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Abstract In this paper, we study the fourth-order problem with the first and second deriva-

tives in nonlinearity under nonlocal boundary value conditions of Sturm-Liouville type involving

Stieltjes integrals. Some inequality conditions on nonlinearity are presented that guarantee the

existence of positive solutions to the problem by the theory of fixed point index on a special

cone. Some examples are provided to support the main results under mixed boundary con-

ditions containing multi-point with sign-changing coefficients and integral with sign-changing

kernel.
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1. Introduction

In this paper, we investigate the existence of positive solutions for fourth-order boundary

value problem (BVP) with dependence on the first and second derivatives in nonlinearity subject

to boundary conditions of Stieltjes integral type
{

u(4)(t) = h(t)f(t, u(t), u′(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = β1[u], au′′(0)− bu′′′(0) + β2[u] = 0, cu′′(1) + du′′′(1) + β3[u] = 0,
(1.1)

where a, b, c, d are nonnegative constants with δ = ad + bc + ac 6= 0, βi[u] =
∫ 1

0 u(t)dBi(t) is

Stieltjes integral with Bi of bounded variation (i = 1, 2, 3).

For the case where Bi = 0 (i = 1, 2, 3), BVP (1.1) is investigated respectively by [1] with h = 1

and f(t, u) which relies on a nonlinear alternative of Leray-Schauder type, and by [2] with h sign-

changing and f(u, u′′) which applies the Avery-Peterson fixed point theorem in a cone. In fact,

in [1,2] they consider the more general conditions au′′(ξ1)− bu′′′(ξ1) = 0, cu′′(ξ2)+ du′′′(ξ2) = 0,

0 ≤ ξ1 < ξ2 ≤ 1.

For the case where a = c = 1, b = d = 0, the existence of positive solutions to BVP (1.1) is

also studied by [3] with h = 1, B2 = B3 and f(t, u, u′′) in which the method of fixed point index
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is used, by [4] with h = 1 and f(t, u, u′′), and by [5] in which the computations of fixed point

index in [6] are applied.

Let E be a real Banach space with the zero element denoted by θ. A nonempty closed convex

set P ⊂ E is called a cone if it satisfies the following two conditions: (i) λx ∈ P for x ∈ P and

λ ≥ 0; (ii) ±x ∈ P implies x = θ. For the properties of cones and fixed point index we refer

to [7–10]. Denote R+ = [0,∞) and R− = (−∞, 0]. A functional α : P → R+ is called to be

sublinear if α(tx) ≤ tα(x) for all x ∈ P, t ∈ [0, 1].

Lemma 1.1 ([6]) Let P be a cone in E and Ω be a bounded open subset relative to P with

θ ∈ Ω, S : Ω → P be a completely continuous operator. Suppose that α : P → R+ is a continuous

and sublinear functional with α(θ) = 0, α(x) 6= 0 for x 6= θ. If Sx 6= x and α(Sx) ≤ α(x) for all

x ∈ ∂Ω, then the fixed point index i(S,Ω, P ) = 1.

Lemma 1.2 ([6]) Let P be a cone in E and Ω be a bounded open subset relative to P with

θ ∈ Ω, S : Ω → P be a completely continuous operator. Suppose that α : P → R+ is a continuous

and sublinear functional with α(θ) = 0, α(x) 6= 0 for x 6= θ, and infx∈∂Ω α(x) > 0. If Sx 6= x,

α(Sx) ≥ α(x) for all x ∈ ∂Ω, then the fixed point index i(S,Ω, P ) = 0.

2. Preliminaries

Take γ1(t) = 1, γ2(t) =
1
6δ t(1− t)(2c+ 3d− ct) and γ3(t) =

1
6δ t(1− t)(a+ 3b+ at), they are

the solutions to u(4)(t) = 0, respectively, subject to following boundary conditions:

u(0) = u(1) = 1, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0;

u(0) = u(1) = 0, au′′(0)− bu′′′(0) + 1 = 0, cu′′(1) + du′′′(1) = 0;

u(0) = u(1) = 0, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) + 1 = 0.

Let

G0(t, s) =

∫ 1

0

G1(t, ξ)G2(ξ, s)dξ, (2.1)

where

G1(t, ξ) =

{

ξ(1− t), 0 ≤ ξ ≤ t ≤ 1,

t(1− ξ), 0 ≤ t < ξ ≤ 1,
(2.2)

G2(ξ, s) =
1

δ

{

(as+ b)(c(1 − ξ) + d), 0 ≤ s ≤ ξ ≤ 1,

(aξ + b)(c(1− s) + d), 0 ≤ ξ < s ≤ 1.
(2.3)

G0(t, s) is the Green’s function associated with
{

u(4)(t) = 0, t ∈ [0, 1],

u(0) = u(1) = 0, au′′(0)− bu′′′(0) = 0, cu′′(1) + du′′′(1) = 0.

We assume that

(C1) f : [0, 1] × R+ × R × R− → R+ is continuous and h ∈ L1(0, 1) with h(t) ≥ 0 and
∫ 1

0 h(t)dt > 0.
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(C2) For each i ∈ {1, 2, 3}, Bi is of bounded variation and

Ki(s) :=

∫ 1

0

G0(t, s)dBi(t) ≥ 0, ∀s ∈ [0, 1].

(C3) βi[γj ] ≥ 0 (i, j = 1, 2, 3) and for the 3× 3 matrix

[B] =







β1[γ1] β1[γ2] β1[γ3]

β2[γ1] β2[γ2] β2[γ3]

β3[γ1] β3[γ2] β3[γ3]






,

its spectral radius r([B]) < 1.

Let E = C2[0, 1] be the Banach space consisting of all twice continuously differentiable

functions on [0, 1] with the norm

‖u‖C2 = max{‖u‖C, ‖u′‖C , ‖u′′‖C},

where ‖u‖C = max{|u(t)| : t ∈ [0, 1]} for u ∈ C[0, 1]. Define an operator in C2[0, 1] as

(Tu)(t) =

3
∑

i=1

βi[u]γi(t) +

∫ 1

0

G0(t, s)h(s)f(s, u(s), u
′(s), u′′(s))ds,

where βi[u] =
∫ 1

0
u(t)dBi(t) (i = 1, 2, 3). We set

(Bu)(t) =:

3
∑

i=1

βi[u]γi(t), (Fu)(t) =:

∫ 1

0

G0(t, s)h(s)f(s, u(s), u
′(s), u′′(s))ds,

so (Tu)(t) = (Bu)(t) + (Fu)(t). Writing 〈β, γ〉 =
∑3

i=1 βiγi for the inner product in R
3, we

define the operator S in C2[0, 1] as

(Su)(t) = 〈(I − [B])−1β[Fu], γ(t)〉+ (Fu)(t),

where β[Fu] = (β1[Fu], β2[Fu], β3[Fu])T is the transposed vector. Similar to [11] we have the

following lemmas.

Lemma 2.1 Suppose that (C1) holds. Then BVP (1.1) has a solution if and only if there exists

a fixed point of T in C2[0, 1].

Lemma 2.2 Suppose that (C1)–(C3) hold. Then S can be written as

(Su)(t) = ((I −B)−1Fu)(t)

=

∫ 1

0

(〈(I − [B])−1K(s), γ(t)〉 +G0(t, s))h(s)f(s, u(s), u
′(s), u′′(s))ds

=:

∫ 1

0

GS(t, s)h(s)f(s, u(s), u
′(s), u′′(s))ds, (2.4)

where K(s) = (K1(s),K2(s),K3(s))
T , i.e.,

GS(t, s) = 〈(I − [B])−1K(s), γ(t)〉 +G0(t, s) =
3

∑

i=1

κi(s)γi(t) +G0(t, s) (2.5)

and κi(s) is the ith component of (I − [B])−1K(s).
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Lemma 2.3 Let Γ = max{maxt∈[0,1] γ1(t),maxt∈[0,1] γ2(t),maxt∈[0,1] γ3(t)}. If (C2) and (C3)

hold, then κi(s) ≥ 0 (i = 1, 2, 3),

GS(0, s) = GS(1, s) = κ1(s), (2.6)

and for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ GS(t, s) ≤ Φ0(s), (2.7)

where

Φ0(s) = Γ

3
∑

i=1

κi(s) +

∫ 1

0

G1(ξ, ξ)G2(ξ, s)dξ, (2.8)

c0(t) = min{ 1
Γ
γ1(t),

1

Γ
γ2(t),

1

Γ
γ3(t), t, 1− t}, (2.9)

c1(t)Φ1(s) ≤ −∂2GS(t, s)

∂t2
≤ Φ1(s), (2.10)

where

Φ1(s) =
1

δ
max{a+ b, c+ d}(κ2(s) + κ3(s)) +

1

δ
(as+ b)(c(1− s) + d), (2.11)

c1(t) =
min{c(1− t) + d, at+ b}

max{a+ b, c+ d} . (2.12)

Proof By [11], we have κi(s) ≥ 0 (i = 1, 2, 3), and (2.6) holds from (2.5). It follows from

(2.2) that G1(t, ξ) ≤ G1(ξ, ξ) for t, ξ ∈ [0, 1], then from (2.1) we have GS(t, s) ≤ Φ0(s). Since

G1(t, ξ) ≥ min{t, 1− t}G1(ξ, ξ), by (2.1) we have G0(t, s) ≥ min{t, 1− t}
∫ 1

0
G1(ξ, ξ)G2(ξ, s)dξ,

and thus

GS(t, s) = Γ

3
∑

i=1

κi(s)(
1

Γ
γi(t)) +G0(t, s) ≥ c0(t)Φ0(s).

Moreover,

− ∂2GS(t, s)

∂t2
= −

3
∑

i=2

κi(s)γ
′′
i (t)−

∂2G0(t, s)

∂t2

=
1

δ
((c(1 − t) + d)κ2(s) + (at+ b)κ3(s)) +G2(t, s) ≤ Φ1(s).

As for −∂2GS(t,s)
∂t2 ≥ c1(t)Φ1(s), it can be checked easily. 2

Define a cone P in E as follows:

P =
{

u ∈ E : u(0) = u(1), u(t) ≥ c0(t)‖u‖C ,

− u′′(t) ≥ c1(t)‖u′′‖C , ∀ t ∈ [0, 1]; βi[u] ≥ 0 (i = 1, 2, 3)
}

. (2.13)

By the method due to Webb and Infante [11] we have the following lemma.

Lemma 2.4 Suppose that (C1)–(C3) hold. Then S : P → P is a completely continuous operator,

S and T have the same fixed points in P . As a result, BVP (1.1) has a positive solution if and

only if S has a fixed point in P .
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3. Main results

Take τ ∈ (0, 1/2) such that
∫ 1−τ

τ
h(t)dt > 0 and denote

h0 = max
{

∫ 1

0

Φ0(t)h(t)dt,

∫ 1

0

Φ1(t)h(t)dt
}

,

hτ = min
{

∫ 1−τ

τ

Φ0(t)h(t)dt,

∫ 1−τ

τ

Φ1(t)h(t)dt
}

.

Lemma 3.1 If (C2) and (C3) hold, define a functional α : P → R+ as

α(u) = max{ max
τ≤t≤1−τ

|u(t)|, max
τ≤t≤1−τ

|u′′(t)|},

then α is a continuous and sublinear functional with α(θ) = 0, α(u) 6= 0 for u 6= θ.

Denote several constants by

c0 = max
τ≤t≤1−τ

c0(t), c1 = max
τ≤t≤1−τ

c1(t), c0 = min
τ≤t≤1−τ

c0(t), c1 = min
τ≤t≤1−τ

c1(t)

and c = min{c0, c1}.

Theorem 3.2 Suppose that (C1)–(C3) are satisfied. If there exist constants a1 and b1 with

0 < b1 < a1 satisfying b1 < a1 min{c0c0, c1c1}, such that

f(t, x1, x2, x3) ≤
b1
h0

(3.1)

for (t, x1, x2, x3) ∈ D1 = [0, 1]× [0, b1/c0]× [−b1/c1, b1/c1]× [−b1/c1, 0], and

f(t, x1, x2, x3) ≥
a1
chτ

(3.2)

for (t, x1, x2, x3) ∈ D2 ∪D3, where

D2 = [0, 1]× [c0a1, a1]× [−a1/c1, a1/c1]× [−a1, 0],

D3 = [0, 1]× [0, a1]× [−a1/c1, a1/c1]× [−a1,−c1a1],

then BVP (1.1) has at least one positive solution.

Proof Obviously, D1 ∩ (D2 ∪D3) = ∅ since b1 < a1 min{c0c0, c1c1}. Let

Ω1 = {u ∈ P : α(u) < b1}, Ω2 = {u ∈ P : α(u) < a1}.

It is clear that Ω1 ⊂ Ω2, both Ω1 and Ω2 are open sets in P with θ ∈ Ω1.

If u ∈ Ω2, by Lemma 2.3, we have

a1 > max
τ≤t≤1−τ

|u(t)| ≥ ( max
τ≤t≤1−τ

c0(t))‖u‖C = c0‖u‖C ,

a1 ≥ max
τ≤t≤1−τ

|u′′(t)| ≥ ( max
τ≤t≤1−τ

c1(t))‖u′′‖C = c1‖u′′‖C .

Since u(0) = u(1), there exists η ∈ (0, 1) such that u′(η) = 0 and thus

‖u′‖C = max
0≤t≤1

|u′(t)| ≤ max
0≤t≤1

∣

∣

∣

∫ t

η

|u′′(s)|ds
∣

∣

∣ ≤ ‖u′′‖C ≤ a1
c1

.
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Therefore, Ω2 is bounded. Similarly, ‖u‖C ≤ b1/c0, ‖u′‖C ≤ b1/c1, ‖u′′‖C ≤ b1/c1 for u ∈ Ω1.

If u ∈ ∂Ω1, then α(u) = b1. From Lemma 2.3 and (3.1) it follows that

max
τ≤t≤1−τ

|(Su)(t)| ≤ b1
h0

∫ 1

0

Φ0(s)h(s)ds ≤ b1,

max
τ≤t≤1−τ

|(Su)′′(t)| ≤ b1
h0

∫ 1

0

Φ1(s)h(s)ds ≤ b1,

and hence α(Su) ≤ α(u). So by Lemma 1.1 the fixed point index

i(S,Ω1, P ) = 1 (3.3)

if Su 6= u for u ∈ ∂Ω1.

If u ∈ ∂Ω2, then α(u) = a1 and by Lemma 2.3 for t ∈ [τ, 1− τ ],

a1 ≥ u(t) ≥ c0(t)‖u‖C ≥ ( min
τ≤t≤1−τ

c0(t))‖u‖C ≥ c0 max
τ≤t≤1−τ

|u(t)|, (3.4)

a1 ≥ −u′′(t) ≥ c1(t)‖u′′‖C ≥ ( min
τ≤t≤1−τ

c1(t))‖u′′‖C ≥ c1 max
τ≤t≤1−τ

|u′′(t)|. (3.5)

When α(u) = a1 = maxτ≤t≤1−τ |u(t)|, it follows from Lemma 2.3, together with (3.2) and (3.4),

that

max
τ≤t≤1−τ

|(Su)(t)| = max
τ≤t≤1−τ

∣

∣

∣

∫ 1

0

GS(t, s)h(s)f(s, u(s), u
′(s), u′′(s))ds

∣

∣

∣

≥ ( max
τ≤t≤1−τ

c0(t))

∫ 1−τ

τ

Φ0(s)h(s)f(s, u(s), u
′(s), u′′(s))ds

≥ c0 ×
a1
chτ

∫ 1−τ

τ

Φ0(s)h(s)ds ≥ c× a1
chτ

∫ 1−τ

τ

Φ0(s)h(s)ds ≥ a1,

max
τ≤t≤1−τ

|(Su)′′(t)| = max
τ≤t≤1−τ

∣

∣

∣

∫ 1

0

∂2GS(t, s)

∂t2
h(s)f(s, u(s), u′(s), u′′(s))ds

∣

∣

∣

≥ ( max
τ≤t≤1−τ

c1(t))

∫ 1−τ

τ

Φ1(s)h(s)f(s, u(s), u
′(s), u′′(s))ds

≥ c1 ×
a1
chτ

∫ 1−τ

τ

Φ1(s)h(s)ds ≥ c× a1
chτ

∫ 1−τ

τ

Φ1(s)h(s)ds ≥ a1,

and hence α(Su) ≥ α(u); when α(u) = a1 = maxτ≤t≤1−τ |u′′(t)|, it similarly follows from

Lemma 2.3, together with (3.2) and (3.5), that α(Su) ≥ α(u). So by Lemma 1.2 and since

infx∈∂Ω2
α(u) = a1 > 0, the fixed point index

i(S,Ω2, P ) = 0 (3.6)

if Su 6= u for u ∈ ∂Ω2.

From (3.3) and (3.6) it follows that S has at least one fixed point, and hence BVP (1.1) has

at least one positive solution by Lemma 2.4. 2

Theorem 3.3 Suppose that (C1)–(C3) are satisfied. If there exist constants a2 and b2 with

0 < b2 < a2 satisfying b2 < chτh
−1
0 a2, such that

f(t, x1, x2, x3) ≥
b2
chτ

(3.7)
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for (t, x1, x2, x3) ∈ D4 ∪D5, where

D4 = [0, 1]× [c0b2, b2]× [−b2/c1, b2/c1]× [−b2, 0],

D5 = [0, 1]× [0, b2]× [−b2/c1, b2/c1]× [−b2,−c1b2],

f(t, x1, x2, x3) ≤
a2
h0

(3.8)

for (t, x1, x2, x3) ∈ D6 = [0, 1]× [0, a2/c0]× [−a2/c1, a2/c1]× [−a2/c1, 0], then BVP (1.1) has at

least one positive solution.

Proof Obviously, D4 ∪ D5 ⊂ D6 due to c0 ≤ 1 and c1 ≤ 1; however (3.7) and (3.8) are well-

posed since b2 < chτh
−1
0 a2. Let Ω1 = {u ∈ P : α(u) < b2}, Ω2 = {u ∈ K : α(u) < a2},

we know from the proof of Theorem 3.2 that Ω1 and Ω2 are bounded open sets in P with

0 ∈ Ω1 and Ω1 ⊂ Ω2. Moreover, ‖u‖C ≤ b2/c0, ‖u′‖C ≤ b2/c1, ‖u′′‖C ≤ b2/c1 for u ∈ Ω1;

‖u‖C ≤ a2/c0, ‖u′‖C ≤ a2/c1, ‖u′′‖C ≤ a2/c1 for u ∈ Ω2.

If u ∈ ∂Ω1, then α(u) = b2 and by Lemma 2.3 for t ∈ [τ, 1− τ ],

b2 ≥ u(t) ≥ c0(t)‖u‖C ≥ ( min
τ≤t≤1−τ

c0(t))‖u‖C ≥ c0‖u‖C ≥ c0 max
τ≤t≤1−τ

|u(t)|, (3.9)

b2 ≥ −u′′(t) ≥ c1(t)‖u′′‖C ≥ ( min
τ≤t≤1−τ

c1(t))‖u‖C ≥ c1 max
τ≤t≤1−τ

|u′′(t)|. (3.10)

When α(u) = b2 = maxτ≤t≤1−τ |u(t)|, it follows from Lemma 2.3, as well as (3.7) and (3.9), that

max
τ≤t≤1−τ

|(Su)(t)| = max
τ≤t≤1−τ

∣

∣

∣

∫ 1

0

GS(t, s)h(s)f(s, u(s), u
′(s), u′′(s))ds

∣

∣

∣

≥ ( max
τ≤t≤1−τ

c0(t))

∫ 1−τ

τ

Φ0(s)h(s)f(s, u(s), u
′(s), u′′(s))ds

≥ c0 ×
b2
chτ

∫ 1−τ

τ

Φ0(s)h(s)ds ≥ c× b2
chτ

∫ 1−τ

τ

Φ0(s)h(s)ds ≥ b2,

max
τ≤t≤1−τ

|(Su)′′(t)| = max
τ≤t≤1−τ

∣

∣

∣

∫ 1

0

∂2GS(t, s)

∂t2
h(s)f(s, u(s), u′(s), u′′(s))ds

∣

∣

∣

≥ ( max
τ≤t≤1−τ

c1(t))

∫ 1−τ

τ

Φ1(s)h(s)f(s, u(s), u
′(s), u′′(s))ds

≥ c1 ×
b2
chτ

∫ 1−τ

τ

Φ1(s)h(s)ds ≥ c× b2
chτ

∫ 1−τ

τ

Φ1(s)h(s)ds ≥ b2,

and hence α(Su) ≥ α(u); when α(u) = b2 = maxτ≤t≤1−τ |u′′(t)|, it similarly follows from

Lemma 2.3, together with (3.7) and (3.10), that α(Su) ≥ α(u). So by Lemma 1.2 and since

infx∈∂Ω1
α(u) = b2 > 0, the fixed point index

i(S,Ω1, P ) = 0 (3.11)

if Su 6= u for u ∈ ∂Ω1.

If u ∈ ∂Ω2, then α(u) = a2 and from Lemma 2.3 and (3.8) it follows that

max
τ≤t≤1−τ

|(Su)(t)| ≤ a2
h0

∫ 1

0

Φ0(s)h(s)ds ≤ a2,
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max
τ≤t≤1−τ

|(Su)′′(t)| ≤ a2
h0

∫ 1

0

Φ1(s)h(s)ds ≤ a2,

and hence α(Su) ≤ α(u). So by Lemma 1.1 the fixed point index

i(S,Ω2, P ) = 1 (3.12)

if Su 6= u for u ∈ ∂Ω2.

From (3.11) and (3.12) it follows that S has at least one fixed point, and hence BVP (1.1)

has at least one positive solution by Lemma 2.4. 2

Remark 3.4 If a = c = 1, b = d = 0, BVP (1.1) is
{

u(4)(t) = h(t)f(t, u(t), u′(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = β1[u], u′′(0) + β2[u] = 0, u′′(1) + β3[u] = 0,
(3.13)

then δ = 1, γ1(t) = 1, γ2(t) =
1
6 t(1− t)(2 − t), γ3(t) =

1
6 t(1− t)(1 + t) and Γ = 1,

c0(t) = min{1
6
t(1 − t)(2− t),

1

6
t(1− t)(1 + t)}, c1(t) = min{t, 1− t}.

Then c0 = 1
16 , c1 = 1

2 , c0 = 1
6τ(1 − τ)(1 + τ), c1 = τ, c = 1

16 for τ ∈ (0, 12 ). For this case we

can see [5] and [4, Remark 3.2]. 2

Now as the examples we consider fourth-order problems under mixed boundary conditions

involving multi-point with sign-changing coefficients and integral with sign-changing kernel


















u(4)(t) = 1√
t(1−t)

f(t, u(t), u′(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = 1
4u(

1
4 )− 1

12u(
3
4 ),

u′′(0)− u′′′(0)−
∫ 1

0
u(t) cos(2πt)dt = 0, u′′(1) + u′′′(1) + 1

2u(
1
2 )− 1

4u(
3
4 ) = 0,

(3.14)

that is, β1[u] = 1
4u(

1
4 ) − 1

12u(
3
4 ), β2[u] = −

∫ 1

0 u(t) cos(2πt)dt, β3[u] = 1
2u(

1
2 ) − 1

4u(
3
4 ), and

a = b = c = d = 1, δ = 3, γ1(t) = 1, γ2(t) =
1
18 t(1− t)(5 − t), γ3(t) =

1
18 t(1− t)(4 + t), Γ = 1,

G0(t, s) =
1

18

{

(1 − t)(t(5 − t)(1 + s)− 3s3), 0 ≤ s ≤ t ≤ 1,

t(5 − 9s2 + 3s3 − 6t− 2t2 + s(5 + 3t+ t2)), 0 ≤ t < s ≤ 1.

Hence for s ∈ [0, 1],

0 ≤ K1(s) =
1

4
G0(

1

4
, s)− 1

12
G0(

3

4
, s)

=































− 1

36
s3 +

5

576
s+

5

576
, 0 ≤ s ≤ 1

4
,

1

72
s3 − 1

32
s2 +

19

1152
s+

37

4608
,

1

4
< s ≤ 3

4
,

− 1

144
s+

1

72
,

3

4
< s ≤ 1,

K2(s) = −
∫ 1

0

G0(t, s) cos(2πt)dt =
1 + π2(2 + 2s− 2s2)− cos(2πs)

16π4
≥ 0,
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0 ≤ K3(s) =
1

2
G0(

1

2
, s)− 1

4
G0(

3

4
, s)

=































− 1

32
s3 +

31

1536
s+

31

1536
, 0 ≤ s ≤ 1

2
,

5

96
s3 − 1

8
s2 +

127

1536
s+

5

512
,

1

2
< s ≤ 3

4
,

1

96
s3 − 1

32
s2 +

19

1536
s+

7

256
,

3

4
< s ≤ 1

and the 3× 3 matrix

[B] =









β1[γ1] β1[γ2] β1[γ3]

β2[γ1] β2[γ2] β2[γ3]

β3[γ1] β3[γ2] β3[γ3]









=

















1

6

5

576

1

144

0
1

8π2

1

8π2

1

4

31

1536

29

1536

















.

Its spectral radius is r([B]) ≈ 0.1787 < 1. This means that (C2) and (C3) are satisfied. Moreover,

κ1(s) ≈ 1.2026K1(s) + 0.0107K2(s) + 0.0087K3(s),

κ2(s) ≈ 0.0039K1(s) + 1.0131K2(s) + 0.0131K3(s),

κ3(s) ≈ 0.3065K1(s) + 0.0236K2(s) + 1.0217K3(s),

Φ0(s) =
3

∑

i=1

κi(s) +
1

12
(1 + s− 2s3 + s4), Φ1(s) =

2

3

3
∑

i=2

κi(s) +
1

3
(1 + s)(2− s),

c0(t) = min{ 1

18
t(1 − t)(5− t),

1

18
t(1− t)(4 + t)}, c1(t) =

1

2
min{2− t, 1 + t}.

Take τ = 1/4 and then c0 = 1
16 , c1 = 3

4 , c0 = 17
384 , c1 = 5

8 , c =
1
16 ,

h0 = max
{

∫ 1

0

Φ0(t)h(t)dt,

∫ 1

0

Φ1(t)h(t)dt
}

≈ max{0.4658, 2.3121}= 2.3121,

hτ = min
{

∫ 3/4

1/4

Φ0(t)h(t)dt,

∫ 3/4

1/4

Φ1(t)h(t)dt
}

≈ min{0.1737, 0.8105}= 0.1737.

Example 3.5 If f(t, x1, x2, x3) = 123x2
1 + tx2

2 + x2
3, then BVP (3.14) has a positive solution.

Proof For a1 = 384, b1 = 3 × 10−6, it is clear that b1 < a1 min{c0c0, c1c1} = 17
16 = 1.0625.

Moreover,

f(t, x1, x2, x3) ≤ 123× (48× 10−6)2 + 2× (4× 10−6)2 ≈ 0.2834× 10−6 <
b1
h0

≈ 1.2975× 10−6

for (t, x1, x2, x3) ∈ D1 = [0, 1]× [0, 48× 10−6]× [−4× 10−6, 4× 10−6]× [−4× 10−6, 0];

f(t, x1, x2, x3) ≥ 123× 172 = 35547 >
a1
chτ

≈ 35371.3

for (t, x1, x2, x3) ∈ D2 = [0, 1]× [17, 384]× [−512, 512]× [−384, 0];

f(t, x1, x2, x3) ≥ (−240)2 = 57600 >
a1
chτ

≈ 35371.3
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for (t, x1, x2, x3) ∈ D3 = [0, 1] × [0, 384] × [−512, 512]× [−384,−240]. Then BVP (3.14) has a

positive solution by Theorem 3.2. 2

Example 3.6 If f(t, x1, x2, x3) = 123000(1 − 1
1+x2

1
+tx2

2
+x2

3

), then BVP (3.14) has a positive

solution.

Proof For a2 = 284400, b2 = 0.384, it is clear that b2 < chτh
−1
0 a2 ≈ 1335.37. Moreover,

f(t, x1, x2, x3) ≥ 123000(1− 1

1 + 0.0172
) ≈ 35.5367 >

b2
chτ

≈ 35.3713

for (t, x1, x2, x3) ∈ D4 = [0, 1]× [0.017, 0.384]× [−0.512, 0.512]× [−0.384, 0];

f(t, x1, x2, x3) ≥ 123000(1− 1

1 + 0.242
) ≈ 6698.94 >

b2
chτ

≈ 35.3713

for (t, x1, x2, x3) ∈ D5 = [0, 1]× [0, 0.384]× [−0.512, 0.512]× [−0.384,−0.24];

f(t, x1, x2, x3) ≤ 123000 <
a2
h0

≈ 123005

for (t, x1, x2, x3) ∈ D6 = [0, 1]× [0, 4550400]× [−379200, 379200]× [−379200, 0]. Then BVP (3.14)

has a positive solution by Theorem 3.3. 2
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