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Abstract Let ¢ be a finite nonzero complex number, let the g-difference equation

2\ po oy = PEIE) _ Elwu()f ()
HaI () =R TE) = QG 56) ~ S o) w

admit a nonconstant meromorphic solution f, where p and ¢ are nonnegative integers, a; with
0 < j < pand by with 0 < k < ¢ are polynomials in z with a3 # 0 and bz # 0 such that
P(z, f(2)) and Q(z, f(z)) are relatively prime polynomials in f(z) and let m = p— g > 3. Then,
(1) has no transcendental meromorphic solution when |¢| = 1, and the lower bound of the lower
order of f is obtained when m > 3 and |¢q| # 1.
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1. Introduction

In this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna value distribution theory of meromorphic functions [1, 2]
for the more details. Let f be meromorphic function and let p(f) and u(f) denote the order and
the lower order of meromorphic function f, respectively.

Recently, many researchers have considered the properties of solutions of certain complex
difference equations, including the existence and the growth, and a lot of interesting results
have been obtained, such as [3-7] and so on. Simultaneously, the existence and the growth of
meromorphic solutions of g¢-difference equations have been considered by different researchers,
such as [8-14] and so on.

In [5], Peng and Chen studied the growth of transcendental meromorphic solutions of differ-
ence Painlevé IV equation, and the lower bound of maximum module of solutions of the equation

was obtained as follows.
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Theorem 1.1 ([5, Theorem 1.1]) Suppose that [ is a transcendental meromorphic solution of

the equation
Pz, f(2) _ 35-09i(2)f(2)
Q= f(2)) I bi(2)fk(2)

where p and ¢ are nonnegative integers, and a; with 0 < j < p and b, with 0 < k£ < ¢ are

(f+D+ @S (2)+ f(z-1) = R(z, f(2) = (1.1)

polynomials in z with az # 0 and b; # 0 such that P(z, f) and Q(z, f) are relatively prime
polynomials in f. Let m = p — ¢ > 3, then one of the following cases can occur:
(1) If f is an entire function or a meromorphic function with finitely many poles in the

complex plane, then there exist some two positive constants K and ry such that
m
log M (r, f) > K(E)T for r > rg.

(2) If f has infinitely many poles in the complex plane, then there exist some two positive
constants K > 0 and rq > 0 such that

n(r, f) > K(m—1)" for r >ro.

In [14], Zhang and Korhonen considered the existence of transcendental meromorphic solu-

tions of the g¢-difference equation and obtained the following theorem.

Theorem 1.2 ([14, Theorem 3.1]) Let ¢1,4s,...,qn be n distinct finite nonzero complex num-

bers. If the g-difference equation

Pz, f(2) _ Ei=0%(2)f(2)
Qzf(=)  Tlobu(2)f*(2)

admits a transcendental meromorphic solution f of zero order, where n is a positive integer, p

Zf(w) = R(z, f(2)) = (1.2)

and ¢ are nonnegative integers, a; with 0 < j < p and b, with 0 < k < ¢ are rational functions
in z with ay # 0 and by # 0 such that P(z, f) and Q(z, f) are relatively, prime polynomials in
f, then max{p, ¢} < n.

In [13], the existence and growth of transcendental meromorphic solutions of g¢-difference

Painlevé IV equation were investigated by Peng-Huang, who proved the following result.

Theorem 1.3 ([13, Theorem 1.1]) Let g be a finite nonzero complex numbers, let the g-difference

equation

. Pz, f(2))  YP_gai(2)f(2)
(flgz) + f(2))(f(=) + f(2)) = R(z, f(2)) = == (1.3)

q Qz, f(2)) S bi(2) fR(2)
admit a nonconstant meromorphic solution f, where p and ¢ are nonnegative integers, and a;
with 0 < j < p and by, with 0 < k < ¢ are polynomials in z with a # 0 and b; # 0 such that

P(z, f) and Q(z, f) are relatively prime polynomials in f, and let m = p — ¢ > 3. Then, one of

the following cases can occur:
(I) If |q| = 1, then Eq.(1.3) has no transcendental meromorphic solution.
(II) If |q| # 1 and f is a transcendental meromorphic solution of (1.3), then one of the

following cases can occur:
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(i) If f is an entire function or a meromorphic function with finitely many poles in the

complex plane, then there exist some two positive constants K and ry such that

log M(r, f) > K(Z) T for > ro.
Thus, the lower order p(f) of f satisfies u(f) > ‘IIZE \%;H'

(ii) If f has infinitely many poles in the complex plane, then there exist some two positive
constants K > 0 and rq > 0 such that

n(r,f) > K(m — 1)\1100:\2\\ for r > Tg.

Thus, the lower order p(f) of f satisfies u(f) > %.

(iii) Thus, the lower order u(f) of f satisfies u(f) > % when |q| # 1.

Regarding Theorem 1.3, one may ask, what can be said about the conclusion of Theorem
1.3, if we replace the g-difference Eq. (1.3) with the ¢-difference Painlevé equation
z P(z, f(z ?: a»(z)fj(z)
1415 = R(:, 1) = R - SambWEE,
q (2. f(2) 1o bi(2)fR(2)

which is one of the ¢-difference Painlevé 111, where ¢ is a finite nonzero complex number, p and

¢ are nonnegative integers, and a; with 0 < 7 < p and by, with 0 < k& < ¢ are polynomials in z
with ap # 0 and bg # 0 such that P(z, f) and Q(z, f) are relatively, prime polynomials in f? In

this direction, we will prove the following result:

Theorem 1.4 Let g be a finite nonzero complex number, let the g-difference equation
P(z,f(2) _ 2j=09i(2)f7 ()
Qz, f(2))  SI_ be(2)f*(2)
admit a nonconstant meromorphic solution f, where p and ¢ are nonnegative integers, a; with
0 <j<pandby with 0 <k < § are polynomials in z with a; # 0 and b; # 0 such that P(z, f)
and Q(z, f) are relatively, prime polynomials in f, and let m = p — ¢ > 3. Then, one of the

f(qz>f<§> = R(z f(2) = (1.4)

following subcases can occur:

(I) If |q| = 1, then Eq.(1.4) has no any transcendental meromorphic solution.

(II) If |q| # 1 and f is a transcendental meromorphic solution of (1.4), then one of the
following cases can occur:

(i) If f is an entire function or a meromorphic function with finitely many poles in the

complex plane, then there exist some two positive constants K and ry such that
m log r
log M (r, f) > K(g)\log\q\\ for r > rg.

Thus, the lower order p(f) of f satisfies p(f) > ‘IIZE \%;H'

(ii) If f has infinitely many poles in the complex plane such that for any pole zo € C of f,

neither %" for |q| > 1 nor qzo for 0 < |q| < 1 is a pole of f, then there exist some two positive

constants K and rqy such that

n(r, f) > K(m — 1)Team for > ro.
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Thus, the lower order u(f) of f satisfies u(f) > lﬁc()gll;ﬁ).

2. Proof of Theorem 1.4

In this section, we start the proof from the following result, which can be found in [8].
Lemma 2.1 ([8]) Let f be a meromorphic function and g € C\ {0}. Then

M(r, f(qz)) = M(lqlr, f(2)), N(r,f(qz)) = N(lg|r, f(2)) + O(1)
and
T(r, f(az)) = T(|alr, f(2)) + O(1)
hold.
Proof (I) Suppose that Eq.(1.4) has a transcendental meromorphic solution f when |g| = 1,
and then show a contradiction. We divide into the following three cases.

Case I(1). Suppose that f, a solution of (1.4), is a transcendental entire function. Set
t; =degaj,ly = degby, v =1+ max{lo,l1,...,l5}, with 0 < j < pand 0 < k < 4. Then we get

P (), _ : 20 = 1
M G2 = M @) FC) < Malr S22 = M(alr S @21)
holds for the large positive number |z| = r and |¢| > 1. For the large positive number |z| = r, we
get
P
S (2| 2 lap2) )]~ (a1 ()@ 4+ lao(2)])
j=0
> g2 /7 (2)| = 5r FP(L+ o),

\Zm.ﬁ\ < S < S
k=0 k=0

It follows from above mequahtles and (1.4) that

|P( flz ))|7| a;(z )fﬂ(2)|
Q(2, f(2)) b (2)f*(z)
Iap( ) fP()| = (lag—1() P (2)| + -~ + |ao(2)])
— [ba(2)fUR) + -+ ha(2) f(2)] + [bo(2)]
> mr“ﬁ‘”’lf@)l""q’(l +o(1))

and
P(: (), r )M )"
Qlz. f(z))” —  2(G+1)

for the large positive number 7. By (2.1) and (2.2) we have for the large positive number 7 that

M(r,

(2.2)

2log M (|q|r, f(2)) > mlog M (r, f) + g(r), (2.3)
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r(5—

2(;—“”)), and |g(r)] < Klogr for some K > 0.
By (2.3) and |q| = 1, we get

where g(r) = log

2log M(r, f) = 2log M(|q|r, f) > mlog M (r, f) + g(r),

which contradicts the fact m = (p — ¢) > 3.
Case 1(2). Suppose that f, a solution of (1.4), is transcendental meromorphic with finitely
many poles. Then there exists a polynomial P(z) such that F'(z) = P(z)f(z) is transcendental

entire. Substituting f(z) = ggzg into (1.4) and multiplying the denominators, we will have an

equation similar to (1.4). Applying the same reasons as above Case I(1) to F, for enough large

r, we have

2log M (r, f) = 2log M (r, F) + O(1) > mlog M (r, F) + g(r),

which contradicts the fact m = (p — q) > 3.

Case I(3). Suppose that f, a solution of (1.4), is a meromorphic with infinitely many poles.
Since a;(z) (j =0,1,...,p) and b(z) (k =0,1,...,q) are polynomials, there is a constant R > 0
such that all zeros of a;(z) (j =0,1,...,p) and bx(z) (k=0,1,...,G) are not in D = {z : |z] >
R}. Since f has infinitely many poles, there exists a pole zp € D of f which has changed into
having multiplicity k9 > 1. Then the right-hand side of (1.4) has a pole of multiplicity mkq at
zo. Thus there exists at least one index [ € {q, %} such that [z is a pole of f of multiplicity
k1> %. Without loss of generality, suppose that { = ¢. Since |¢| = |%| =1, qzo is a pole of f
of multiplicity k1 and gzo € D. Substituting gz for z in (1.4) gives

2, o920, _ a0(q20) +a1(q20)f(q20) + -+ + a;(q20) f7(q20)
I 20 ) = g0y T b1 (amo) Flazo) + -+ balgzo) filgzo)
that is i
f(@*20) f(20) = dolgzo) + a1(dz0)f(gz0) + - + ap{az0) [*{az0) (2.4)

bo(qzo0) + b1(gz20) f(q20) + - - + bg(qz20) fi(qz0)

By (2.4) and m = (p — q) > 3, we get that ¢®zg is a pole of f of multiplicity ks > (m — 1)k.
Since f has infinitely many poles, obviously ¢?zg € D. Substituting ¢?z for z in (1.4), we obtain

5, flann) = ao(q®20) + a1(q*20) f(¢*20) + - - - + ap(q®20) fP(¢*20)
@ 20)f(020) = 3 o) T br(a%20) FlaP20) + -+ ba(P20) fi{d%%0) (25)

By (2.5) and m = (p — q) > 3, we get that ¢®zg is a pole of f of multiplicity k3 > (m — 1)kg =

(m —1)2k;. Since f has infinitely many poles, obviously ¢3z € D.

Applying the same analysis above, ¢%zg € D is a pole of f of multiplicity kq > (m —1)kq_1 >

- > (m—1)4"1k; — o0 as d — o0, and |g%20| = |20|, which contradicts the fact that f does

not have essential singularities in the finite complex plane. In conclusion, part (I) is proved.

We prove the part (II) next.

(IT) (i) Suppose that f, a solution of (1.4), is transcendental entire. Due to condition |g| # 1,
we respectively discuss the results with |¢g| > 1 and |¢| < 1.

Case i(1). |q| > 1. Set t; = dega;(z),lr = degbr(z), v = 1+ max{lo,l1,...,l5} with
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0<j<pand 0<k <q. Then for large enough r and |¢| > 1, we get
P

R EN/C)

Q(z, f(2))

By using the similar reasons as proving the Case I (1) in part (I), we have (2.3). Iterating (2.3),

) = M(r, f(qz)f@) < M(lqlr, f2(2)) = M (lqlr, f(2)). (2.6)

by direct calculation, we have that
m
log M(lgl"r, f(2)) 2 (5 )" log M(r, f) + Ep(7), (2.7)
where

i 1g<r> + <@>p-lg<|q|r> +o g<|q|p-1r>|

( -

=

=

I
N =
1\9|§ | 3

1 1
< p < p

| =

and g(r) = log %. Similarly, we also get the form of g(|q|kr) for k=0,1,...,(p—1).
Since log(|q|*r) = log|q|* + logr < (logr)(log |q|¥) for sufficiently large r and k, we have

1 By = (1 1 =
Z og(JLQ| Z ogr)£o§|Q| ) _ logrlog |q] o
k=0 (5)* =0 () k=0 (5)*
Note - -
I= Zak = log|q] @)
k=0 k=0 2
By the ratio test, the series I = log|q| > 7=, ﬁ is convergent. Hence
2
[Ey(r)] < K'(5 ) logr, (2.8)

where K’ is some constant.
Since f is transcendental entire, we get the inequality log M (r, f(z)) > 2K'logr holds for
sufficiently large r. By (2.7) and (2.8), there exists 1o > e such that for r > rg,

log M(|g|"r, f(2)) = (5)" log M(r, (2)) + E,(r)
Z(%)’?K’logr K’( )plogr*K’( P logr. (2.9)

Thus, for each sufficiently large s, there exists a p € N such that s € [lq|Pro,|q|Pt1ro), iee.,

p > %. It follows from (2.9) that

s

log M (s, f(2)) = log M(Jal"ro, (2)) = K'(5 )" logro = K" (%)=,

_ log(lgqlro) . . .
where K" = K'logro(%) Tosa . Therefore, the assertion holds for the case that f is entire

function.

Suppose now that f, a solution of (1.4), is meromorphic with finitely many poles. Then there
exists a polynomial P(z) such that F'(z) = P(z)f(z) is entire. Substituting f(z) = IFDEQ into
(1.4) and multiplying the denominators, we get the following equation on F

F(qz)F(i) _ Ao(z) + A1(2)F(2)+ -+ A@(Z)Ff?(z)7
¢’ Bo(z) + Bi(2)F(2) + -+ 4 By(2) Fi(z)
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where A;(z) = P(qz)P(é)aj(z)Pﬁ’j(z), j = 0,1,....,p and Bg(2) = b(2) - P(2)P7k, j =
0,1,...,q. Applying the same reasons as above Case I(2) to F, we obtain that for enough

large r,

log M (r, f) = log M(r, F) + O(1) = (K" — &) (%) 11 = K" (%) et
where e > 0 and K’ > 0 is some constant. The assertion holds for the case that f is meromorphic
with finitely many poles.
Case 1(2). |q| < 1. Set 1 = %. Then |g1] > 1. (1.4) yields
z P(z, f(2))

I @) = 5 50y

Applying the same reasoning as Case i (1), we have
log M(r, f(2)) 2 K(%)mefint = K (5w,
From Cases i(1) and i(2), we obtain
log M (r, f(:)) > K(%) T

Finally, since
Z

K(5 yiesial < log M(r, f(2)) < 3T(2r, f)

holds for all » > 7y, we obtain u(f) > %. Thus part (i) is proved.

(II) (ii) Suppose that f, the solution of (1.4), is meromorphic with infinitely many poles.
Since a;(z) (j = 0,1,...,p) and bg(z) (k = 0,1,...,q) in (1.4) are polynomials, there are
two constants R > 0 and M > 0 such that all nonzero zeros of a;(z) (j = 0,1,...,p) and
bi(z) (k=0,1,...,9) arein Dy = {z: M < |z| < R}. Set D = {z: |z| > R}.

Since f has infinitely many poles, there exists a pole zy € D of f having multiplicity kg > 1.
Then the right-hand side of (1.4) has a pole of multiplicity mkg at zo. Thus there exists at least

one index [ € {q, %} such that lzg is a pole of f of multiplicity k; > ka". By the hypothesis,
without loss of generality, suppose that [ = ¢, |¢| > 1. Then gzo is a pole of f of multiplicity
k1 and gzp € D. Substituting gzo for z in (1.4) gives (2.4). By (2.4) and m = (p — ¢) > 3,
we get that ¢?zg is a pole of f of multiplicity ks > (m — 1)k;. Since f has infinitely many
poles, obviously ¢?zyp € D. By repeating the process, we conclude that ¢?zy € D is a pole of f
of multiplicity k, > (m — 1)kp—1 > -+ > (m — 1)P~ky, thus, there is a sequence {¢?z € D,
p=1,2,...} which are the poles of f. Since k, > (m — 1)P~1k; — o0 as p — oo and f does not
have essential singularities in the finite complex plane, we must have |¢Pzg| — oo as p — co. It

is clear that, for sufficiently enough p, we have
(m—1)P""ky <ki[1+(m—1)+-+ (m—1)P"]
< n(lqPzol, £(2)) = n(lgl?|z0l, f(2))- (2.10)

Thus for each sufficiently enough r, there exists a p € N such that r € [|q|Pro, |q[P T rg). It follows
from (2.10) that

log r—log |qzg| log

n(r, f(z)) > (m— 1P ey > ky(m — 1)1 el = K(m — 1)%slal



90 Let TAO and Jianren LONG

log |g2q]|

where K = ki (m — 1)_1_ Tog [af
Finally, for all » > rg,

log 7 1 1
K(m - 1) loz ol S TL(T, f(Z)) S @N(QT, f) S @T(QT, f)a

which implies u(f) > %. Thus part (ii) is proved.

In conclusion, Theorem 1.4 is proved. O

We have the following question from Theorem 1.4.

Question Whether there is the same result as (II) (ii) of Theorem 1.4 if f has infinitely many
poles when |g| # 17
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