) Obviously, $p \in \pi(A) \cap \pi(B)$. So $p = \min(\pi(A))$ and $p = \min(\pi(B))$. Without loss of generality, we may assume $e \leq 1$. Then $\Phi(A)_p \leq Z(A_p)$ since A is a CS_p -group. Note that B is a CS_p -group, then $\Phi(B)_p \leq B$ by Theorem 3.4 and $B_{p'}$ centralizes $\Phi(B)_p$ by Theorem 3.2, respectively. Similarly, $A_{p'}$ centralizes $\Phi(A)_p$. So $\Phi(A)_p \leq Z(A)$. If p is odd and $f \leq 1$, then $\Phi(B)_p \leq Z(B_p)$, this is case (1). If p is odd and $f \geq 2$, this is case (2). So we may assume that p = 2. By Theorem 3.7, we only need to prove that $\langle ab \rangle \leq A \times B$ for any $a \in \Phi(A)_2$ and $b \in \Phi(B)_2$. Note that $\langle a \rangle \leq A$ and $\langle b \rangle \leq B$ by Theorem 3.4. Assume o(b) = 2. It is easy to see that $b \in Z(B)$ and $\langle ab \rangle \leq A \times B$. So we may assume that $b \in \Phi(B)_2 \setminus Z(B_2)$ and $o(b) \geq 4$. By Theorem 3.2, $b \in \Phi(B_2)$. In order to prove $\langle ab \rangle \leq A \times B$, we can pick $x \in B_2$ and claim that $(ab)^x \in \langle ab \rangle$ since $B_{2'}$ centralizes $\Phi(B)_2 = \Phi(B_2)$. By Lemma 2.6, if $b^x = b$, obviously, $(ab)^x = a^x b^x = ab \in \langle ab \rangle$. If $b^x = b^{-1}$, then $(ab)^x = a^x b^x = ab^{-1} = (ab)^{-1}$ since $e \leq 1$. So in any case, we have $\langle ab \rangle \leq A \times B$ for any $ab \in \Phi(A)_2 \times \Phi(B)_2$. \Box

Acknowledgements We are very grateful to the referees for their time and valuable comments.

References

- [1] B. HUPPERT. Endliche gruppen I. Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [2] D. GORENSTEIN. Finite Groups. Harper & Row Publishers, New York-Evanston-London, 1968.
- [3] Yangming WANG. C-normality of groups and its properties. J. Algebra, 1996, 180(3): 954–965.
- [4] A. BALLESTER-BOLINCHES, Yanming WANG, Xiuyun GUO. C-Supplemented subgroups of finite groups. Glasg. Math. J., 2000, 42(3): 383–389.
- [5] Caiheng LI, Yangming WANG, Zhuoqing XIE, et al. Finite groups in which every subgroup is c-normal. Sci. Sin., Math., 2013, 43(1): 25–32. (in Chinese)
- [6] Huaguo SHI, Zhangjia HAN, Pengfei GUO, et al. On finite CN-p-groups. Acta Math. Sin., Chin. Ser., 2019, 62(2): 211–218. (in Chinese)
- [7] Yangming LI, Libo ZHAO. On finite CN-groups and finite c-supplemented groups. Chin. Ann. Math., Ser. B, 2021, 42(4): 379–392. (in Chinese)
- [8] Yubo LV, Yangming LI. On cp-normal subgroups of finite groups. Comm. Algebra, 2021, 49(4): 1405–1414.
- Yangming WANG, Huaquan WEI, Yangming LI. A generalization of a theorem of Kramer and its applications. Bull. Aust. Math. Soc., 2002, 65(3): 467–475.
- [10] M. ASAAD. On c-supplemented subgroups of finite groups. J. Algebra, 2012, 362: 1-11.
- [11] Xiuyun GUO, Xiuping SUN, K. P. SHUM. On the solvability of certain c-supplemented finite groups. Southeast Asian Bull. Math., 2004, 28(6): 1029–1040.

82