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Abstract In this paper, we consider the solutions of 2-D incompressible magnetohydrodynamic

(MHD) equations with homogenous Dirichlet boundary condition for velocity and with nonho-

mogenous Dirichlet boundary condition for magnetic field. We obtain a condition of boundary

layer separation by Taylor expansion of functions in the MHD equations and by structural bi-

furcation theory for divergence free flows with Dirichlet boundary conditions. Furthermore, the

condition, determined by external forces, initial values and the value of magnetic field on the

boundary, can predict when and where boundary layer separation for the magnetic fluid will

occur.
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1. Introduction

Magnetohydrodynamic(MHD) equations govern the motion of electrically conducting fluids

in the presence of a magnetic field such as plasmas, liquid metals and electrolytes, which are

formed by coupling the hydrodynamics equations and the magnetic field equations. There are

many researches in MHD equations over past three decades [1–7]. He and Xin [1] studied partial

regularity for MHD equations. Xiao, Xin and Wu [2] investigated zero viscosity and diffusion

vanishing limit for MHD equations. Jiang, Ju and Li [3] concerned the incompressible limit of

the compressible MHD equations with vanishing viscosity coefficients. Ju, Li and Li [4] obtained

asymptotic limits for the full compressible MHD equations. Ai, Tan and Zhou [5] got global

well-posedness for MHD equations. Lin, Ji, Wu and Boardman [6,7] investigated stabilization of

a background magnetic field on a 2D MHD flow.

MHD equations are the special kind of hydrodynamic equations. In hydrodynamics, bound-

ary layer is an important research topic. There are many results about boundary layer theory of

hydrodynamic equations [8–11] and on boundary layer of magnetic fluid [12]. Wang and Xin [12]
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considered the zero magnetic diffusion limit problem of Dirichlet initial boundary value problem

of viscous diffusion MHD system with general initial value in viscous solids.

An important bifurcation phenomenon in hydrodynamics is boundary layer separation, which

is a very common phenomenon in geophysical dynamics. There are many researches about

boundary layer separation [13–19]. Chorin and Marsden [13] proposed the key question of how

the separation or boundary layer separation takes place. Ghil, Ma and Wang [14, 15] provided

a first rigorous account on boundary layer separation. Ghil and Liu [16] studied the bifurcation

process in the flow’s topological structure for a two-dimensional incompressible flow subject to

the Dirichlet boundary conditions and its connection with boundary layer separation. Gargano

and Sammartino [17] analyzed boundary layer separation with 2-D incompressible fluid by a

rectilinear vortex. Luo, Wang and Ma [18, 19] obtained the separation location and time of

solutions of the Navier-Stokes for straight boundary and curved boundary, respectively.

Enlightened by the researches of boundary layer for the MHD equation and the study of

boundary layer separation for the Navier-Stokes, we investigated the boundary layer separation

of MHD equations in this paper. So, we study the following MHD equations:

ut + (u · ∇)u−R−1
e ∆u− S(∇× b)× b+∇p = g(x), in ΩT , (1.1)

bt −∇× (u× b) +R−1
m ∇× (∇× b) = 0, in ΩT , (1.2)

div u = 0, div b = 0, in ΩT , (1.3)

u|∂Ω = 0, b|∂Ω = h(x), in [0, T ], (1.4)

u(x, 0) = α(x), b(x, 0) = β(x), in Ω, (1.5)

where Ω is bounded and open domain of R2 with boundary ∂Ω, 0 < T < ∞, ΩT := Ω × (0, T ].

u, b and p are the velocity of the fluid, the magnetic field and the pressure, respectively. And α(x)

and β(x) are initial values of the velocity and the magnetic field, respectively. g(x) is external

force and h(x) is the value of the magnetic field on the boundary. Here Re > 0 and Rm > 0 are

the Reynolds number and the magnetic Reynolds number, and S =M2/(ReRm) with M being

the Hartman number.

We can get a condition of boundary layer separation for MHD equations by analyzing the

solutions of (1.1)–(1.5) and by using the lemma of boundary layer separation [14,15,20], and the

condition is determined by initial values, external forces and the value of the magnetic field on

the boundary. Then we can predict when and where boundary layer separation will be found for

MHD equations.

The paper is organized as follows. In Section 2, we introduce preliminaries containing the

concept of boundary layer separation, boundary singularity and lemma of boundary layer sepa-

ration. In Section 3, we draw a main conclusion and present some remarks.

2. Preliminaries

Let Ω be a bounded and open domain of R2 with boundary ∂Ω, which is Cr+1. Cr(Ω) is the

space of all Cr fields on Ω and Br
0(Ω) = {u ∈ Cr(Ω)|div u = 0, u|∂Ω = 0}. We use n and τ to
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denote the unit normal and tangent vector of ∂Ω, respectively, and uτ = u · τ .

Before stating our main results, we recall some basic concepts.

Definition 2.1 ([14,15,20]) Suppose u ∈ Br
0(Ω) (r ≥ 2). x̄ ∈ ∂Ω is called a boundary singularity

of u, if ∂uτ

∂n
(x̄) = 0.

Definition 2.2 ([14,15,20]) We call that the boundary layer separation governed by a 2-D vector

field u ∈ C1([0, T ];B2
0(Ω)) occurs at t0, if u(x, t) is topologically equivalent to the structure of

Figure 1 (a) for any t < t0, but u(x, t) is topologically equivalent to the structure of Figure 1 (c)

for t > t0. That is, if t < t0, u(x, t) is topologically equivalent to a parallel flow, and if t > t0,

u(x, t) separates a vortex. Furthermore, we call that boundary layer separation occurs at x̄ ∈ ∂Ω,

if x̄ is an isolated boundary singularity at time t = t0.

x x x

(a) (b) (c)

p q

Figure 1 Definition of boundary layer separation

Lemma 2.3 ([14, 15, 20]) Let u ∈ C1([0, T ];B2
0(Ω)) be 2-D vector field and x̄ ∈ ∂Ω. Boundary

layer separation represented by u occurs at (x̄, t0), if there exists 0 < t0 < T such that

∂uτ
∂n

(x, t) 6= 0, t < t0, x ∈ ∂Ω, (2.1)

∂uτ
∂n

(x̄, t0) = 0, (2.2)

∂uτ
∂t∂n

(x̄, t) 6= 0, (2.3)

where x̄ is an isolated boundary singularity of u(·, t0) on ∂Ω.

3. Main result

Choose one party Γ ⊂ ∂Ω. We take a coordinate system (x1, x2) with x̄ at the origin and Γ

given by

Γ = {(x1, 0) | 0 < |x1| < δ}

for some δ > 0. Obviously, the tangent and normal vectors on Γ are the unit vectors in the x1-

and x2-directions, respectively.

If α(x) ∈ C3(Ω;R2) satisfying α(x)|∂Ω = 0, divα(x) = 0, then we get

α1(x) = α11(x1)x2 + α12(x1)x
2
2 + α13(x1)x

3
2 + o(x32), (3.1)

α2(x) = α21(x1)x
2
2 + α22(x1)x

3
2 + o(x32). (3.2)

Let β(x) ∈ C2(Ω;R2). Because β(x)|∂Ω = h(x), div β(x) = 0, we obtain

β1(x) = h1(x1) + β11(x1)x2 + β12(x1)x
2
2 + o(x22), (3.3)
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β2(x) = h2(x1) + β21(x1)x2 + β22(x1)x
2
2 + o(x22). (3.4)

Let g(x) ∈ C1(Ω;R2). We present the Taylor expansion of g(x) at x2 = 0,

g1(x) = g10(x1) + g11(x1)x2 + o(x2), (3.5)

g2(x) = g20(x1) + g21(x1)x2 + o(x2). (3.6)

After these preparations, we present the main result.

Theorem 3.1 Let α(x) ∈ C3(Ω, R2), β(x) ∈ C2(Ω, R2), and g(x) ∈ C1(Ω, R2). If

0 < min
Γ

−α11

2R−1
e α′′

11 + 6R−1
e α13 − SRmh22α11 + g11 − g′20

≪ 1, (3.7)

Then there exist t0 > 0 and x̄ ∈ Γ such that boundary layer separation of the solution to (1.1)–

(1.5) occurs at (t0, x̄), where α11, α13, g11, g20 and h2 are as (3.1)–(3.6).

Proof From the formula of cross product, we know

(∇× b)× b = b · ∇b−
1

2
∇(|b|2), (3.8)

∇× (∇× b) = ∇div b −∆b, (3.9)

∇× (u× b) = b · ∇u− u · ∇b+ u div b− b div u. (3.10)

Combining (3.8)–(3.10), we can rewrite (1.1) and (1.2) as follows.

ut −R−1
e ∆u + u · ∇u− Sb · ∇b+

S

2
∇(|b|2) +∇p = g(x), (3.11)

bt −R−1
m ∆b+ u · ∇b− b · ∇u = 0. (3.12)

Let u and b have the Taylor expansion at t = 0,

u = α+ tψ + o(t), b = β + tζ + o(t), (3.13)

where ψ = (ψ1, ψ2) and ζ = (ζ1, ζ2) satisfy, respectively,

ψ|Γ = 0, divψ = 0, ζ|Γ = 0, div ζ = 0.

Let

ψ1 = ψ11x2 + o(x2), ψ2 = ψ21x
2
2 + o(x22),

ζ1 = ζ11x2 + o(x2), ζ2 = ζ21x
2
2 + o(x22).

Thus,

ψ = (ψ11x2 + o(x2), ψ21x
2
2 + o(x22)), (3.14)

ζ = (ζ11x2 + o(x2), ζ21x
2
2 + o(x22)). (3.15)

Let

p = p0 + tp1 + o(t), p0 = p01 + p02x2 + o(x2). (3.16)

Substituting (3.1)–(3.6), (3.13), (3.14) and (3.16) in (3.11), we can get

ψ11x2 −R−1
e α′′

11x2 −R−1
e (2α12 + 6α13x2)− Sh2β11 − 2Sh2β12x2−
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Sβ11β21x2 + Sh2h
′

2 + Sh′2β21x2 + Sh2β
′

21x2 + p′01 + p′02x2

= g10 + g11x2 + o(x2), (3.17)

− 2R−1
e α21 − Sh1h

′

2 + Sβ11h1 + p02 = g20 + o(1). (3.18)

Substituting (3.1)–(3.4), (3.13) and (3.15) in (3.12), we obtain

−R−1
m h′′1 − 2R−1

m β12 − h2α11 + o(1) = 0, (3.19)

−R−1
m h′′2 − 2R−1

m β22 + o(1) = 0. (3.20)

From (3.17) and (3.18), we get

ψ11 =g11 +R−1
e α′′

11 + 6R−1
e α13 + 2Sβ12h2 + Sβ11β21

− Sh′2β21 − Sh2β
′

21 − p′02, (3.21)

p02 = g20 + 2R−1
e α21 + Sh1h

′

2 − Sβ11h1. (3.22)

By (3.19) and (3.20), we have

h′′1 = −2β12 −Rmh2α11, h′′2 = −2β22 = β′

11. (3.23)

Putting (3.22) into (3.21), we get

ψ11 = g11 + 2R−1
e α′′

11 + 6R−1
e α13 + 2Sβ12h2 + Sh2h

′′

1 − g′20 − Sh1h
′′

2 + Sβ′

11h1. (3.24)

Combining (3.23) and (3.24), we obtain

ψ11 = 2R−1
e α′′

11 + 6R−1
e α13 − SRmh

2
2α11 + g11 − g′20. (3.25)

From (3.1), (3.13), (3.14) and (3.25), we have

∂uτ
∂n

|Γ =
∂u1
∂x2

|x2=0 =
∂(α1 + tψ1 + o(t))

∂x2
|x2=0 = (

∂α1

∂x2
+ t

∂ψ1

∂x2
+ o(t))|x2=0

= α11 + t(2R−1
e α′′

11 + 6R−1
e α13 − SRmh

2
2α11 + g11 − g′20) + o(t).

If

0 < min
Γ

−α11

2R−1
e α′′

11 + 6R−1
e α13 − SRmh22α11 + g11 − g′20

≪ 1,

then we can get there exists t0 such that

∂uτ
∂n

|Γ,t=t0 = 0.

In other words, if there is a point x̄ ∈ Γ such that

−α11

2R−1
e α′′

11 + 6R−1
e α13 − SRmh22α11 + g11 − g′20

can take the minimum value, then
∂uτ(x̄, t0)

∂n
= 0,

which implies (2.2).

Combining (3.13) and (3.14), we get

∂2uτ
∂t∂n

=
∂2u1
∂t∂x2

= ψ11.
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Obviously,
∂2uτ
∂t∂n

(x̄, t0) 6= 0,

which satisfies (2.3).

From (3.1), (3.13), (3.14) and (3.25), we have

∂uτ
∂n

|Γ =
∂u1
∂x2

|x2=0 =
∂(α1 + tψ1 + o(t))

∂x2
|x2=0

= (
∂α1

∂x2
+ t

∂ψ1

∂x2
+ o(t))|x2=0

= α11 + t(2R−1
e α′′

11 + 6R−1
e α13 − SRmh

2
2α11 + g11 − g′20) + o(t) 6= 0

at t < t0, which satisfies (2.1). 2

Remark 3.2 The condition (3.7) for boundary layer separation can be observed by g11, α11,

α′′

11, α13, h2 and g′20. And the condition is related to the value of magnetic field on the boundary,

the initial value of the velocity and external force.

Remark 3.3 When the magnetic field is zero, the condition of boundary layer separation for

MHD equations will become

0 < min
Γ

−α11

g11 + 2R−1
e α′′

11 + 6R−1
e α13 − g′20

≪ 1,

which is the condition of boundary layer separation of 2-D incompressible fluid flows in [18].

Remark 3.4 From the proof of Theorem 3.1, it can be seen that the separation time is ap-

proximately obtained, but the result is of great significance in practical application. To be more

specific, we can get the separation time if the value of magnetic field on the boundary, the initial

value of the velocity and external force are known.
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