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Abstract Let q be a finite nonzero complex number, let the q-difference equation

f(qz)f(
z

q
) = R(z, f(z)) =

P (z, f(z))

Q(z, f(z))
=

∑p̃

j=0
aj(z)f

j(z)
∑q̃

k=0
bk(z)fk(z)

(†)

admit a nonconstant meromorphic solution f, where p̃ and q̃ are nonnegative integers, aj with

0 ≤ j ≤ p̃ and bk with 0 ≤ k ≤ q̃ are polynomials in z with ap̃ 6≡ 0 and bq̃ 6≡ 0 such that

P (z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) and let m = p̃− q̃ ≥ 3. Then,

(†) has no transcendental meromorphic solution when |q| = 1, and the lower bound of the lower

order of f is obtained when m ≥ 3 and |q| 6= 1.

Keywords complex q-difference equation; transcendental meromorphic function; order of

growth; existence

MR(2020) Subject Classification 30D35; 39A45

1. Introduction

In this paper, we assume that the reader is familiar with the fundamental results and the

standard notations of the Nevanlinna value distribution theory of meromorphic functions [1, 2]

for the more details. Let f be meromorphic function and let ρ(f) and µ(f) denote the order and

the lower order of meromorphic function f , respectively.

Recently, many researchers have considered the properties of solutions of certain complex

difference equations, including the existence and the growth, and a lot of interesting results

have been obtained, such as [3–7] and so on. Simultaneously, the existence and the growth of

meromorphic solutions of q-difference equations have been considered by different researchers,

such as [8–14] and so on.

In [5], Peng and Chen studied the growth of transcendental meromorphic solutions of differ-

ence Painlevé IV equation, and the lower bound of maximum module of solutions of the equation

was obtained as follows.
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Theorem 1.1 ([5, Theorem 1.1]) Suppose that f is a transcendental meromorphic solution of

the equation

(f(z + 1) + f(z))(f(z) + f(z − 1)) = R(z, f(z)) =
P (z, f(z))

Q(z, f(z))
=

∑p̃

j=0 aj(z)f
j(z)

∑q̃

k=0 bk(z)f
k(z)

, (1.1)

where p̃ and q̃ are nonnegative integers, and aj with 0 ≤ j ≤ p̃ and bk with 0 ≤ k ≤ q̃ are

polynomials in z with ap̃ 6≡ 0 and bq̃ 6≡ 0 such that P (z, f) and Q(z, f) are relatively prime

polynomials in f . Let m = p̃− q̃ ≥ 3, then one of the following cases can occur:

(1) If f is an entire function or a meromorphic function with finitely many poles in the

complex plane, then there exist some two positive constants K and r0 such that

logM(r, f) ≥ K(
m

2
)r for r ≥ r0.

(2) If f has infinitely many poles in the complex plane, then there exist some two positive

constants K > 0 and r0 > 0 such that

n(r, f) ≥ K(m− 1)r for r ≥ r0.

In [14], Zhang and Korhonen considered the existence of transcendental meromorphic solu-

tions of the q-difference equation and obtained the following theorem.

Theorem 1.2 ([14, Theorem 3.1]) Let q1, q2, . . . , qn be n distinct finite nonzero complex num-

bers. If the q-difference equation

n
∑

j=1

f(qjz) = R(z, f(z)) =
P (z, f(z))

Q(z, f(z))
=

∑p̃

j=0 aj(z)f
j(z)

∑q̃

k=0 bk(z)f
k(z)

(1.2)

admits a transcendental meromorphic solution f of zero order, where n is a positive integer, p̃

and q̃ are nonnegative integers, aj with 0 ≤ j ≤ p̃ and bk with 0 ≤ k ≤ q̃ are rational functions

in z with ap̃ 6≡ 0 and bq̃ 6≡ 0 such that P (z, f) and Q(z, f) are relatively, prime polynomials in

f, then max{p̃, q̃} ≤ n.

In [13], the existence and growth of transcendental meromorphic solutions of q-difference

Painlevé IV equation were investigated by Peng-Huang, who proved the following result.

Theorem 1.3 ([13, Theorem 1.1]) Let q be a finite nonzero complex numbers, let the q-difference

equation

(f(qz) + f(z))(f(
z

q
) + f(z)) = R(z, f(z)) =

P (z, f(z))

Q(z, f(z))
=

∑p̃

j=0 aj(z)f
j(z)

∑q̃

k=0 bk(z)f
k(z)

(1.3)

admit a nonconstant meromorphic solution f, where p̃ and q̃ are nonnegative integers, and aj

with 0 ≤ j ≤ p̃ and bk with 0 ≤ k ≤ q̃ are polynomials in z with ap̃ 6≡ 0 and bq̃ 6≡ 0 such that

P (z, f) and Q(z, f) are relatively prime polynomials in f, and let m = p̃− q̃ ≥ 3. Then, one of

the following cases can occur:

(I) If |q| = 1, then Eq. (1.3) has no transcendental meromorphic solution.

(II) If |q| 6= 1 and f is a transcendental meromorphic solution of (1.3), then one of the

following cases can occur:
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(i) If f is an entire function or a meromorphic function with finitely many poles in the

complex plane, then there exist some two positive constants K and r0 such that

logM(r, f) ≥ K(
m

2
)

log r

| log |q|| for r ≥ r0.

Thus, the lower order µ(f) of f satisfies µ(f) ≥
log m

2

| log |q|| .

(ii) If f has infinitely many poles in the complex plane, then there exist some two positive

constants K > 0 and r0 > 0 such that

n(r, f) ≥ K(m− 1)
log r

| log |q|| for r ≥ r0.

Thus, the lower order µ(f) of f satisfies µ(f) ≥ log(m−1)
| log |q|| .

(iii) Thus, the lower order µ(f) of f satisfies µ(f) ≥ log(m−1)
| log |q|| when |q| 6= 1.

Regarding Theorem 1.3, one may ask, what can be said about the conclusion of Theorem

1.3, if we replace the q-difference Eq. (1.3) with the q-difference Painlevé equation

f(qz)f(
z

q
) = R(z, f(z)) =

P (z, f(z))

Q(z, f(z))
=

∑p̃

j=0 aj(z)f
j(z)

∑q̃

k=0 bk(z)f
k(z)

,

which is one of the q-difference Painlevé III, where q is a finite nonzero complex number, p̃ and

q̃ are nonnegative integers, and aj with 0 ≤ j ≤ p̃ and bk with 0 ≤ k ≤ q̃ are polynomials in z

with ap̃ 6≡ 0 and bq̃ 6≡ 0 such that P (z, f) and Q(z, f) are relatively, prime polynomials in f? In

this direction, we will prove the following result:

Theorem 1.4 Let q be a finite nonzero complex number, let the q-difference equation

f(qz)f(
z

q
) = R(z, f(z)) =

P (z, f(z))

Q(z, f(z))
=

∑p̃

j=0 aj(z)f
j(z)

∑q̃

k=0 bk(z)f
k(z)

(1.4)

admit a nonconstant meromorphic solution f, where p̃ and q̃ are nonnegative integers, aj with

0 ≤ j ≤ p̃ and bk with 0 ≤ k ≤ q̃ are polynomials in z with ap̃ 6≡ 0 and bq̃ 6≡ 0 such that P (z, f)

and Q(z, f) are relatively, prime polynomials in f, and let m = p̃ − q̃ ≥ 3. Then, one of the

following subcases can occur:

(I) If |q| = 1, then Eq. (1.4) has no any transcendental meromorphic solution.

(II) If |q| 6= 1 and f is a transcendental meromorphic solution of (1.4), then one of the

following cases can occur:

(i) If f is an entire function or a meromorphic function with finitely many poles in the

complex plane, then there exist some two positive constants K and r0 such that

logM(r, f) ≥ K(
m

2
)

log r

| log |q|| for r ≥ r0.

Thus, the lower order µ(f) of f satisfies µ(f) ≥
log m

2

| log |q|| .

(ii) If f has infinitely many poles in the complex plane such that for any pole z0 ∈ C of f ,

neither z0
q

for |q| > 1 nor qz0 for 0 < |q| < 1 is a pole of f, then there exist some two positive

constants K and r0 such that

n(r, f) ≥ K(m− 1)
log r

| log |q|| for r ≥ r0.
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Thus, the lower order µ(f) of f satisfies µ(f) ≥ log(m−1)
| log |q|| .

2. Proof of Theorem 1.4

In this section, we start the proof from the following result, which can be found in [8].

Lemma 2.1 ([8]) Let f be a meromorphic function and q ∈ C \ {0}. Then

M(r, f(qz)) = M(|q|r, f(z)), N(r, f(qz)) = N(|q|r, f(z)) +O(1)

and

T (r, f(qz)) = T (|q|r, f(z)) +O(1)

hold.

Proof (I) Suppose that Eq. (1.4) has a transcendental meromorphic solution f when |q| = 1,

and then show a contradiction. We divide into the following three cases.

Case I (1). Suppose that f , a solution of (1.4), is a transcendental entire function. Set

tj = deg aj , lk = deg bk, v = 1 +max{l0, l1, . . . , lq̃}, with 0 ≤ j ≤ p̃ and 0 ≤ k ≤ q̃. Then we get

M(r,
P (z, f(z))

Q(z, f(z))
) = M(r, f(qz)f(

z

q
)) ≤ M(|q|r, f2(z)) = M2(|q|r, f(z)) (2.1)

holds for the large positive number |z| = r and |q| ≥ 1. For the large positive number |z| = r, we

get

∣

∣

∣

p̃
∑

j=0

aj(z)f
j(z)

∣

∣

∣
≥ |ap̃(z)f

p̃(z)| − (|ap̃−1(z)f
p̃−1(z)|+ · · ·+ |a0(z)|)

≥
1

2
|ap̃(z)f

p̃(z)| =
1

2
rtp̃ |f(z)|p̃(1 + o(1)),

∣

∣

∣

q̃
∑

k=0

bk(z)f
k(z)

∣

∣

∣
≤

q̃
∑

k=0

|bk(z)f
k(z)| ≤

q̃
∑

k=0

rv |f(z)|q̃.

It follows from above inequalities and (1.4) that

|
P (z, f(z))

Q(z, f(z))
| = |

∑p̃

j=0 aj(z)f
j(z)

∑q̃

k=0 bk(z)f
k(z)

|

≥
|ap̃(z)f

p̃(z)| − (|ap̃−1(z)f
p̃−1(z)|+ · · ·+ |a0(z)|)

|bq̃(z)f q̃(z)|+ · · ·+ |b1(z)f(z)|+ |b0(z)|

≥
1

2(q̃ + 1)
r(tp̃−v)|f(z)|(p̃−q̃)(1 + o(1))

and

M(r,
P (z, f(z))

Q(z, f(z))
) ≥

r(tp̃−v)M(r, f)m

2(q̃ + 1)
(2.2)

for the large positive number r. By (2.1) and (2.2) we have for the large positive number r that

2 logM(|q|r, f(z)) ≥ m logM(r, f) + g(r), (2.3)
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where g(r) = log r
(tp̃−v)

2(q̃+1) , and |g(r)| < K log r for some K > 0.

By (2.3) and |q| = 1, we get

2 logM(r, f) = 2 logM(|q|r, f) ≥ m logM(r, f) + g(r),

which contradicts the fact m = (p̃− q̃) ≥ 3.

Case I (2). Suppose that f , a solution of (1.4), is transcendental meromorphic with finitely

many poles. Then there exists a polynomial P (z) such that F (z) = P (z)f(z) is transcendental

entire. Substituting f(z) = F (z)
P (z) into (1.4) and multiplying the denominators, we will have an

equation similar to (1.4). Applying the same reasons as above Case I (1) to F , for enough large

r, we have

2 logM(r, f) = 2 logM(r, F ) +O(1) ≥ m logM(r, F ) + g(r),

which contradicts the fact m = (p̃− q̃) ≥ 3.

Case I (3). Suppose that f , a solution of (1.4), is a meromorphic with infinitely many poles.

Since aj(z) (j = 0, 1, . . . , p̃) and bk(z) (k = 0, 1, . . . , q̃) are polynomials, there is a constant R > 0

such that all zeros of aj(z) (j = 0, 1, . . . , p̃) and bk(z) (k = 0, 1, . . . , q̃) are not in D = {z : |z| >

R}. Since f has infinitely many poles, there exists a pole z0 ∈ D of f which has changed into

having multiplicity k0 ≥ 1. Then the right-hand side of (1.4) has a pole of multiplicity mk0 at

z0. Thus there exists at least one index l ∈ {q, 1
q
} such that lz0 is a pole of f of multiplicity

k1 ≥ p̃k0

2 . Without loss of generality, suppose that l = q. Since |q| = | 1
q
| = 1, qz0 is a pole of f

of multiplicity k1 and qz0 ∈ D. Substituting qz0 for z in (1.4) gives

f(q2z0)f(
qz0

q
) =

a0(qz0) + a1(qz0)f(qz0) + · · ·+ ap̃(qz0)f
p̃(qz0)

b0(qz0) + b1(qz0)f(qz0) + · · ·+ bq̃(qz0)f q̃(qz0)
,

that is

f(q2z0)f(z0) =
a0(qz0) + a1(qz0)f(qz0) + · · ·+ ap̃(qz0)f

p̃(qz0)

b0(qz0) + b1(qz0)f(qz0) + · · ·+ bq̃(qz0)f q̃(qz0)
. (2.4)

By (2.4) and m = (p̃ − q̃) ≥ 3, we get that q2z0 is a pole of f of multiplicity k2 > (m − 1)k1.

Since f has infinitely many poles, obviously q2z0 ∈ D. Substituting q2z0 for z in (1.4), we obtain

f(q3z0)f(qz0) =
a0(q

2z0) + a1(q
2z0)f(q

2z0) + · · ·+ ap̃(q
2z0)f

p̃(q2z0)

b0(q2z0) + b1(q2z0)f(q2z0) + · · ·+ bq̃(q2z0)f q̃(q2z0)
. (2.5)

By (2.5) and m = (p̃ − q̃) ≥ 3, we get that q3z0 is a pole of f of multiplicity k3 > (m − 1)k2 =

(m− 1)2k1. Since f has infinitely many poles, obviously q3z0 ∈ D.

Applying the same analysis above, qdz0 ∈ D is a pole of f of multiplicity kd > (m−1)kd−1 >

· · · > (m − 1)d−1k1 → ∞ as d → ∞, and |qdz0| = |z0|, which contradicts the fact that f does

not have essential singularities in the finite complex plane. In conclusion, part (I) is proved.

We prove the part (II) next.

(II) (i) Suppose that f , a solution of (1.4), is transcendental entire. Due to condition |q| 6= 1,

we respectively discuss the results with |q| > 1 and |q| < 1.

Case i (1). |q| > 1. Set tj = deg aj(z), lk = deg bk(z), v = 1 + max{l0, l1, . . . , lq̃} with
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0 ≤ j ≤ p̃ and 0 ≤ k ≤ q̃. Then for large enough r and |q| > 1, we get

M(r,
P (z, f(z))

Q(z, f(z))
) = M(r, f(qz)f(

z

q
)) ≤ M(|q|r, f2(z)) = M2(|q|r, f(z)). (2.6)

By using the similar reasons as proving the Case I (1) in part (I), we have (2.3). Iterating (2.3),

by direct calculation, we have that

logM(|q|pr, f(z)) ≥ (
m

2
)p logM(r, f) + Ep(r), (2.7)

where

|Ep(r)| =
1

2
|(
m

2
)p−1g(r) + (

m

2
)p−1g(|q|r) + · · ·+ g(|q|p−1r)|

≤
K

2
(
m

2
)p−1

p−1
∑

k=0

log(|q|kr)

(h2 )
k

≤
K

2
(
m

2
)p−1

∞
∑

k=0

log(|q|kr)

(h2 )
k

,

and g(r) = log r
(tp̃−v)

2(q̃+1) . Similarly, we also get the form of g(|q|kr) for k = 0, 1, . . . , (p− 1).

Since log(|q|kr) = log |q|k + log r ≤ (log r)(log |q|k) for sufficiently large r and k, we have

∞
∑

k=0

log(|q|kr)

(m2 )
k

≤

∞
∑

k=0

(log r)(log |q|k)

(m2 )
k

= log r log |q|

∞
∑

k=0

k

(m2 )
k
.

Note

I =

∞
∑

k=0

ak = log |q|

∞
∑

k=0

k

(m2 )
k
.

By the ratio test, the series I = log |q|
∑∞

k=0
k

(m
2 )k is convergent. Hence

|Ep(r)| ≤ K ′(
m

2
)p log r, (2.8)

where K ′ is some constant.

Since f is transcendental entire, we get the inequality logM(r, f(z)) ≥ 2K ′ log r holds for

sufficiently large r. By (2.7) and (2.8), there exists r0 ≥ e such that for r > r0,

logM(|q|pr, f(z)) ≥ (
m

2
)p logM(r, f(z)) + Ep(r)

≥ (
m

2
)p2K ′ log r −K ′(

m

2
)p log r = K ′(

m

2
)p log r. (2.9)

Thus, for each sufficiently large s, there exists a p ∈ N such that s ∈ [|q|pr0, |q|
p+1r0), i.e.,

p >
log s−log(|q|r0)

log |q| . It follows from (2.9) that

logM(s, f(z)) ≥ logM(|q|pr0, f(z)) ≥ K ′(
m

2
)p log r0 ≥ K ′′(

m

2
)

log s

log |q| ,

where K ′′ = K ′ log r0(
m
2 )

−
log(|q|r0)

log |q| . Therefore, the assertion holds for the case that f is entire

function.

Suppose now that f , a solution of (1.4), is meromorphic with finitely many poles. Then there

exists a polynomial P (z) such that F (z) = P (z)f(z) is entire. Substituting f(z) = F (z)
P (z) into

(1.4) and multiplying the denominators, we get the following equation on F

F (qz)F (
z

q
) =

A0(z) +A1(z)F (z) + · · ·+Ap̃(z)F
p̃(z)

B0(z) +B1(z)F (z) + · · ·+Bq̃(z)F q̃(z)
,
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where Aj(z) = P (qz)P ( z
q
)aj(z)P

p̃−j(z), j = 0, 1, . . . , p̃ and Bk(z) = bk(z) · P (z)p̃−k, j =

0, 1, . . . , q̃. Applying the same reasons as above Case I (2) to F , we obtain that for enough

large r,

logM(r, f) = logM(r, F ) +O(1) ≥ (K ′′ − ε)(
m

2
)

log r

log |q| = K ′′′(
m

2
)

log r

log |q| ,

where ε > 0 andK ′′′ > 0 is some constant. The assertion holds for the case that f is meromorphic

with finitely many poles.

Case i (2). |q| < 1. Set q1 = 1
q
. Then |q1| > 1. (1.4) yields

f(
z

q1
)f(q1z) =

P (z, f(z))

Q(z, f(z))
.

Applying the same reasoning as Case i (1), we have

logM(r, f(z)) ≥ K(
m

2
)

log r

log |q1| = K(
m

2
)

log r

|log |q|| .

From Cases i (1) and i (2), we obtain

logM(r, f(z)) ≥ K(
m

2
)

log r

|log |q|| .

Finally, since

K(
m

2
)

log r

|log |q|| ≤ logM(r, f(z)) ≤ 3T (2r, f)

holds for all r ≥ r0, we obtain µ(f) ≥
log(m

2 )

| log |q|| . Thus part (i) is proved.

(II) (ii) Suppose that f , the solution of (1.4), is meromorphic with infinitely many poles.

Since aj(z) (j = 0, 1, . . . , p̃) and bk(z) (k = 0, 1, . . . , q̃) in (1.4) are polynomials, there are

two constants R > 0 and M > 0 such that all nonzero zeros of aj(z) (j = 0, 1, . . . , p̃) and

bk(z) (k = 0, 1, . . . , q̃) are in D1 = {z : M ≤ |z| ≤ R}. Set D = {z : |z| > R}.

Since f has infinitely many poles, there exists a pole z0 ∈ D of f having multiplicity k0 ≥ 1.

Then the right-hand side of (1.4) has a pole of multiplicity mk0 at z0. Thus there exists at least

one index l ∈ {q, 1
q
} such that lz0 is a pole of f of multiplicity k1 ≥ mk0

2 . By the hypothesis,

without loss of generality, suppose that l = q, |q| > 1. Then qz0 is a pole of f of multiplicity

k1 and qz0 ∈ D. Substituting qz0 for z in (1.4) gives (2.4). By (2.4) and m = (p̃ − q̃) ≥ 3,

we get that q2z0 is a pole of f of multiplicity k2 > (m − 1)k1. Since f has infinitely many

poles, obviously q2z0 ∈ D. By repeating the process, we conclude that qpz0 ∈ D is a pole of f

of multiplicity kp > (m − 1)kp−1 > · · · > (m − 1)p−1k1, thus, there is a sequence {qpz0 ∈ D,

p = 1, 2, . . .} which are the poles of f . Since kp > (m− 1)p−1k1 → ∞ as p → ∞ and f does not

have essential singularities in the finite complex plane, we must have |qpz0| → ∞ as p → ∞. It

is clear that, for sufficiently enough p, we have

(m− 1)p−1k1 ≤ k1[1 + (m− 1) + · · ·+ (m− 1)p−1]

≤ n(|qpz0|, f(z)) = n(|q|p|z0|, f(z)). (2.10)

Thus for each sufficiently enough r, there exists a p ∈ N such that r ∈ [|q|pr0, |q|
p+1r0). It follows

from (2.10) that

n(r, f(z)) ≥ (m− 1)p−1k1 ≥ k1(m− 1)−1+
log r−log |qz0|

log |q| = K(m− 1)
log r

log |q| ,
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where K = k1(m− 1)−1−
log |qz0|

log |q| .

Finally, for all r ≥ r0,

K(m− 1)
log r

|log |q|| ≤ n(r, f(z)) ≤
1

log 2
N(2r, f) ≤

1

log 2
T (2r, f),

which implies µ(f) ≥ log(m−1)
| log |q|| . Thus part (ii) is proved.

In conclusion, Theorem 1.4 is proved. 2

We have the following question from Theorem 1.4.

Question Whether there is the same result as (II) (ii) of Theorem 1.4 if f has infinitely many

poles when |q| 6= 1?
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