Journal of Mathematical Research with Applications Jan., 2023, Vol. 43, No. 1, pp. 91–100 DOI:10.3770/j.issn:2095-2651.2023.01.010 Http://jmre.dlut.edu.cn

Positive Solutions of Fourth-Order Equations under Nonlocal Boundary Value Conditions of Sturm-Liouville Type

Chunlei SONG, Wei CHEN, Guowei ZHANG*

Department of Mathematics, Northeastern University, Liaoning 110819, P. R. China

Abstract In this paper, we study the fourth-order problem with the first and second derivatives in nonlinearity under nonlocal boundary value conditions of Sturm-Liouville type involving Stieltjes integrals. Some inequality conditions on nonlinearity are presented that guarantee the existence of positive solutions to the problem by the theory of fixed point index on a special cone. Some examples are provided to support the main results under mixed boundary conditions containing multi-point with sign-changing coefficients and integral with sign-changing kernel.

Keywords positive solution; fixed point index; cone

MR(2020) Subject Classification 34B18; 34B10; 34B15

1. Introduction

In this paper, we investigate the existence of positive solutions for fourth-order boundary value problem (BVP) with dependence on the first and second derivatives in nonlinearity subject to boundary conditions of Stieltjes integral type

$$\begin{cases} u^{(4)}(t) = h(t)f(t, u(t), u'(t), u''(t)), & t \in (0, 1), \\ u(0) = u(1) = \beta_1[u], & au''(0) - bu'''(0) + \beta_2[u] = 0, & cu''(1) + du'''(1) + \beta_3[u] = 0, \end{cases}$$
(1.1)

where a, b, c, d are nonnegative constants with $\delta = ad + bc + ac \neq 0$, $\beta_i[u] = \int_0^1 u(t) d\mathcal{B}_i(t)$ is Stieltjes integral with \mathcal{B}_i of bounded variation (i = 1, 2, 3).

For the case where $\mathcal{B}_i = 0$ (i = 1, 2, 3), BVP (1.1) is investigated respectively by [1] with h = 1and f(t, u) which relies on a nonlinear alternative of Leray-Schauder type, and by [2] with h signchanging and f(u, u'') which applies the Avery-Peterson fixed point theorem in a cone. In fact, in [1,2] they consider the more general conditions $au''(\xi_1) - bu'''(\xi_1) = 0$, $cu''(\xi_2) + du'''(\xi_2) = 0$, $0 \le \xi_1 < \xi_2 \le 1$.

For the case where a = c = 1, b = d = 0, the existence of positive solutions to BVP (1.1) is also studied by [3] with h = 1, $\mathcal{B}_2 = \mathcal{B}_3$ and f(t, u, u'') in which the method of fixed point index

Received March 12, 2022; Accepted May 22, 2022

Supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. S202210145149).

^{*} Corresponding author

E-mail address: gwzhangneum@sina.com; gwzhang@mail.neu.edu.cn (Guowei ZHANG)

is used, by [4] with h = 1 and f(t, u, u''), and by [5] in which the computations of fixed point index in [6] are applied.

Let *E* be a real Banach space with the zero element denoted by θ . A nonempty closed convex set $P \subset E$ is called a cone if it satisfies the following two conditions: (i) $\lambda x \in P$ for $x \in P$ and $\lambda \geq 0$; (ii) $\pm x \in P$ implies $x = \theta$. For the properties of cones and fixed point index we refer to [7–10]. Denote $\mathbb{R}_+ = [0, \infty)$ and $\mathbb{R}_- = (-\infty, 0]$. A functional $\alpha : P \to \mathbb{R}_+$ is called to be sublinear if $\alpha(tx) \leq t\alpha(x)$ for all $x \in P$, $t \in [0, 1]$.

Lemma 1.1 ([6]) Let P be a cone in E and Ω be a bounded open subset relative to P with $\theta \in \Omega, S : \overline{\Omega} \to P$ be a completely continuous operator. Suppose that $\alpha : P \to \mathbb{R}_+$ is a continuous and sublinear functional with $\alpha(\theta) = 0, \alpha(x) \neq 0$ for $x \neq \theta$. If $Sx \neq x$ and $\alpha(Sx) \leq \alpha(x)$ for all $x \in \partial\Omega$, then the fixed point index $i(S, \Omega, P) = 1$.

Lemma 1.2 ([6]) Let P be a cone in E and Ω be a bounded open subset relative to P with $\theta \in \Omega, S : \overline{\Omega} \to P$ be a completely continuous operator. Suppose that $\alpha : P \to \mathbb{R}_+$ is a continuous and sublinear functional with $\alpha(\theta) = 0, \ \alpha(x) \neq 0$ for $x \neq \theta$, and $\inf_{x \in \partial\Omega} \alpha(x) > 0$. If $Sx \neq x$, $\alpha(Sx) \geq \alpha(x)$ for all $x \in \partial\Omega$, then the fixed point index $i(S, \Omega, P) = 0$.

2. Preliminaries

Take $\gamma_1(t) = 1$, $\gamma_2(t) = \frac{1}{6\delta}t(1-t)(2c+3d-ct)$ and $\gamma_3(t) = \frac{1}{6\delta}t(1-t)(a+3b+at)$, they are the solutions to $u^{(4)}(t) = 0$, respectively, subject to following boundary conditions:

$$u(0) = u(1) = 1, \ au''(0) - bu'''(0) = 0, \ cu''(1) + du'''(1) = 0;$$

$$u(0) = u(1) = 0, \ au''(0) - bu'''(0) + 1 = 0, \ cu''(1) + du'''(1) = 0;$$

$$u(0) = u(1) = 0, \ au''(0) - bu'''(0) = 0, \ cu''(1) + du'''(1) + 1 = 0.$$

Let

$$G_0(t,s) = \int_0^1 G_1(t,\xi) G_2(\xi,s) \mathrm{d}\xi,$$
(2.1)

where

$$G_1(t,\xi) = \begin{cases} \xi(1-t), & 0 \le \xi \le t \le 1, \\ t(1-\xi), & 0 \le t < \xi \le 1, \end{cases}$$
(2.2)

$$G_2(\xi, s) = \frac{1}{\delta} \begin{cases} (as+b)(c(1-\xi)+d), & 0 \le s \le \xi \le 1, \\ (a\xi+b)(c(1-s)+d), & 0 \le \xi < s \le 1. \end{cases}$$
(2.3)

 $G_0(t,s)$ is the Green's function associated with

$$\begin{cases} u^{(4)}(t) = 0, \ t \in [0, 1], \\ u(0) = u(1) = 0, \ au''(0) - bu'''(0) = 0, \ cu''(1) + du'''(1) = 0. \end{cases}$$

We assume that

(C₁) $f : [0,1] \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_- \to \mathbb{R}_+$ is continuous and $h \in L^1(0,1)$ with $h(t) \ge 0$ and $\int_0^1 h(t) dt > 0$.

(C₂) For each $i \in \{1, 2, 3\}$, \mathcal{B}_i is of bounded variation and

$$\mathcal{K}_i(s) := \int_0^1 G_0(t,s) \mathrm{d}\mathcal{B}_i(t) \ge 0, \quad \forall s \in [0,1].$$

(C₃) $\beta_i[\gamma_j] \ge 0$ (i, j = 1, 2, 3) and for the 3 × 3 matrix

$$[B] = \begin{pmatrix} \beta_1[\gamma_1] & \beta_1[\gamma_2] & \beta_1[\gamma_3] \\ \beta_2[\gamma_1] & \beta_2[\gamma_2] & \beta_2[\gamma_3] \\ \beta_3[\gamma_1] & \beta_3[\gamma_2] & \beta_3[\gamma_3] \end{pmatrix},$$

its spectral radius r([B]) < 1.

Let $E = C^2[0,1]$ be the Banach space consisting of all twice continuously differentiable functions on [0,1] with the norm

$$||u||_{C^2} = \max\{||u||_C, ||u'||_C, ||u''||_C\},\$$

where $||u||_{C} = \max\{|u(t)| : t \in [0, 1]\}$ for $u \in C[0, 1]$. Define an operator in $C^{2}[0, 1]$ as

$$(Tu)(t) = \sum_{i=1}^{3} \beta_i[u]\gamma_i(t) + \int_0^1 G_0(t,s)h(s)f(s,u(s),u'(s),u''(s))ds$$

where $\beta_i[u] = \int_0^1 u(t) \mathrm{d}\mathcal{B}_i(t)$ (i = 1, 2, 3). We set

$$(Bu)(t) =: \sum_{i=1}^{3} \beta_{i}[u]\gamma_{i}(t), \ (Fu)(t) =: \int_{0}^{1} G_{0}(t,s)h(s)f(s,u(s),u'(s),u''(s))ds,$$

so (Tu)(t) = (Bu)(t) + (Fu)(t). Writing $\langle \beta, \gamma \rangle = \sum_{i=1}^{3} \beta_i \gamma_i$ for the inner product in \mathbb{R}^3 , we define the operator S in $C^2[0, 1]$ as

$$(Su)(t) = \langle (I - [B])^{-1}\beta[Fu], \gamma(t) \rangle + (Fu)(t),$$

where $\beta[Fu] = (\beta_1[Fu], \beta_2[Fu], \beta_3[Fu])^T$ is the transposed vector. Similar to [11] we have the following lemmas.

Lemma 2.1 Suppose that (C_1) holds. Then BVP(1.1) has a solution if and only if there exists a fixed point of T in $C^2[0, 1]$.

Lemma 2.2 Suppose that $(C_1)-(C_3)$ hold. Then S can be written as

$$(Su)(t) = ((I - B)^{-1}Fu)(t)$$

= $\int_0^1 (\langle (I - [B])^{-1}\mathcal{K}(s), \gamma(t) \rangle + G_0(t, s))h(s)f(s, u(s), u'(s), u''(s))ds$
=: $\int_0^1 G_S(t, s)h(s)f(s, u(s), u'(s), u''(s))ds,$ (2.4)

where $\mathcal{K}(s) = (\mathcal{K}_1(s), \mathcal{K}_2(s), \mathcal{K}_3(s))^T$, i.e.,

$$G_S(t,s) = \langle (I - [B])^{-1} \mathcal{K}(s), \gamma(t) \rangle + G_0(t,s) = \sum_{i=1}^3 \kappa_i(s) \gamma_i(t) + G_0(t,s)$$
(2.5)

and $\kappa_i(s)$ is the *i*th component of $(I - [B])^{-1}\mathcal{K}(s)$.

Lemma 2.3 Let $\Gamma = \max\{\max_{t \in [0,1]} \gamma_1(t), \max_{t \in [0,1]} \gamma_2(t), \max_{t \in [0,1]} \gamma_3(t)\}$. If (C_2) and (C_3) hold, then $\kappa_i(s) \ge 0$ (i = 1, 2, 3),

$$G_S(0,s) = G_S(1,s) = \kappa_1(s), \tag{2.6}$$

and for $t, s \in [0, 1]$,

$$c_0(t)\Phi_0(s) \le G_S(t,s) \le \Phi_0(s),$$
(2.7)

where

$$\Phi_0(s) = \Gamma \sum_{i=1}^3 \kappa_i(s) + \int_0^1 G_1(\xi,\xi) G_2(\xi,s) \mathrm{d}\xi, \qquad (2.8)$$

$$c_0(t) = \min\{\frac{1}{\Gamma}\gamma_1(t), \frac{1}{\Gamma}\gamma_2(t), \frac{1}{\Gamma}\gamma_3(t), t, 1-t\},$$
(2.9)

$$c_1(t)\Phi_1(s) \le -\frac{\partial^2 G_S(t,s)}{\partial t^2} \le \Phi_1(s), \tag{2.10}$$

where

$$\Phi_1(s) = \frac{1}{\delta} \max\{a+b, c+d\}(\kappa_2(s)+\kappa_3(s)) + \frac{1}{\delta}(as+b)(c(1-s)+d),$$
(2.11)

$$c_1(t) = \frac{\min\{c(1-t) + d, at + b\}}{\max\{a + b, c + d\}}.$$
(2.12)

Proof By [11], we have $\kappa_i(s) \ge 0$ (i = 1, 2, 3), and (2.6) holds from (2.5). It follows from (2.2) that $G_1(t,\xi) \le G_1(\xi,\xi)$ for $t,\xi \in [0,1]$, then from (2.1) we have $G_S(t,s) \le \Phi_0(s)$. Since $G_1(t,\xi) \ge \min\{t, 1-t\}G_1(\xi,\xi)$, by (2.1) we have $G_0(t,s) \ge \min\{t, 1-t\}\int_0^1 G_1(\xi,\xi)G_2(\xi,s)d\xi$, and thus

$$G_S(t,s) = \Gamma \sum_{i=1}^{3} \kappa_i(s) (\frac{1}{\Gamma} \gamma_i(t)) + G_0(t,s) \ge c_0(t) \Phi_0(s).$$

Moreover,

$$-\frac{\partial^2 G_S(t,s)}{\partial t^2} = -\sum_{i=2}^3 \kappa_i(s)\gamma_i''(t) - \frac{\partial^2 G_0(t,s)}{\partial t^2}$$
$$= \frac{1}{\delta}((c(1-t)+d)\kappa_2(s) + (at+b)\kappa_3(s)) + G_2(t,s) \le \Phi_1(s).$$

As for $-\frac{\partial^2 G_S(t,s)}{\partial t^2} \ge c_1(t)\Phi_1(s)$, it can be checked easily. \Box

Define a cone P in E as follows:

$$P = \left\{ u \in E : u(0) = u(1), \quad u(t) \ge c_0(t) \| u \|_C, \\ - u''(t) \ge c_1(t) \| u'' \|_C, \quad \forall t \in [0,1]; \quad \beta_i[u] \ge 0 \quad (i = 1, 2, 3) \right\}.$$
(2.13)

By the method due to Webb and Infante [11] we have the following lemma.

Lemma 2.4 Suppose that $(C_1)-(C_3)$ hold. Then $S: P \to P$ is a completely continuous operator, S and T have the same fixed points in P. As a result, BVP(1.1) has a positive solution if and only if S has a fixed point in P.

3. Main results

Take $\tau \in (0,1/2)$ such that $\int_{\tau}^{1-\tau} h(t) \mathrm{d}t > 0$ and denote

$$h_{0} = \max \left\{ \int_{0}^{1} \Phi_{0}(t)h(t)dt, \int_{0}^{1} \Phi_{1}(t)h(t)dt \right\},$$
$$h_{\tau} = \min \left\{ \int_{\tau}^{1-\tau} \Phi_{0}(t)h(t)dt, \int_{\tau}^{1-\tau} \Phi_{1}(t)h(t)dt \right\}.$$

Lemma 3.1 If (C_2) and (C_3) hold, define a functional $\alpha: P \to \mathbb{R}_+$ as

$$\alpha(u) = \max\{\max_{\tau \le t \le 1-\tau} |u(t)|, \ \max_{\tau \le t \le 1-\tau} |u''(t)|\},\$$

then α is a continuous and sublinear functional with $\alpha(\theta) = 0$, $\alpha(u) \neq 0$ for $u \neq \theta$.

Denote several constants by

$$\overline{c}_0 = \max_{\tau \le t \le 1-\tau} c_0(t), \ \overline{c}_1 = \max_{\tau \le t \le 1-\tau} c_1(t), \ \underline{c}_0 = \min_{\tau \le t \le 1-\tau} c_0(t), \ \underline{c}_1 = \min_{\tau \le t \le 1-\tau} c_1(t)$$

and $\overline{c} = \min\{\overline{c}_0, \overline{c}_1\}.$

Theorem 3.2 Suppose that $(C_1)-(C_3)$ are satisfied. If there exist constants a_1 and b_1 with $0 < b_1 < a_1$ satisfying $b_1 < a_1 \min\{\overline{c}_0 \underline{c}_0, \overline{c}_1 \underline{c}_1\}$, such that

$$f(t, x_1, x_2, x_3) \le \frac{b_1}{h_0} \tag{3.1}$$

for $(t, x_1, x_2, x_3) \in D_1 = [0, 1] \times [0, b_1/\overline{c}_0] \times [-b_1/\overline{c}_1, b_1/\overline{c}_1] \times [-b_1/\overline{c}_1, 0]$, and

$$f(t, x_1, x_2, x_3) \ge \frac{a_1}{\overline{c}h_\tau} \tag{3.2}$$

for $(t, x_1, x_2, x_3) \in D_2 \cup D_3$, where

$$D_2 = [0,1] \times [\underline{c}_0 a_1, a_1] \times [-a_1/\overline{c}_1, a_1/\overline{c}_1] \times [-a_1, 0],$$

$$D_3 = [0,1] \times [0,a_1] \times [-a_1/\overline{c}_1, a_1/\overline{c}_1] \times [-a_1, -\underline{c}_1 a_1],$$

then BVP(1.1) has at least one positive solution.

Proof Obviously, $D_1 \cap (D_2 \cup D_3) = \emptyset$ since $b_1 < a_1 \min\{\overline{c}_0 \underline{c}_0, \overline{c}_1 \underline{c}_1\}$. Let

$$\Omega_1 = \{ u \in P : \alpha(u) < b_1 \}, \quad \Omega_2 = \{ u \in P : \alpha(u) < a_1 \}.$$

It is clear that $\overline{\Omega}_1 \subset \Omega_2$, both Ω_1 and Ω_2 are open sets in P with $\theta \in \Omega_1$.

If $u \in \Omega_2$, by Lemma 2.3, we have

$$a_{1} > \max_{\tau \le t \le 1-\tau} |u(t)| \ge (\max_{\tau \le t \le 1-\tau} c_{0}(t)) ||u||_{C} = \overline{c}_{0} ||u||_{C},$$

$$a_{1} \ge \max_{\tau \le t \le 1-\tau} |u''(t)| \ge (\max_{\tau \le t \le 1-\tau} c_{1}(t)) ||u''||_{C} = \overline{c}_{1} ||u''||_{C}.$$

Since u(0) = u(1), there exists $\eta \in (0, 1)$ such that $u'(\eta) = 0$ and thus

$$||u'||_C = \max_{0 \le t \le 1} |u'(t)| \le \max_{0 \le t \le 1} \left| \int_{\eta}^t |u''(s)| \mathrm{d}s \right| \le ||u''||_C \le \frac{a_1}{\overline{c_1}}.$$

Therefore, Ω_2 is bounded. Similarly, $\|u\|_C \leq b_1/\overline{c}_0$, $\|u'\|_C \leq b_1/\overline{c}_1$, $\|u''\|_C \leq b_1/\overline{c}_1$ for $u \in \Omega_1$. If $u \in \partial \Omega_1$, then $\alpha(u) = b_1$. From Lemma 2.3 and (3.1) it follows that

$$\begin{split} & \max_{\tau \le t \le 1-\tau} |(Su)(t)| \le \frac{b_1}{h_0} \int_0^1 \Phi_0(s) h(s) \mathrm{d}s \le b_1, \\ & \max_{\tau \le t \le 1-\tau} |(Su)''(t)| \le \frac{b_1}{h_0} \int_0^1 \Phi_1(s) h(s) \mathrm{d}s \le b_1, \end{split}$$

and hence $\alpha(Su) \leq \alpha(u)$. So by Lemma 1.1 the fixed point index

$$i(S,\Omega_1,P) = 1 \tag{3.3}$$

if $Su \neq u$ for $u \in \partial \Omega_1$.

If $u \in \partial \Omega_2$, then $\alpha(u) = a_1$ and by Lemma 2.3 for $t \in [\tau, 1 - \tau]$,

$$a_1 \ge u(t) \ge c_0(t) \|u\|_C \ge (\min_{\tau \le t \le 1-\tau} c_0(t)) \|u\|_C \ge \underline{c}_0 \max_{\tau \le t \le 1-\tau} |u(t)|,$$
(3.4)

$$a_1 \ge -u''(t) \ge c_1(t) \|u''\|_C \ge (\min_{\tau \le t \le 1-\tau} c_1(t)) \|u''\|_C \ge \underline{c}_1 \max_{\tau \le t \le 1-\tau} |u''(t)|.$$
(3.5)

When $\alpha(u) = a_1 = \max_{\tau \le t \le 1-\tau} |u(t)|$, it follows from Lemma 2.3, together with (3.2) and (3.4), that

$$\begin{aligned} \max_{\tau \le t \le 1-\tau} |(Su)(t)| &= \max_{\tau \le t \le 1-\tau} \left| \int_0^1 G_S(t,s)h(s)f(s,u(s),u'(s),u''(s))ds \right| \\ &\geq (\max_{\tau \le t \le 1-\tau} c_0(t)) \int_{\tau}^{1-\tau} \Phi_0(s)h(s)f(s,u(s),u'(s),u''(s))ds \\ &\geq \overline{c}_0 \times \frac{a_1}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_0(s)h(s)ds \ge \overline{c} \times \frac{a_1}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_0(s)h(s)ds \ge a_1, \\ \max_{\tau \le t \le 1-\tau} |(Su)''(t)| &= \max_{\tau \le t \le 1-\tau} \left| \int_0^1 \frac{\partial^2 G_S(t,s)}{\partial t^2} h(s)f(s,u(s),u'(s),u''(s))ds \right| \\ &\geq (\max_{\tau \le t \le 1-\tau} c_1(t)) \int_{\tau}^{1-\tau} \Phi_1(s)h(s)f(s,u(s),u'(s),u''(s))ds \\ &\geq \overline{c}_1 \times \frac{a_1}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_1(s)h(s)ds \ge \overline{c} \times \frac{a_1}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_1(s)h(s)ds \ge a_1, \end{aligned}$$

and hence $\alpha(Su) \geq \alpha(u)$; when $\alpha(u) = a_1 = \max_{\tau \leq t \leq 1-\tau} |u''(t)|$, it similarly follows from Lemma 2.3, together with (3.2) and (3.5), that $\alpha(Su) \geq \alpha(u)$. So by Lemma 1.2 and since $\inf_{x \in \partial \Omega_2} \alpha(u) = a_1 > 0$, the fixed point index

$$i(S,\Omega_2,P) = 0 \tag{3.6}$$

if $Su \neq u$ for $u \in \partial \Omega_2$.

From (3.3) and (3.6) it follows that S has at least one fixed point, and hence BVP (1.1) has at least one positive solution by Lemma 2.4. \Box

Theorem 3.3 Suppose that $(C_1)-(C_3)$ are satisfied. If there exist constants a_2 and b_2 with $0 < b_2 < a_2$ satisfying $b_2 < \overline{c}h_{\tau}h_0^{-1}a_2$, such that

$$f(t, x_1, x_2, x_3) \ge \frac{b_2}{\overline{c}h_{\tau}} \tag{3.7}$$

for $(t, x_1, x_2, x_3) \in D_4 \cup D_5$, where

$$D_{4} = [0, 1] \times [\underline{c}_{0}b_{2}, b_{2}] \times [-b_{2}/\overline{c}_{1}, b_{2}/\overline{c}_{1}] \times [-b_{2}, 0],$$

$$D_{5} = [0, 1] \times [0, b_{2}] \times [-b_{2}/\overline{c}_{1}, b_{2}/\overline{c}_{1}] \times [-b_{2}, -\underline{c}_{1}b_{2}],$$

$$f(t, x_{1}, x_{2}, x_{3}) \leq \frac{a_{2}}{h_{0}}$$
(3.8)

for $(t, x_1, x_2, x_3) \in D_6 = [0, 1] \times [0, a_2/\overline{c}_0] \times [-a_2/\overline{c}_1, a_2/\overline{c}_1] \times [-a_2/\overline{c}_1, 0]$, then BVP (1.1) has at least one positive solution.

Proof Obviously, $D_4 \cup D_5 \subset D_6$ due to $\overline{c}_0 \leq 1$ and $\overline{c}_1 \leq 1$; however (3.7) and (3.8) are wellposed since $b_2 < \overline{c}h_\tau h_0^{-1}a_2$. Let $\Omega_1 = \{u \in P : \alpha(u) < b_2\}$, $\Omega_2 = \{u \in K : \alpha(u) < a_2\}$, we know from the proof of Theorem 3.2 that Ω_1 and Ω_2 are bounded open sets in P with $0 \in \Omega_1$ and $\overline{\Omega}_1 \subset \Omega_2$. Moreover, $\|u\|_C \leq b_2/\overline{c}_0, \|u'\|_C \leq b_2/\overline{c}_1, \|u''\|_C \leq b_2/\overline{c}_1$ for $u \in \Omega_1$; $\|u\|_C \leq a_2/\overline{c}_0, \|u'\|_C \leq a_2/\overline{c}_1, \|u''\|_C \leq a_2/\overline{c}_1$ for $u \in \Omega_2$.

If $u \in \partial \Omega_1$, then $\alpha(u) = b_2$ and by Lemma 2.3 for $t \in [\tau, 1 - \tau]$,

$$b_2 \ge u(t) \ge c_0(t) \|u\|_C \ge (\min_{\tau \le t \le 1-\tau} c_0(t)) \|u\|_C \ge \underline{c}_0 \|u\|_C \ge \underline{c}_0 \max_{\tau \le t \le 1-\tau} |u(t)|,$$
(3.9)

$$b_2 \ge -u''(t) \ge c_1(t) \|u''\|_C \ge (\min_{\tau \le t \le 1-\tau} c_1(t)) \|u\|_C \ge \underline{c}_1 \max_{\tau \le t \le 1-\tau} |u''(t)|.$$
(3.10)

When $\alpha(u) = b_2 = \max_{\tau \le t \le 1-\tau} |u(t)|$, it follows from Lemma 2.3, as well as (3.7) and (3.9), that

$$\begin{aligned} \max_{\tau \le t \le 1-\tau} |(Su)(t)| &= \max_{\tau \le t \le 1-\tau} \left| \int_{0}^{1} G_{S}(t,s)h(s)f(s,u(s),u'(s),u''(s))ds \right| \\ &\geq (\max_{\tau \le t \le 1-\tau} c_{0}(t)) \int_{\tau}^{1-\tau} \Phi_{0}(s)h(s)f(s,u(s),u'(s),u''(s))ds \\ &\geq \overline{c}_{0} \times \frac{b_{2}}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_{0}(s)h(s)ds \ge \overline{c} \times \frac{b_{2}}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_{0}(s)h(s)ds \ge b_{2}, \\ \max_{\tau \le t \le 1-\tau} |(Su)''(t)| &= \max_{\tau \le t \le 1-\tau} \left| \int_{0}^{1} \frac{\partial^{2}G_{S}(t,s)}{\partial t^{2}}h(s)f(s,u(s),u'(s),u''(s))ds \right| \\ &\geq (\max_{\tau \le t \le 1-\tau} c_{1}(t)) \int_{\tau}^{1-\tau} \Phi_{1}(s)h(s)f(s,u(s),u'(s),u''(s))ds \\ &\geq \overline{c}_{1} \times \frac{b_{2}}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_{1}(s)h(s)ds \ge \overline{c} \times \frac{b_{2}}{\overline{c}h_{\tau}} \int_{\tau}^{1-\tau} \Phi_{1}(s)h(s)ds \ge b_{2}, \end{aligned}$$

and hence $\alpha(Su) \geq \alpha(u)$; when $\alpha(u) = b_2 = \max_{\tau \leq t \leq 1-\tau} |u''(t)|$, it similarly follows from Lemma 2.3, together with (3.7) and (3.10), that $\alpha(Su) \geq \alpha(u)$. So by Lemma 1.2 and since $\inf_{x \in \partial \Omega_1} \alpha(u) = b_2 > 0$, the fixed point index

$$i(S,\Omega_1,P) = 0 \tag{3.11}$$

if $Su \neq u$ for $u \in \partial \Omega_1$.

If $u \in \partial \Omega_2$, then $\alpha(u) = a_2$ and from Lemma 2.3 and (3.8) it follows that

$$\max_{\tau \le t \le 1-\tau} |(Su)(t)| \le \frac{a_2}{h_0} \int_0^1 \Phi_0(s) h(s) \mathrm{d}s \le a_2,$$

Chunlei SONG, Wei CHEN and Guowei ZHANG

$$\max_{\tau \le t \le 1-\tau} |(Su)''(t)| \le \frac{a_2}{h_0} \int_0^1 \Phi_1(s) h(s) \mathrm{d}s \le a_2,$$

and hence $\alpha(Su) \leq \alpha(u)$. So by Lemma 1.1 the fixed point index

$$i(S, \Omega_2, P) = 1 \tag{3.12}$$

if $Su \neq u$ for $u \in \partial \Omega_2$.

From (3.11) and (3.12) it follows that S has at least one fixed point, and hence BVP (1.1) has at least one positive solution by Lemma 2.4. \Box

Remark 3.4 If a = c = 1, b = d = 0, BVP (1.1) is

$$\begin{cases} u^{(4)}(t) = h(t)f(t, u(t), u'(t), u''(t)), & t \in (0, 1), \\ u(0) = u(1) = \beta_1[u], & u''(0) + \beta_2[u] = 0, & u''(1) + \beta_3[u] = 0, \end{cases}$$
(3.13)

then $\delta = 1$, $\gamma_1(t) = 1$, $\gamma_2(t) = \frac{1}{6}t(1-t)(2-t)$, $\gamma_3(t) = \frac{1}{6}t(1-t)(1+t)$ and $\Gamma = 1$,

$$c_0(t) = \min\{\frac{1}{6}t(1-t)(2-t), \frac{1}{6}t(1-t)(1+t)\}, \ c_1(t) = \min\{t, 1-t\}\}$$

Then $\overline{c}_0 = \frac{1}{16}$, $\overline{c}_1 = \frac{1}{2}$, $\underline{c}_0 = \frac{1}{6}\tau(1-\tau)(1+\tau)$, $\underline{c}_1 = \tau$, $\overline{c} = \frac{1}{16}$ for $\tau \in (0, \frac{1}{2})$. For this case we can see [5] and [4, Remark 3.2]. \Box

Now as the examples we consider fourth-order problems under mixed boundary conditions involving multi-point with sign-changing coefficients and integral with sign-changing kernel

$$\begin{cases} u^{(4)}(t) = \frac{1}{\sqrt{t(1-t)}} f(t, u(t), u'(t), u''(t)), & t \in (0, 1), \\ u(0) = u(1) = \frac{1}{4} u(\frac{1}{4}) - \frac{1}{12} u(\frac{3}{4}), \\ u''(0) - u'''(0) - \int_0^1 u(t) \cos(2\pi t) dt = 0, & u''(1) + u'''(1) + \frac{1}{2} u(\frac{1}{2}) - \frac{1}{4} u(\frac{3}{4}) = 0, \end{cases}$$
(3.14)

that is, $\beta_1[u] = \frac{1}{4}u(\frac{1}{4}) - \frac{1}{12}u(\frac{3}{4}), \ \beta_2[u] = -\int_0^1 u(t)\cos(2\pi t)dt, \ \beta_3[u] = \frac{1}{2}u(\frac{1}{2}) - \frac{1}{4}u(\frac{3}{4}), \ \text{and} \ a = b = c = d = 1, \ \delta = 3, \ \gamma_1(t) = 1, \ \gamma_2(t) = \frac{1}{18}t(1-t)(5-t), \ \gamma_3(t) = \frac{1}{18}t(1-t)(4+t), \ \Gamma = 1,$

$$G_0(t,s) = \frac{1}{18} \begin{cases} (1-t)(t(5-t)(1+s) - 3s^3), & 0 \le s \le t \le 1, \\ t(5-9s^2 + 3s^3 - 6t - 2t^2 + s(5+3t+t^2)), & 0 \le t < s \le 1. \end{cases}$$

Hence for $s \in [0, 1]$,

$$0 \leq \mathcal{K}_{1}(s) = \frac{1}{4}G_{0}(\frac{1}{4}, s) - \frac{1}{12}G_{0}(\frac{3}{4}, s)$$

$$= \begin{cases} -\frac{1}{36}s^{3} + \frac{5}{576}s + \frac{5}{576}, & 0 \leq s \leq \frac{1}{4}, \\ \frac{1}{72}s^{3} - \frac{1}{32}s^{2} + \frac{19}{1152}s + \frac{37}{4608}, & \frac{1}{4} < s \leq \frac{3}{4}, \\ -\frac{1}{144}s + \frac{1}{72}, & \frac{3}{4} < s \leq 1, \end{cases}$$

$$\mathcal{K}_{2}(s) = -\int_{0}^{1}G_{0}(t, s)\cos(2\pi t)dt = \frac{1 + \pi^{2}(2 + 2s - 2s^{2}) - \cos(2\pi s)}{16\pi^{4}} \geq 0,$$

98

$$0 \leq \mathcal{K}_{3}(s) = \frac{1}{2}G_{0}(\frac{1}{2}, s) - \frac{1}{4}G_{0}(\frac{3}{4}, s)$$

$$= \begin{cases} -\frac{1}{32}s^{3} + \frac{31}{1536}s + \frac{31}{1536}, & 0 \leq s \leq \frac{1}{2}, \\ \frac{5}{96}s^{3} - \frac{1}{8}s^{2} + \frac{127}{1536}s + \frac{5}{512}, & \frac{1}{2} < s \leq \frac{3}{4}, \\ \frac{1}{96}s^{3} - \frac{1}{32}s^{2} + \frac{19}{1536}s + \frac{7}{256}, & \frac{3}{4} < s \leq 1 \end{cases}$$

and the 3×3 matrix

$$[B] = \begin{pmatrix} \beta_1[\gamma_1] & \beta_1[\gamma_2] & \beta_1[\gamma_3] \\ \beta_2[\gamma_1] & \beta_2[\gamma_2] & \beta_2[\gamma_3] \\ \beta_3[\gamma_1] & \beta_3[\gamma_2] & \beta_3[\gamma_3] \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & \frac{5}{576} & \frac{1}{144} \\ 0 & \frac{1}{8\pi^2} & \frac{1}{8\pi^2} \\ \frac{1}{4} & \frac{31}{1536} & \frac{29}{1536} \end{pmatrix}.$$

Its spectral radius is $r([B]) \approx 0.1787 < 1$. This means that (C₂) and (C₃) are satisfied. Moreover,

$$\begin{aligned} \kappa_1(s) &\approx 1.2026\mathcal{K}_1(s) + 0.0107\mathcal{K}_2(s) + 0.0087\mathcal{K}_3(s), \\ \kappa_2(s) &\approx 0.0039\mathcal{K}_1(s) + 1.0131\mathcal{K}_2(s) + 0.0131\mathcal{K}_3(s), \\ \kappa_3(s) &\approx 0.3065\mathcal{K}_1(s) + 0.0236\mathcal{K}_2(s) + 1.0217\mathcal{K}_3(s), \end{aligned}$$

$$\Phi_0(s) &= \sum_{i=1}^3 \kappa_i(s) + \frac{1}{12}(1+s-2s^3+s^4), \ \Phi_1(s) &= \frac{2}{3}\sum_{i=2}^3 \kappa_i(s) + \frac{1}{3}(1+s)(2-s), \\ c_0(t) &= \min\{\frac{1}{18}t(1-t)(5-t), \frac{1}{18}t(1-t)(4+t)\}, \ c_1(t) &= \frac{1}{2}\min\{2-t, 1+t\}. \end{aligned}$$

Take $\tau = 1/4$ and then $\overline{c}_0 = \frac{1}{16}$, $\overline{c}_1 = \frac{3}{4}$, $\underline{c}_0 = \frac{17}{384}$, $\underline{c}_1 = \frac{5}{8}$, $\overline{c} = \frac{1}{16}$,

$$h_0 = \max\left\{\int_0^1 \Phi_0(t)h(t)dt, \int_0^1 \Phi_1(t)h(t)dt\right\} \approx \max\{0.4658, 2.3121\} = 2.3121,$$

$$h_\tau = \min\left\{\int_{1/4}^{3/4} \Phi_0(t)h(t)dt, \int_{1/4}^{3/4} \Phi_1(t)h(t)dt\right\} \approx \min\{0.1737, 0.8105\} = 0.1737.$$

Example 3.5 If $f(t, x_1, x_2, x_3) = 123x_1^2 + tx_2^2 + x_3^2$, then BVP (3.14) has a positive solution.

Proof For $a_1 = 384$, $b_1 = 3 \times 10^{-6}$, it is clear that $b_1 < a_1 \min\{\overline{c}_0 \underline{c}_0, \overline{c}_1 \underline{c}_1\} = \frac{17}{16} = 1.0625$. Moreover,

$$f(t, x_1, x_2, x_3) \le 123 \times (48 \times 10^{-6})^2 + 2 \times (4 \times 10^{-6})^2 \approx 0.2834 \times 10^{-6} < \frac{b_1}{h_0} \approx 1.2975 \times 10^{-6}$$

for $(t, x_1, x_2, x_3) \in D_1 = [0, 1] \times [0, 48 \times 10^{-6}] \times [-4 \times 10^{-6}, 4 \times 10^{-6}] \times [-4 \times 10^{-6}, 0];$
 $f(t, x_1, x_2, x_3) \ge 123 \times 17^2 = 35547 > \frac{a_1}{\overline{c}h_\tau} \approx 35371.3$

for $(t, x_1, x_2, x_3) \in D_2 = [0, 1] \times [17, 384] \times [-512, 512] \times [-384, 0];$

$$f(t, x_1, x_2, x_3) \ge (-240)^2 = 57600 > \frac{a_1}{\overline{c}h_\tau} \approx 35371.3$$

for $(t, x_1, x_2, x_3) \in D_3 = [0, 1] \times [0, 384] \times [-512, 512] \times [-384, -240]$. Then BVP (3.14) has a positive solution by Theorem 3.2. \Box

Example 3.6 If $f(t, x_1, x_2, x_3) = 123000(1 - \frac{1}{1+x_1^2+tx_2^2+x_3^2})$, then BVP (3.14) has a positive solution.

Proof For $a_2 = 284400$, $b_2 = 0.384$, it is clear that $b_2 < \overline{c}h_\tau h_0^{-1} a_2 \approx 1335.37$. Moreover,

$$f(t, x_1, x_2, x_3) \ge 123000(1 - \frac{1}{1 + 0.017^2}) \approx 35.5367 > \frac{b_2}{\overline{c}h_\tau} \approx 35.3713$$

for $(t, x_1, x_2, x_3) \in D_4 = [0, 1] \times [0.017, 0.384] \times [-0.512, 0.512] \times [-0.384, 0];$

$$f(t, x_1, x_2, x_3) \ge 123000(1 - \frac{1}{1 + 0.24^2}) \approx 6698.94 > \frac{b_2}{\overline{c}h_\tau} \approx 35.3713$$

for $(t, x_1, x_2, x_3) \in D_5 = [0, 1] \times [0, 0.384] \times [-0.512, 0.512] \times [-0.384, -0.24];$

$$f(t, x_1, x_2, x_3) \le 123000 < \frac{a_2}{h_0} \approx 123005$$

for $(t, x_1, x_2, x_3) \in D_6 = [0, 1] \times [0, 4550400] \times [-379200, 379200] \times [-379200, 0]$. Then BVP (3.14) has a positive solution by Theorem 3.3. \Box

Acknowledgements We thank the referees for their time and comments.

References

- Chuanzhi BAI, Dandan YANG, Hongbo ZHU. Existence of solutions for fourth order differential equation with four-point boundary conditions. Appl. Math. Lett., 2007, 20(11): 1131–1136.
- [2] Zheng FANG, Chunhong LI, Chuanzhi BAI. Multiple positive solutions of fourth-order four-point boundaryvalue problems with changing sign coefficient. Electron. J. Differential Equations 2008, No. 159, 10 pp.
- [3] Lin HAN, Guowei ZHANG, Hongyu LI. Positive solutions of fourth-order problem subject to nonlocal boundary conditions. Bull. Malays. Math. Sci. Soc., 2020, 43(5): 3675–3691.
- Ying ZHU, Yenan MA, Guowei ZHANG. Positive solutions for a class of fourth-order problem under nonlocal boundary value conditions. Math. Appl. (Wuhan), 2022, 35(2): 453–462.
- [5] Shenglin WANG, Jialong CHAI, Guowei ZHANG. Positive solutions of beam equations under nonlocal boundary value conditions. Adv. Difference Equ. 2019, Paper No. 470, 13 pp.
- [6] R. AVERY, J. HENDERSON, D. O'REGAN. Functional compression-expansion fixed point theorem. Electron. J. Differential Equations 2008, No. 22, 12 pp.
- [7] K. DEIMLING. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
- [8] Dajun GUO, V. LAKSHMIKANTHAM. Nonlinear Problems in Abstract Cones. Academic Press, Boston, 1988.
- [9] Jingxian SUN. Nonlinear Functional Analysis and Its Applications. Science Press, Beijing, 2007. (in Chinese)
- [10] Guowei ZHANG. The Theory and Applications of Fixed Point Methods. Science Press, Beijing, 2017. (in Chinese)
- [11] J. R. L. WEBB, G. INFANTE. Nonlocal boundary value problems of arbitrary order. J. London Math. Soc., 2009, 79(1): 238–259.