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Abstract In this paper, we discuss the existence of positive solutions for the second-order

singular difference equation boundary value problem















−∆2u(t− 1) = λg(t)f(u), t ∈ [1, T ]Z,

u(0) = 0,

∆u(T ) + c(u(T + 1))u(T + 1) = 0,

where λ > 0 is a positive parameter, f : (0,∞) → R is continuous, and is allowed to be singular

at 0. The existence of positive solutions is established via introducing a new complete continuous

operator.
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1. Introduction

Due to wide applications in engineering, physics and fluid mechanics, boundary value prob-

lems (BVPs) of second-order ordinary differential equations have been studied by many au-

thors [1–6]. In 2013, by using fixed-point theorem in cones, Mohamed and Azmi [7] studied

singular second order BVP

− u′′ = λg(t)f(u), t ∈ (0, 1), (1.1)

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0 (1.2)

under the following assumptions:

(A1) f : (0,∞) → (0,∞) is continuous and f(u) > 0 for u > 0;

(A2) g : [0, 1] → [0,∞) is continuous and
∫ 1

0
G(s, s)g(s)ds < ∞;

(A3) α, β, γ, δ, λ > 0.

They established the following result:

Theorem 1.1 Let (A1)–(A3) hold and limu→0 f(u) = ∞. If f∞ = ∞, then for all sufficiently

small λ > 0, (1.1) and (1.2) has two positive solutions, where f∞ := limu→∞
f(u)
u

.
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Note that the existence of positive solutions with linear boundary conditions has been ob-

tained in [7–10], where a unique integral representation of the differential equation with the

linear boundary conditions exists. In order to better characterize the safe storage of energetic

materials, nuclear waste and even raw garbage, Gordon et al. [11] introduced nonlinear boundary

conditions. Subsequently, various interesting results have emerged. For example, Hai and Shiva-

ji [12] discussed the existence of positive solutions for sufficiently small λ to (1.1) with nonlinear

boundary conditions

u(0) = 0, u′(1) + c(u(1))u(1) = 0, (1.3)

where c : [0,∞) → (0,∞) is continuous, g(t) could be singular at t = 0, the nonlinearity f(u)

is allowed to be the singular at u = 0 and extended from nonnegative to R. However, it is

difficult to find positive solutions in the singular semi-positive cases due to the lack of maximum

principle. We refer the reader to [3–6, 11] and the references therein for literature on singular,

nonsingular semi-positive. In the above literature, several different methods have been used,

such as, variational methods [4], critical point theory [6], lower and upper solution method [11].

The above results are based on differential equations, and there are few results for the case of

difference equations.

Inspired by the above works, in this paper, we aim to consider the existence of positive

solutions for the second-order difference equation BVP

−∆2u(t− 1) = λg(t)f(u), t ∈ [1, T ]Z, (1.4)

u(0) = 0, ∆u(T ) + c(u(T + 1))u(T + 1) = 0, (1.5)

where T > 1 is an integer, λ is a positive parameter, [1, T ]Z = {1, 2, . . . , T }. ∆ is the forward

difference operator with ∆y(t) = y(t+ 1) − y(t) and ∆2y(t) = ∆(∆y(t)). In order to overcome

the difficulty of nonlinear boundary conditions, we define a new completely continuous operator

Tλ such that u = Tλv, where u satisfies the Sturm-Liouville boundary conditions. Through the

Krasnoselskii’s fixed-point theory, we establish the fixed-point of Tλ, which is the solution of

problems (1.4) and (1.5). Furthermore, some results on linear boundary conditions for second-

order difference Eq. (1.4) can be found in [13–16].

We make the following hypotheses:

(F1) g : [1, T ]Z → (0,∞) with g > 0 on [1, T ]Z;

(F2) c : [0,∞) → (0,∞) is continuous;

(F3) There exists a constant 0 < γ < 1 such that lim supu→0+ uγ |f(u)| < ∞;

(F4) f : (0,∞) → R is continuous and f∞ = ∞.

2. Preliminaries

We first recall the following fixed-point theorem of Krasnoselskii’s type.

Lemma 2.1 ([17]) Let E be a Banach space and T : E → E a completely continuous operator.

Suppose there exist h ∈ E, h 6= 0 and positive constants r, R with r 6= R such that
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(a) If y ∈ E satisfies y = θTy, θ ∈ [0, 1], then ‖y‖ 6= r;

(b) If y ∈ E satisfies y = Ty + ξh, ξ ≥ 0, then ‖y‖ 6= R.

Then T has a fixed point y ∈ E with min(r, R) < ‖y‖ < max(r, R).

In the rest of the article, we let E = {u|u : [0, T + 1]Z → R} be equipped with the norm

‖u‖E = max
t∈[0,T+1]Z

|u(t)|,

then (E, ‖.‖E) is a Banach space. Furthermore, we define (E1, ‖.‖1) as a Banach space of E with

another norm ‖u‖1 =
∑T+1

t=1 |u(t)|.

Lemma 2.2 Let k ∈ E1 with k ≥ 0. Assume that for some constant α > 0, u satisfies
{

∆2u(t− 1) ≤ k(t), t ∈ [1, T ]Z,

u(0) ≥ 0, ∆u(T ) + αu(T + 1) ≥ 0.
(2.1)

If ‖u‖E > (T + 1)‖k‖1 and ‖u‖E = |u(τ)|, then u(τ) ≥ 0 and

u(t) ≥ (‖u‖E − (T + 1)‖k‖1)q(t), t ∈ [1, T ]Z, (2.2)

where

q(t) = min{
t

T + 1
,
T + 1− t

T + 1
}.

Proof Suppose on the contrary that u(τ) < 0, τ ∈ [1, T + 1]Z. Then ‖u‖E = −u(τ).

Firstly, we consider the case that τ ∈ [1, T ]Z. Summing both sides of inequality ∆2u(γ−1) ≤

k(γ) from γ = t to γ = s, we obtain that

∆u(t− 1) ≥ ∆u(s)−

s
∑

γ=t

k(γ) ≥ ∆u(s)− ‖k‖1. (2.3)

Summing (2.3) from τ to T with respect to s, we get

T
∑

s=τ

∆u(t− 1) ≥

T
∑

s=τ

∆u(s)−

T
∑

s=τ

‖k‖1,

which implies that

(T − τ + 1)∆u(t− 1) ≥ u(T + 1)− u(τ)− (T − τ + 1)‖k‖1 ≥ −(T − τ + 1)‖k‖1.

Therefore, ∆u(t− 1) ≥ −‖k‖1. For t ∈ [1, τ ]Z, by summing from t = 1 to t = τ , we have

u(τ) ≥ u(0)− τ‖k‖1 ≥ −τ‖k‖1 ≥ −(T + 1)‖k‖1,

this leads to a contradiction with ‖u‖E > (T + 1)‖k‖1.

Secondly, we consider the case that τ = T + 1. From (2.3) with s = T , it follows that

∆u(t− 1) ≥ ∆u(T )− ‖k‖1, t ∈ [1, T + 1]Z.

Summing the above inequality from t = 1 to t = T + 1, we have

u(T + 1) ≥ u(0) + (T + 1)∆u(T )− (T + 1)‖k‖1 ≥ u(0)− α(T + 1)u(T + 1)− (T + 1)‖k‖1.
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Therefore,

u(T + 1) ≥
−(T + 1)‖k‖1
1 + α(T + 1)

≥ −(T + 1)‖k‖1,

a contradiction with ‖u‖E > (T + 1)‖k‖1. Thus u(τ) ≥ 0.

Suppose τ ∈ [1, T +1]Z. For t ∈ [1, τ ]Z, by summing (2.3) from s = t− 1 to s = τ − 1, we get

(τ − t+ 1)∆u(t− 1) ≥ u(τ)− u(t− 1)− (τ − t+ 1)‖k‖1,

that is

∆u(t− 1) +
u(t− 1)

τ − t+ 1
≥

‖u‖E − (τ − t+ 1)‖k‖1
τ − t+ 1

≥
‖u‖E − (T + 1)‖k‖1

τ − t+ 1
.

Multiplying this inequality by (τ − t)−1, we have

∆(
u(t− 1)

τ − t+ 1
) ≥

‖u‖E − (T + 1)‖k‖1
(τ − t+ 1)(τ − t)

,

where t 6= τ . Since u(0) ≥ 0, we infer that

u(t)

τ − t
≥

u(0)

τ
+

t
∑

s=1

‖u‖E − (T + 1)‖k‖1
(τ − s+ 1)(τ − s)

≥ (‖u‖E − (T + 1)‖k‖1)
t

(τ − t)τ
,

i.e.,

u(t) ≥ (‖u‖E − (T + 1)‖k‖1)
t

T + 1
, t ∈ [0, τ − 1]Z. (2.4)

In particular, for t = τ , it conspicuously satisfyies (2.4). Hence,

u(t) ≥ (‖u‖E − (T + 1)‖k‖1)
t

T + 1
, t ∈ [1, τ ]Z. (2.5)

Next, suppose t ∈ [τ + 1, T + 1]Z. By (2.3) with s = T and boundary conditions ∆u(T ) +

αu(T + 1) ≥ 0, we get

∆u(t− 1) ≥ ∆u(T )− ‖k‖1 ≥ −αu(T + 1)− ‖k‖1.

Summing the above inequality from t = τ + 1 to t = T + 1, we obtain that

u(T + 1) ≥ ‖u‖E − α(T − τ + 1)u(T + 1)− (T − τ + 1)‖k‖1

≥ ‖u‖E − α(T − τ + 1)u(T + 1)− (T + 1)‖k‖1,

then

u(T + 1) ≥
‖u‖E − (T + 1)‖k‖1
1 + α(T − τ + 1)

. (2.6)

Next, by summing (2.3) from s = t− 1 to s = T , we deduce that

(T − t+ 2)∆u(t− 1) ≥ u(T + 1)− u(t− 1)−

T
∑

s=t−1

s
∑

γ=t

k(γ),

this implies that

∆u(t− 1) +
u(t− 1)

T − t+ 2
≥

u(T + 1)

T − t+ 2
−

1

T − t+ 2

T
∑

s=t

(T + 1− s)k(s), t ∈ [τ + 1, T + 1]Z.
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Multiplying this inequality by (T − t+ 1)−1, we get

∆(
u(t− 1)

T − t+ 2
) ≥

u(T + 1)

(T − t+ 2)(T − t+ 1)
−

1

(T − t+ 2)(T − t+ 1)

T
∑

s=t

(T + 1− s)k(s),

where t 6= T + 1. Therefore,

u(t)

T − t+ 1
≥

u(τ)

T − τ + 1
+

t
∑

s=τ+1

u(T + 1)

(T − s+ 2)(T − s+ 1)
−

T
∑

s=τ+1

1

(T − s+ 2)(T − s+ 1)

T
∑

δ=s

(T + 1− δ)k(δ), t ∈ [τ + 1, T ]Z. (2.7)

Since

T
∑

s=τ+1

1

(T − s+ 2)(T − s+ 1)

T
∑

δ=s

(T + 1− δ)k(δ)

=

T
∑

z=τ+1

z−1
∑

s=τ

1

(T − s+ 1)(T − s)
(T + 1− z)k(z)

=

T
∑

z=τ+1

z − τ

T − τ + 1
k(z) ≤

T + 1

T − τ + 1
‖k‖1,

it follows from (2.6), (2.7) and the fact that ‖u‖E ≥ (T + 1)‖k‖1

u(t) ≥(‖u‖E − (T + 1)‖k‖1)(
T − t+ 1

T − τ + 1
+

t− τ

(T − τ + 1)(1 + α(T − τ + 1))
)

=(‖u‖E − (T + 1)‖k‖1)
1 + α(T − t+ 1)

1 + α(T − τ + 1)
.

Since t > τ and 1+α(T−t+1)
1+α(T−τ+1) ≥

T+1−t
T+1−τ

≥ T+1−t
T+1 , this implies

u(t) ≥ (‖u‖E − (T + 1)‖k‖1)
T + 1− t

T + 1
, t ∈ [τ + 1, T ]Z. (2.8)

Combining (2.5) and (2.8), we deduce that

u(t) ≥ (‖u‖E − (T + 1)‖k‖1)min{
t

T + 1
,
T + 1− t

T + 1
}, t ∈ [1, T ]Z.

If τ = 0, then (2.8) holds for all t ∈ [1, T ]Z. This completes the proof of Lemma 2.2. 2

3. Main results

In this section, we present and prove our main result.

Theorem 3.1 Let (F1)–(F4) hold. Then there exists a constant λ1 > 0 such that for λ < λ1,

BVPs (1.4) and (1.5) has a positive solution u with u → ∞ as λ → 0 on [1, T ]Z.

Proof Let λ > 0. For v ∈ E, define Tλv = u, where u is the solution of the following problem
{

−∆2u(t− 1) = λg(t)f(ṽ), t ∈ [1, T ]Z,

u(0) = 0, ∆u(T ) + αvu(T + 1) = 0,
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where ṽ(t) = max(v(t), q(t)), αv = c(|v(T + 1)|) and q(t) is defined in Lemma 2.2. Then

u(t) = λ

T
∑

s=1

Gv(t, s)h(s)f(ṽ), t ∈ [0, T + 1]Z,

where the Green’s function Gv(t, s) is given by

Gv(t, s) =
1

1 + αv(T + 1)

{

t(1 + αv(T − s+ 1)), s > t− 1,

s(1 + αv(T − t+ 1)), s ≤ t− 1.

It is obvious that Tλ is a completely continuous operator.

Let a > 1 be such that f(x) > 0 for x ≥ a. By using the fact that lim supu→0+ uγ |f(u)| < ∞,

there exists a constant d > 0 such that |f(x)| ≤ d
xγ , x ∈ (0, a). Hence,

f(x) ≥ −
d

xγ
(3.1)

and

f(x) ≤
d

xγ
+ f̂(max(x, a)) (3.2)

for all x > 0, where f̂(t) = supa≤x≤t f(x) for t ≥ a. Note that f̂ is nondecreasing.

(a) There exists r > 0 such that if u ∈ E satisfies u = θTλu, θ ∈ [0, 1], then ‖u‖E 6= r.

In fact, let u ∈ E satisfy u = θTλu, θ ∈ [0, 1]. Then u satisfies

u(t) = λθ

T
∑

s=1

Gu(t, s)g(s)f(ũ), t ∈ [0, T + 1]Z.

By Lemma 2.2, q(s) ≤ 1, s ∈ [1, T ]Z and a > 1, we have

|f(ũ(s))| ≤
d

ũγ(s)
+ f̂(max(ũ(s), a)) ≤

d

qγ(s)
+ f̂(max(max(u(s), q(s)), a))

≤
d

qγ(s)
+ f̂(max(u(s), a)).

Suppose λ < a
2(c1+c2f(a))

, where c1 = (T +1)d
∑T

s=1
g(s)
qγ (s) and c2 = (T +1)

∑T
s=1 g(s). Since

G(t, s) ≤ T + 1 and θ ≤ 1, it follows that

|u(t)| ≤ λ|

T
∑

s=1

Gu(t, s)g(s)f(ũ)|

≤ λ
(

d(T + 1)

T
∑

s=1

g(s)

qγ(s)
+ f̂(max(‖u‖E, a))(T + 1)

T
∑

s=1

g(s)
)

= λ(c1 + c2f̂(max(‖u‖E, a))), t ∈ [0, T + 1]Z,

which implies
‖u‖E

c1 + c2f̂(max(‖u‖E, a))
≤ λ. (3.3)

Since a

c1+c2f̂(a)
= a

c1+c2f(a)
> 2λ and lim

x→∞

x

c1+c2f̂(x)
= 0 by (F4), there exists a constant r > a

such that
r

c1 + c2f̂(r)
= 2λ. (3.4)
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By (3.3) and (3.4), we deduce that ‖u‖E 6= r. Note that r → ∞ as λ → 0.

(b) There exists R > r such that if u = Tλu+ ξ, ξ ≥ 0, then ‖u‖E 6= R.

Let u ∈ E with u = Tλu+ ξ for some ξ ≥ 0. Then u− ξ = Tλu and so

u(t)− ξ = λ

T
∑

s=1

Gu(t, s)h(s)f(ũ).

Let k(t) = dg(t)
qγ(t) , t ∈ [1, T ]Z. u satisfies











−∆2u(t− 1) = λg(t)f(ṽ), t ∈ [1, T ]Z,

u(0) = ξ ≥ 0,

∆u(T ) + αvu(T + 1) = αvξ ≥ 0,

and

g(t)f(ṽ(t)) ≥ −
dg(t)

ṽγ(t)
≥ −

dg(t)

qγ(t)
= −k(t).

Suppose ‖u‖E > max(3(T + 1)‖k‖1, 6), it follows from Lemma 2.2 that

u(t) ≥ (‖u‖E − (T + 1)‖k‖1)q(t) ≥
2

3
‖u‖Eq(t) ≥

‖u‖E
6

for t ∈ Γ = [T+1
4 ,

3(T+1)
4 ]Z. Since

Gu(t, s) ≥
(T + 1)(4 + αv(T + 1))

16(1 + αv(T + 1))
≥

T + 1

16
, s, t ∈ Γ,

we deduce that

u(t) ≥ λ
(

∑

Γ

Gu(t, s)g(s)f(ũ(s)) +
∑

Γc

Gu(t, s)g(s)f(ũ(s))
)

≥ λ(
T + 1

16
f̌(

‖u‖E
6

)
∑

Γ

g(s)− (T + 1)‖k‖1),

where f̌(t) = infz≥t f(z). Consequently,

T+1
16 f̌(‖u‖E

6 )
∑

Γ g(s)− (T + 1)‖k‖1

‖u‖E
≤

1

λ
.

Since limu→∞
f(u)
u

= ∞, it follows that the left side of this inequality goes to ∞ as ‖u‖E → ∞.

Then ‖u‖E < R for R >> 1.

Hence, by Lemma 2.2, Tλ has a fixed point u with ‖u‖E > r. Since (2.2) holds and r → ∞

as λ → 0, it implies that u is a positive solution of (1.4) and (1.5) if λ is sufficiently small and

u(t) → ∞ as λ → 0. 2

Example 3.2 Let g(t) = t−
3
10 , f(u) = 9u−1

2 + eu, c(u) = (u2 + 3) ln(2 + u). It is easy to verify

that the hypotheses of Theorem 3.1 hold. Therefore, BVPs (1.4) and (1.5) has a positive solution

u with u → ∞ as λ → 0+ on [1, T ]Z.
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