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1. Introduction

Let G = G(V,E) be a simple undirected graph with vertex set V (G) = {1, 2, . . . , n} and

edge set E(G). The adjacency matrix of G denoted by A(G) = (aij)n×n is an n × n matrix

defined as aij = 1 if ij ∈ E(G) and aij = 0 elsewhere. Let D(G) = (d1, d2, . . . , dn) be the

diagonal matrix of G, where di is the degree of the vertex i. The matrix D−1/2 is a diagonal

matrix with diagonal entries 1√
di

for i = 1, 2, . . . , n. Denote by M and Q(G) = D(G) + A(G)

the vertex-edge incidence matrix and the signless Laplacian matrix of G, respectively. Chung [1]

introduced the normalized Laplacian matrix L(G) of a simple graph G. It is defined to be the

matrix L(G) = I −D−1/2A(G)D−1/2, whose (i, j)th-entry is given by

Lij =















1, i = j and di 6= 0,
−1√
didj

, ij ∈ E(G),

0, otherwise.

Since A(G) and L(G) are all real symmetric matrices, their eigenvalues can be arranged in non-

increasing order λ1 ≥ λ2 ≥ · · · ≥ λn and σ1 ≥ σ2 ≥ · · · ≥ σn, respectively. In [1], Chung proved

that all normalized Laplacian eigenvalues of a graph lie in the interval [0, 2], and 0 is always

a normalized Laplacian eigenvalue, that is σn(G) = 0. These eigenvalues together with their

multiplicities is called normalized Laplacian spectrum or L-spectrum of G.

Determining the spectra of many graph operations is a basic and very meaningful work in

spectral graph theory [2,3]. In recent years, there has been tremendous interest in developing nor-

Received February 17, 2022; Accepted October 4, 2022

Supported by the National Natural Science Foundation of China (Grant No. 11961040) and the Natural Science

Foundation of Gansu Province (Grant No. 20JR5RA418).
* Corresponding author

E-mail address: jdslxywwz@163.com (Weizhong WANG); weib lzjtu@163.com (Bin WEI)



128 Weizhong WANG and Bin WEI

malized Laplacian spectra of graphs [4–7]. The mathematicians like Chen and Zhang expressed

the resistance distance in terms of normalized Laplacian eigenvalues and vectors of the graph

G (see [8]). Also they pointed out that degree-Kirchhoff index is closely related to spectrum

of the normalized Laplacian. The concept of limit point for the normalized Laplacian eigenval-

ues are used by Kirkkland in [9]. In [10], Banergee and Jost investigated how the normalized

spectrum is affected by some operations like mofit doubling, graph splitting or joining. Vargh-

ese and Susha [11] determined the normalized Laplacian spectrum of duplication vertex join of

two graphs, duplication graph, splitting graph and double graph of a regular graph. In [12],

Das and Panigrahi determined the full normalized Laplacian spectrum of the subdivision-vertex

join, subdivision-edge join, R-vertex join, and R-edge join of two regular graphs in terms of the

normalized Laplacian eigenvalues of the graphs. Also they described adjacency, Laplacian and

normalized Laplacian spectrum of the Q-vertex join and Q-edge join of a connected regular graph

with an arbitrary regular graph in terms of their respective eigenvalues in [13]. Tian et al. [14]

gave an explicit complete characterization of the Laplacian eigenvalues and the corresponding

eigenvectors of four variants of join operations in terms of the Laplacian eigenvalues and the

eigenvectors of factor graphs.

Motivated by above results, here we are interested in finding the normalized Laplacian spectra

of double join operations of regular graphs, based on subdivision graph, Q-graph, R-graph and

total graph, namely, GS ∨ (G•
1, G

◦
2), G

Q∨ (G•
1, G

◦
2), G

R∨ (G•
1, G

◦
2) and GT ∨ (G•

1, G
◦
2). The rest of

this paper is organized as follows. In Section 2, we determine the normalized Laplacian spectra

of the four double join operations of regular graphs. In Section 3, we summarize our work and

give some further remarks thereafter.

Definition 1.1 ([15]) Let G be a connected graph with n vertices and m edges. The related

graphs S(G), Q(G), R(G) and T (G) can be defined as follows:

(a) The subdivision graph S(G) of G is formed by substituting a path of length 2 corre-

sponding to each edge of G.

(b) The Q-graph Q(G) is formed by bringing in a new vertex into each edge of G, then

linking the pairs of new vertices through edges on adjacent edges of G.

(c) The R-graph R(G) is constructed by placing a new vertex related to each edge of G,

then connecting each new vertex to the end vertices of the corresponding edge.

(d) The total graph T (G) has the edges and vertices of G as its own vertices. Adjacency of

T (G) is specified as adjacency or incidence for the corresponding elements of G. This graph is

named as the total graph of G.

The four operations, S(G), Q(G), R(G) and T (G) on a graph G are illustrated with sketches

in Figure 1.

Definition 1.2 ([14]) Let G be a connected graph with n vertices and m edges. Also let G1 and

G2 be two graphs with n1 and n2 vertices, respectively. The subdivision double join GS∨(G•
1, G

◦
2)

of G, G1 and G2 is the graph obtained from S(G), G1 and G2 by joining every vertex of G to

every vertex of G1 and every vertex of I(G) to every vertex of G2, where I(G) denotes the vertex



On the normalized Laplacian spectra of some double join operations of graphs 129

set of the added new vertices in S(G). Replace S(G) by Q(G)(R(G), T (G)) in this definition,

then the resulting graphs are referred to as Q-graph (R-graph, total, respectively) double join of

these graphs. Similarly, we denote them by GQ ∨ (G•
1, G

◦
2), G

R ∨ (G•
1, G

◦
2) and GT ∨ (G•

1, G
◦
2),

respectively.

S(K3) Q(K3) R(K3) T (K3)

Figure 1 S(K3),Q(K3),R(K3) and T (K3) for the complete graph K3

KS
3 ∨ (K•

2 ,K◦
3 ) K

Q
3 ∨ (K•

2 ,K◦
3 ) KR

3 ∨ (K•
2 ,K◦

3 ) KT
3 ∨ (K•

2 ,K◦
3 )

Figure 2 KS
3 ∨ (K•

2 ,K
◦

3 ),K
Q
3 ∨ (K•

2 ,K
◦

3 ),K
R
3 ∨ (K•

2 ,K
◦

3 ) and KT
3 ∨ (K•

2 ,K
◦

3 )

Example 1.3 Let G, G1 and G2 be the complete graph K3, K2 and K3, respectively. Four

graphs KS
3 ∨(K•

2 ,K
◦
3 ),K

Q
3 ∨(K•

2 ,K
◦
3 ),K

R
3 ∨(K•

2 ,K
◦
3 ) and KT

3 ∨(K•
2 ,K

◦
3 ) are displayed in Figure

2 above.

2. Normalized Laplacian spectra

In this section, we will explore the normalized Laplacian spectrum of subdivision double join,

Q-graph double join, R-graph double join and total double join of a regular graph.

Let us first introduce some notations used in the later. Let In be the identity matrix of order

n, and let 1n be the column vector with all entries equal to 1. Denote by J and 0 the matrix

with all entries equal to 1 and 0, respectively. For other notations and terms in this article we

refer to [15–17].

Next, we focus on determining the normalized Laplacian spectra of the subdivision double

join GS ∨ (G•
1, G

◦
2) for the regular graph G and two regular graphs G1, G2.

Theorem 2.1 Let G be a k-regular graph on n vertices and m edges, and let Gi be an ri-regular

graph with ni vertices, i = 1, 2. Then the normalized Laplacian spectrum of GS ∨ (G•
1, G

◦
2)

consists of:

(a) 1− λ1i

r1+n , for i = 2, 3, . . . , n1;

(b) 1− λ2i

r2+m , for i = 2, 3, . . . , n2;

(c) 1, repeated m− n times;
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(d) 1±
√

b2
i

(n1+k)(n2+2) , for i = 2, 3, . . . , n;

(e) Four roots of the equation

(r1 + n)λ4 − (2r1 + 3n+
m(r1 + n)

r2 +m
)λ3 + (r1 + 3n+

3mn+ 2mr1

r2 +m
−

mn2(r1 + n)

(n2 + 2)(r2 +m)
− 2k(r1 + n)

(n1 + k)(n2 + 2)
− nn1

n1 + k
)λ2+

(
mn2(r1 + n) +mnn2

(n2 + 2)(r2 +m)
+

2kn

(n1 + k)(n2 + 2)
+

2km(r1 + n)

(r2 +m)(n1 + k)(n2 + 2)
+

mnn1

(r2 +m)(n1 + k)
+

nn1

n1 + k
− 3mn+mr1

r2 +m
− n)λ+

mn

r2 +m
− mnn2

(n2 + 2)(r2 +m)
−

mnn1

(n1 + k)(r2 +m)
+

mnn1n2 − 2kmn

(n1 + k)(n2 + 2)(r2 +m)
= 0,

where λ1i (i = 2, 3, . . . , n1) and λ2i (i = 2, 3, . . . , n2) are the adjacency eigenvalues of G1 and

G2, respectively.

Proof With a suitable labeling of the vertices of GS ∨ (G•
1, G

◦
2), the adjacency matrix of it can

be written as

A
(

GS ∨ (G•
1, G

◦
2)
)

=













0n Mn×m Jn×n1 0n×n2

M⊤
m×n 0m 0m×n1 Jm×n2

Jn1×n 0n1×m A(G1) 0n1×n2

0n2×n Jn2×m 0n2×n1 A(G2)













.

Similarly, one can get the normalized Laplacian matrix of GS ∨ (G•
1, G

◦
2)

L = I −D−1/2AD−1/2

=



















In
−Mn×m√

(n1+k)(n2+2)

−Jn×n1√
(n1+k)(r1+n)

0n×n2

−M⊤

m×n√
(n1+k)(n2+2)

Im 0m×n1

−Jm×n2√
(n2+2)(r2+m)

−Jn1×n√
(n1+k)(r1+n)

0n1×m In1 − A(G1)
r1+n 0n1×n2

0n2×n
−Jn2×m√

(n2+2)(r2+m)
0n2×n1 In2 − A(G2)

r2+m



















.

Since Gi is ri-regular, it has an eigenvector 1ni
corresponding to the eigenvalue ri and other

eigenvectors are orthogonal to 1ni
. Let λ1i be an eigenvalue of G1 with eigenvector Z such that

1⊤
n1
Z = 0. Then (0, 0, Z, 0)⊤ is an eigenvector of L corresponding to the eigenvalue 1− λ1i

r1+n .

This is because,

L













0

0

Z

0













=













0

0

Z − A(G1)Z
r1+n

0













=
(

1− λ1i

r1+n

)













0

0

Z

0













.

Therefore, 1− λ1i

r1+n (i = 2, 3, . . . , n1) are eigenvalues corresponding to the eigenvector (0,0, Z,0)
⊤.

Similarly, 1 − λ2i

r2+m for i = 2, 3, . . . , n2 are eigenvalues of L corresponding to the eigenvector

(0,0,0,W )⊤.
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Let Xi and Yi be the singular vector pairs of M corresponding to the singular values bi for

i = 1, 2, . . . , n, then Xi and Yi are the orthogonal unit eigenvectors of In and Im. Now consider

the following vectors

x =













k1Xi

Yi

0

0













for i = 2, 3, . . . , n,

where k1 is an unknow constant to be determined. By Lx = λx, we obtain

Lx =















k1Xi − biXi√
(n1+k)(n2+2)

−bik1Yi√
(n1+k)(n2+2)

+ Yi

0

0















= λ













k1Xi

Yi

0

0













which reduces to the following conditions

k1 −
bi

√

(n1 + k)(n2 + 2)
= λk1,

−bik1
√

(n1 + k)(n2 + 2)
+ 1 = λ.

Eliminating k1 from above conditions, one obtains quadratic equation

λ2 − 2λ+ 1− b2i
(n1 + k)(n2 + 2)

= 0

with roots λ = 1±
√

b2
i

(n1+k)(n2+2) .

Next, we consider the vectors

x =













0

Yj

0

0













for j = n+ 1, n+ 2, . . . ,m.

Notice that Y1 = 1√
m
1m, Y2, . . . , Ym are orthogonal eigenvectors of the matrix Im. Then, the

equation Lx = λx becomes

Lx =













0

cjYi

0

0













= λ













0

Yj

0

0













.

Hence, λ = cj = 1 (j = n + 1, n + 2, . . . ,m) are eigenvalues of L. So far we have determinted

n+m+ n1 + n2 − 4 eigenvalues of L.
To determine the four remaining eigenvalues and the corresponding eigenvectors, let

x =













k11n

k21m

k31n1

1n2













,
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where k1, k2, k3 are three unknown constants to be determined. By Lx = λx, we get following

conditions.


































k1 −
k2b1

√
m
n√

(n1+k)(n2+2)
− k3n1√

(n1+k)(r1+n)
= λk1,

− k1b1
√

n
m√

(n1+k)(n2+2)
+ k2 − n2√

(n2+2)(r2+m)
= λk2,

− k1n√
(n1+k)(r1+n)

+ nk3

r1+n = λk3,

− k2m√
(n2+2)(r2+m)

+ m
r2+m = λ.

Eliminating k1, k2 and k3 from above conditions, we have

(r1 + n)λ4 − (2r1 + 3n+
m(r1 + n)

r2 +m
)λ3 + (r1 + 3n+

3mn+ 2mr1

r2 +m
−

mn2(r1 + n)

(n2 + 2)(r2 +m)
− 2k(r1 + n)

(n1 + k)(n2 + 2)
− nn1

n1 + k
)λ2+

(
mn2(r1 + n) +mnn2

(n2 + 2)(r2 +m)
+

2kn

(n1 + k)(n2 + 2)
+

2km(r1 + n)

(r2 +m)(n1 + k)(n2 + 2)
+

mnn1

(r2 +m)(n1 + k)
+

nn1

n1 + k
− 3mn+mr1

r2 +m
− n)λ+

mn

r2 +m
− mnn2

(n2 + 2)(r2 +m)
− mnn1

(n1 + k)(r2 +m)
+

mnn1n2 − 2kmn

(n1 + k)(n2 + 2)(r2 +m)
= 0. 2

Remark 2.2 The subdivision double join GS ∨ (G•
1, G

◦
2) becomes the subdivision-vertex join

(resp., subdivision-edge join) defined in [18] whenever G2 (resp., G1) is a null graph. In [12],

Das and Panigrahi determined the normalized Laplacian spectra of subdivision-vertex join and

subdivision-edge join. Clearly, Theorem 2.1 generalizes the results of both Theorems 2.1 and 2.2

in [12].

Next, we give a complete description of the normalized Laplacian spectra of the Q-graph

double join GQ ∨ (G•
1, G

◦
2) for a regular graph G and two regular graphs G1, G2.

Theorem 2.3 Let G be a k-regular graph on n vertices and m edges, and let Gi be an ri-regular

graph with ni vertices, i = 1, 2. Then the normalized Laplacian spectrum of GQ ∨ (G•
1, G

◦
2)

consists of:

(a) 1− λ1i

r1+n , for i = 2, 3, . . . , n1;

(b) 1− λ2i

r2+m , for i = 2, 3, . . . , n2;

(c) 1− λlj

2k+n2
, for j = n+ 1, n+ 2, . . . ,m;

(d)
2− λli

2k+n2
±
√

(
λli

2k+n2
)2+

4b2
i

(n1+k)(n2+2k)

2 , for i = 2, 3, . . . , n;

(e) Four roots of the equation

(r1 + n)λ4 − (r1 + 2n+
(r1 + n)(n2 + 2)

2k + n2
+

m(r1 + n)

r2 +m
)λ3+

(
(r1 + n)(n2 + 2) + n(n2 + 2)

2k + n2
+ n+

2mn+mr1

r2 +m
+

m(r1 + n)(n2 + 2)−mn2(r1 + n)

(2k + n2)(r2 +m)
− 2k(r1 + n)

(2k + n2)(n1 + k)
− nn1

n1 + k
)λ2+
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(
2kn+ nn1(n2 + 2)

(2k + n2)(n1 + k)
+

2mnn2 +mn2r1 −m(r1 + 2n)(n2 + 2)

(2k + n2)(r2 +m)
+

2km(r1 + n)

(2k + n2)(n1 + k)(r2 +m)
+

mnn1

(r2 +m)(n1 + k)
−

n(n2 + 2)

2k + n2
− mn

r2 +m
)λ = 0,

where λ1i (i = 2, 3, . . . , n1), λ2i (i = 2, 3, . . . , n2) and λlj (j = 2, 3, . . . ,m) are the adjacency

eigenvalues of G1, G2 and the line graph of G, respectively.

Proof The adjacency matrix of GQ ∨ (G•
1, G

◦
2) can be expressed as

A
(

GQ ∨ (G•
1, G

◦
2)
)

=













0n Mn×m Jn×n1 0n×n2

M⊤
m×n A

(

l(G)
)

0m×n1 Jm×n2

Jn1×n 0n1×m A(G1) 0n1×n2

0n2×n Jn2×m 0n2×n1 A(G2)













,

where l(G) denotes the line graph of G. Similarly, the normalized Laplacian matrix of GQ ∨
(G•

1, G
◦
2) is

L = I −D−1/2AD−1/2

=



















In
−Mn×m√

(n1+k)(n2+2k)

−Jn×n1√
(n1+k)(r1+n)

0n×n2

−M⊤

m×n√
(n1+k)(n2+2k)

Im − A
(

l(G)
)

n2+2k 0m×n1

−Jm×n2√
(n2+2k)(r2+m)

−Jn1×n√
(n1+k)(r1+n)

0n1×m In1 − A(G1)
r1+n 0n1×n2

0n2×n
−Jn2×m√

(n2+2k)(r2+m)
0n2×n1 In2 − A(G2)

r2+m



















.

Since Gi is ri-regular, it has an eigenvector 1ni
corresponding to the eigenvalue ri and other

eigenvectors are orthogonal to 1ni
. Let λ1i be an eigenvalue of G1 with eigenvector Z such

that 1⊤
n1
Z = 0, then it is easy to see (0,0, Z,0)⊤ is an eigenvector of L corresponding to the

eigenvalue 1− λ1i

r1+n (i = 2, 3, . . . , n1). Similarly, 1− λ2i

r2+m (i = 2, 3, . . . , n2) are eigenvalues of L
corresponding to the eigenvector (0,0,0,W )⊤.

Let Xi and Yi be the singular vector pairs of M corresponding to the singular values bi for

i = 1, 2, . . . , n, then Xi and Yi are the orthogonal unit eigenvectors of In and A(l(G)). Now

consider the following vectors

x =













k1Xi

Yi

0

0













, i = 2, 3, . . . , n,
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where k1 is an unknown constant to be determined. By Lx = λx, we obtain

Lx =















k1Xi − biXi√
(n1+k)(n2+2k)

−bik1Yi√
(n1+k)(n2+2k)

+ (1− λli

n2+2k )Yi

0

0















= λ













k1Xi

Yi

0

0













which reduces to the following conditions

k1 −
bi

√

(n1 + k)(n2 + 2k)
= λk1,

−bik1
√

(n1 + k)(n2 + 2k)
+ (1 − λli

n2 + 2k
) = λ.

Eliminating k1 from above conditions, one obtains equation

λ2 − (2− λli

n2 + 2k
)λ+ 1− λli

n2 + 2k
− b2i

(n1 + k)(n2 + 2k)
= 0

with roots λ =
(2− λli

n2+2k )±
√

(
λli

n2+2k )2+
4b2

i
(n1+k)(n2+2)

2 .

Next, we consider the vectors

x =













0

Yj

0

0













, j = n+ 1, n+ 2, . . . ,m.

Notice that Y1 = 1√
m
1m, Y2, . . . , Ym are orthogonal eigenvectors of the matrix A(l(G)). Then,

the equation Lx = λx becomes

Lx =













0

(1− λlj

n2+2k )Yj

0

0













= λ













0

Yj

0

0













.

Hence, λ = 1− λlj

n2+2k (j = n+1, n+2, . . . ,m) are eigenvalues of L. So far we have determinted

n+m+ n1 + n2 − 4 eigenvalues of L.

To determine the four remaining eigenvalues and the corresponding eigenvectors, let

x =













k11n

k21m

k31n1

1n2













,
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where k1, k2, k3 are three unknown constants to be determined. By Lx = λx, one gets



































k1 −
k2b1

√
m
n√

(n1+k)(n2+2k)
− k3n1√

(n1+k)(r1+n)
= λk1,

− k1b1
√

n
m√

(n1+k)(n2+2k)
+ k2(n2+2)

n2+2k − n2√
(n2+2k)(r2+m)

= λk2,

− k1n√
(n1+k)(r1+n)

+ nk3

r1+n = λk3,

− k2m√
(n2+2k)(r2+m)

+ m
r2+m = λ.

Eliminating k1, k2 and k3 from above equations, we have

(r1 + n)λ4 − (r1 + 2n+
(r1 + n)(n2 + 2)

2k + n2
+

m(r1 + n)

r2 +m
)λ3+

(
(r1 + n)(n2 + 2) + n(n2 + 2)

2k + n2
+ n+

2mn+mr1

r2 +m
+

m(r1 + n)(n2 + 2)−mn2(r1 + n)

(2k + n2)(r2 +m)
−

2k(r1 + n)

(2k + n2)(n1 + k)
− nn1

n1 + k
)λ2 + (

2kn+ nn1(n2 + 2)

(2k + n2)(n1 + k)
+

2mnn2 +mn2r1 −m(r1 + 2n)(n2 + 2)

(2k + n2)(r2 +m)
+

2km(r1 + n)

(2k + n2)(n1 + k)(r2 +m)
+

mnn1

(r2 +m)(n1 + k)
− n(n2 + 2)

2k + n2
− mn

r2 +m
)λ = 0. 2

Remark 2.4 If G2 (resp., G1) is a null graph, then the Q-graph double join GQ ∨ (G•
1, G

◦
2)

reduces to Q-graph vertex join (resp., Q-graph edge join) [13]. Naturally, Theorem 2.3 implies

the results of both Theorems 2.3 and 2.6 in [13].

The following result describes the normalized Laplacian spectra of the R-graph double join

GR ∨ (G•
1, G

◦
2) for a regular graph G and two regular graphs G1, G2.

Theorem 2.5 Let G be a k-regular graph on n vertices and m edges, and let Gi be an ri-regular

graph with ni vertices, i = 1, 2. Then the normalized Laplacian spectrum of GR ∨ (G•
1, G

◦
2)

consists of:

(a) 1− λ1i

r1+n , for i = 2, 3, . . . , n1;

(b) 1− λ2i

r2+m , for i = 2, 3, . . . , n2;

(c) 1, repeated m− n times;

(d)
(2− λi

2k+n1
)±

√

(
λi

2k+n1
)2+

4b2
i

(2k+n1)(n2+2)

2 , for i = 2, 3, . . . , n;

(e) Four roots of the equation

(r1 + n)λ4 − (r1 + 2n+
(k + n1)(r1 + n)

2k + n1
+

m(r1 + n)

r2 +m
)λ3+

(n+
(k + n1)(r1 + n)− nn1

2k + n1
+

m(r1 + 2n)

r2 +m
+

m(k + n1)(r1 + n)

(2k + n1)(r2 +m)
−

mn2(r1 + n)

(2 + n2)(r2 +m)
− 2k(r1 + n)

(2k + n1)(2 + n2)
)λ2+

(
n1n2 − n(k + n1)

2k + n1
+

2kn

(2k + n1)(2 + n2)
+

2km(r1 + n) +mn2(k + n1)(r1 + n)

(2k + n1)(2 + n2)(r2 +m)
−



136 Weizhong WANG and Bin WEI

kmn+m(k + n1)(r1 + n)

(2k + n1)(r2 +m)
+

mnn2

(2 + n2)(r2 +m)
− mn

r2 +m
)λ+

kmn

(2k + n1)(r2 +m)
− 2kmn+ kmnn2

(2k + n1)(r2 +m)(n2 + 2)
= 0,

where λ1i (i = 2, 3, . . . , n1) and λ2i (i = 2, 3, . . . , n2) are the adjacency eigenvalues of G1 and

G2, respectively.

Proof With a proper labeling of vertices, the adjacency matrix of GR∨ (G•
1, G

◦
2) can be written

as

A
(

GR ∨ (G•
1, G

◦
2)
)

=













A(G) Mn×m Jn×n1 0n×n2

M⊤
m×n 0m 0m×n1 Jm×n2

Jn1×n 0n1×m A(G1) 0n1×n2

0n2×n Jn2×m 0n2×n1 A(G2)













.

Similarly, the normalized Laplacian matrix of GR ∨ (G•
1, G

◦
2)

L = I −D−1/2AD−1/2

=



















In − A(G)
n1+2k

−Mn×m√
(n1+2k)(n2+2)

−Jn×n1√
(n1+2k)(r1+n)

0n×n2

−M⊤

m×n√
(n1+2k)(n2+2)

Im 0m×n1

−Jm×n2√
(n2+2)(r2+m)

−Jn1×n√
(n1+2k)(r1+n)

0n1×m In1 − A(G1)
r1+n 0n1×n2

0n2×n
−Jn2×m√

(n2+2)(r2+m)
0n2×n1 In2 − A(G2)

r2+m



















.

Using the same technique as the proof of Theorem 2.1, we can obtain the desired result. 2

Remark 2.6 Similarly, if G2 (resp., G1) is a null graph, then our R-graph double join GR ∨
(G•

1, G
◦
2) reduces to R-graph vertex join (R-graph edge join) [19]. Naturaly, Theorem 2.5 implies

the results of both Theorems 2.3 and 2.4 in [12].

For the total double join GT ∨ (G•
1, G

◦
2), we describe the normalized Laplacian spectra in the

following results.

Theorem 2.7 Let G be a k-regular graph on n vertices and m edges, and let Gi be an ri-regular

graph with ni vertices, i = 1, 2. Then the normalized Laplacian spectrum of GT ∨ (G•
1, G

◦
2)

consists of:

(a) 1− λ1i

r1+n , for i = 2, 3, . . . , n1;

(b) 1− λ2i

r2+m , for i = 2, 3, . . . , n2;

(c) 1− λlj

2k+n2
, for j = n+ 1, n+ 2, . . . ,m;

(d)
(2− λi

2k+n1
− λli

2k+n2
)±

√

(
λi

2k+n1
+

λli
2k+n2

)2− 4(λliλi−b2
i
)

(n1+2k)(n2+2k)

2 , for i = 2, 3, . . . , n;

(e) Four roots of the equation

(r1 + n)λ4 − (n+
(k + n1)(r1 + n)

2k + n1
+

m(r1 + n)

r2 +m
+

(n2 + 2)(r1 + n)

2k + n2
)λ3+

(
k

2k + n1
+

mn

r2 +m
+

n(n2 + 2)

2k + n2
+

m(k + n1)(r1 + n)

(r2 +m)(2k + n1)
+
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(kn2 + n1n2 + 2n1)(r1 + n)

(2k + n1)(2k + n2)
+

2m(r1 + n)

(r2 +m)(2k + n2)
)λ2 − (

2mn

(2k + n2)(r2 +m)
+

2mn1(r1 + n)

(2k + n1)(2k + n2)(r2 +m)
+

knn2

(2k + n1)(2k + n2)
+

kmn

(r2 +m)(2k + n1)
)λ = 0,

where λ1i (i = 2, 3, . . . , n1), λ2i (i = 2, 3, . . . , n2) and λlj (j = 2, 3, . . . ,m) are the adjacency

eigenvalues of G1, G2 and the line graph of G, respectively.

Proof With a suitable labeling of the vertices of GT ∨ (G•
1, G

◦
2), we can write the adjacency

matrix of GT ∨ (G•
1, G

◦
2) as

A
(

GT ∨ (G•
1, G

◦
2)
)

=













A(G) Mn×m Jn×n1 0n×n2

M⊤
m×n A

(

l(G)
)

0m×n1 Jm×n2

Jn1×n 0n1×m A(G1) 0n1×n2

0n2×n Jn2×m 0n2×n1 A(G2)













.

Then the normalized Laplacian matrix of GT ∨ (G•
1, G

◦
2)

L = I −D−1/2AD−1/2

=



















In − A(G)
n1+2k

−Mn×m√
(n1+2k)(n2+2k)

−Jn×n1√
(n1+2k)(r1+n)

0n×n2

−M⊤

m×n√
(n1+2k)(n2+2k)

Im − A
(

l(G)
)

n2+2k 0m×n1

−Jm×n2√
(n2+2k)(r2+m)

−Jn1×n√
(n1+2k)(r1+n)

0n1×m In1 − A(G1)
r1+n 0n1×n2

0n2×n
−Jn2×m√

(n2+2k)(r2+m)
0n2×n1 In2 − A(G2)

r2+m



















.

Using the similar technique to the proof of Theorem 2.2, we get the expected result. 2

3. Conclusion

Here, we give an explicit complete characterization of the normalized Laplacian spectra of

four variants of double join operations of graphs in terms of the normalized Laplacian spectra of

the factor graphs. In addition, these results describe completely the eigenvectors corresponding

to all the normalized Laplacian eigenvalues of these graphs.

Before the end of this paper, it should be pointed out that the normalized Laplacian matrix

of usual join graph of regular graph can be obtained by choosing M = 0n×m, n2 = 0 and the

block which Im lied in equals 0m×m in L
(

GF ∨ (G•
1, G

◦
2)
)

, F ∈ {S,Q,R, T }. Thus the nonzero

normalized Laplacian eigenvalues of the join graph of regular graphs can be obtained from the

corresponding eigenvalues of L
(

GF ∨ (G•
1, G

◦
2)
)

. Hence, the Corollary 3.3 in [20] can also be

obtained from the results here.
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