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Abstract A function f : E(G) → {−1, 1} is called a signed edge dominating function (SEDF for

short) of G if f [e] = f(N [e]) =
∑

e′∈N[e] f(e
′) ≥ 1, for every edge e ∈ E(G). w(f) =

∑
e∈E

f(e)

is called the weight of f . The signed edge domination number γs
′(G) of G is the minimum

weight among all signed edge dominating functions of G. In this paper, we initiate the study of

this parameter for G a complete multipartite graph. We provide the lower and upper bounds of

γs
′(G) for G a complete r-partite graph with r even and all parts equal.
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1. Introduction

In this paper we in general follow [1] for notation and graph theory terminology. Specifically,

let G = (V,E) be a simple graph with vertex set V and edge set E, and let v be a vertex in

V . The open neighborhood N(v) of v is defined as the set of vertices adjacent to v. The closed

neighborhood of v is N [v] = N(v) ∪ {v}. Let E(v) be the set of all edges incident with v.

Similarly, let e be an edge in E. The open neighborhood N(e) of e is defined as the set of edges

adjacent to e. The closed neighborhood of e is N [e] = N(e) ∪ {e}. For a natural number r ≥ 2,

a graph is r-partite if its vertex set can be partitioned into r subsets, or parts, V1, V2, . . . , Vr,

in such a way that no edge has both ends in the same part. We denote an r-partite graph G

with r-partitions (V1, V2, . . . , Vr) by G[V1, V2, . . . , Vr]. If G[V1, V2, . . . , Vr] is simple and every

vertex in each part is joined to every vertex in the other r− 1 parts, then G is called a complete

r-partite graph or complete multipartite graph. If |V1| = n1, |V2| = n2, . . . , |Vr | = nr, then the

complete r-partite graph is denoted by Kn1,n2,...,nr
. In particular, if r = 2, we call a complete r-

partite graph a complete bipartite graph; if r = 3, we call a complete r-partite graph a complete

tripartite graph.

Let G = (V (G), E(G)) be a non-empty graph. A function f : V (G) → {−1, 1} is called a

signed dominating function of G if f [v] = f(N [v]) =
∑

u∈N [v] f(u) ≥ 1, for every v ∈ V (G). A

survey on signed dominating functions can be seen in [2].
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A function f : E(G) → {−1, 1} is called a signed edge dominating function (SEDF for short)

of G if f [e] = f(N [e]) =
∑

e′∈N [e] f(e
′) ≥ 1, for every e ∈ E(G). The weight w(f) of f is the sum

of the function values of all edges in G, that is, w(f) =
∑

e∈E f(e). The signed edge domination

number γs
′(G) of G is the minimum weight among all signed edge dominating functions on G,

that is, γ ′(G) = min{w(f)|f is an SEDF on G}. When γs
′(G) = w(f), f is called a γs

′-function

of G. Xu [3] introduced this concept and it has been studied in, for example [4–11].

The exact values of signed edge domination number of a complete bipartite graph have been

given in [3]. The exact values of signed edge domination number of some class of complete

tripartite graph have been provided in [11]. In this paper, we initiate the study of this parameter

for G a complete multipartite graph. In Section 2, we obtain lower and upper bounds on γs
′(G)

for a complete r-partite graph G with r even and all parts equal by directly constructing the

minimum signed edge dominating functions of G.

2. Bounds

Given an SEDF f of Kn1,n2,...,nr
, for every i, j ∈ {1, 2, . . . , r}, we use the following notations:

Denote the r parts ofKn1,n2,...,nr
by V1, V2, . . . , Vr with |Vi| = ni and Vi = {vi1, vi2, . . . , vini

}; Let

E(v) = {e|e is incident with v, v ∈ V }, sv =
∑

e∈E(v) f(e), E(Vi) = {e|e is incident with v, v ∈ Vi}

and f(E(Vi)) =
∑

e∈E(Vi)
f(e), E(Vi, Vj) = {e|e = uv, u ∈ Vi, v ∈ Vj , i, j ∈ {1, 2, . . . , r}, i 6= j},

f(Vi, Vj) =
∑

e∈E(Vi,Vj)
f(e) and si =

∑

v∈Vi
sv; For an integer k and some i ∈ {1, 2, . . . , r},

define Vi(k) = {vij | svij = k, j = 1, 2, . . . , ni}; Also, denote
⋃

j∈{1,2,...,r}\{i} Vj by
⋃

j 6=i Vj and
∑

j∈{1,2,...,r}\{i} f(Vj) by
∑

j 6=i f(Vj) for some fixed i ∈ {1, 2, . . . , r}.

By the definition of SEDF, we have the following immediate observation.

Observation 2.1 A function f : E(Kn1,n2,...,nr
) −→ {−1, 1} is an SEDF on Kn1,n2,...,nr

if and

only if for any u ∈ Vi, v ∈ Vj , i, j ∈ {1, 2, . . . , r}, i 6= j, the following formulae holds:

f [uv] = su + sv − f(uv) ≥ 1.

Now, we provide the lower and upper bounds of γs
′(Kn,n,...,n).

Theorem 2.2 For a complete r-partite graph Kn,n,...,n with r ≥ 4 even,

(r − 1)n

4
≤ γs

′(Kn,n,...,n) ≤
rn

2
.

Proof First we give the following useful claim.

Claim 2.3 If f is an SEDF on a complete r-partite graph Kn,n,...,n, then w(f) has the same

parity with
r(r−1)

2 n.

Proof of Claim 2.3 Since w(f) =
∑

e∈E f(e), |E| = r(r−1)
2 n2 and f(e) = 1 or −1, w(f) has

the same parity with r(r−1)
2 n2, and thus has the same parity with r(r−1)

2 n. 2

In order to prove Theorem 2.2, we first prove γs
′(Kn,n,...,n) ≥

(r−1)n
4 . Let f be an SEDF f

on Kn,n,...,n.
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Assume there exists some vertex u ∈ V , without loss of generality, assume u ∈ V1 such that

su = min{sv, v ∈ V } = −k for some k ≥ 1. Then by Observation 2.1, sv ≥ k+1+f(uv) for every

v ∈ V \ V1, and f(uw) = −1 for every w ∈ Vi(k), i ∈ {2, 3, . . . , r}. So
∑r

i=2 |Vi(k)| ≤
r−1
2 n+ k

2 ,

for otherwise, su < (r − 1)n − 2( r−1
2 n + k

2 ) = −k, contradicting the assumption of su = −k.

Therefore,

∑

v∈V \V
1

sv ≥ (
r − 1

2
n+

k

2
) · k + (

r − 1

2
n−

k

2
) · (k + 2) = (k + 1)(r − 1)n− k,

and thus,

w(f) =
1

2

∑

v∈V

sv =
1

2

(

∑

v∈V1

sv +
∑

v∈V \V
1

sv

)

≥
1

2
((k + 1)(r − 1)n− k − kn).

Consider w(k) = 1
2 ((k+1)(r−1)n−k−kn) as a function of k. Since w′(k) = 1

2 ((r−1)n−1−n) ≥ 0,

w(k) is an increasing function. So

w(f) =
1

2
((k + 1)(r − 1)n− k − kn) ≥

1

2
(2(r − 1)n− 1− n) >

(r − 1)n

4
.

So, we always assume that sv ≥ 0 for all v ∈ V in the rest argumentation of the lower bound.

Let t denote the cardinality of the set {i| there exists a vertex v ∈ Vi such that sv = 0, i =

1, 2, . . . , r}. We consider the following three cases.

Case 1. t ≤ r
2 . Then w(f) = 1

2

∑

v∈V sv ≥ (r−t)
2 n ≥ rn

4 ≥ (r−1)n
4 .

Case 2. r
2 +1 ≤ t ≤ r. Without loss of generality, suppose |Vi(0)| > 0 for every i ∈ {1, . . . , t}.

We claim that
∑t

j=1,j 6=i |Vj(0)| ≤
r−1
2 n for every i ∈ {1, . . . , t}. For otherwise, suppose to the

contrary that
t

∑

j=1,j 6=i

|Vj(0)| ≥
r − 1

2
n+ 1 for some i ∈ {1, . . . , t}.

Let u ∈ Vi with su = 0. On the other hand, f(uv) = −1 for all v ∈
⋃t

j 6=i,j=1 Vj(0) by Obser-

vation 2.1. But this results in su < 0, contradicting the assumption that su ≥ 0. Now that
∑t

j=1,j 6=i |Vj(0)| ≤
r−1
2 n for every i ∈ {1, . . . , t}, we add these t inequalities and have

(t− 1)

t
∑

j=1

|Vj(0)| ≤
r − 1

2
nt,

t
∑

j=1

|Vj(0)| ≤
r − 1

2(t− 1)
nt =

r − 1

2
n(1 +

1

t− 1
).

Therefore,

w(f) =
1

2

∑

v∈V

sv ≥
1

2
((tn−

r − 1

2(t− 1)
nt) · 1 + (r − t)n · 1)

=
1

2
((1−

r − 1

2(t− 1)
)nt+ (r − t)n) =

1

2
(rn−

r − 1

2
n(1 +

1

t− 1
))

≥
1

2
(rn−

r − 1

2
n(1 +

1
r+2
2 − 1

)) =
1

2
(rn −

r − 1

2
n ·

r + 2

r
)
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=
n

4
(r − 1 +

2

r
) ≥

(r − 1)

4
n.

Case 3. t = r. Suppose there exists a vertex vi ∈ Vi such that svi = 0 for every i ∈ {1, . . . , r}.

Then by Observation 2.1, f(viv) = −1 for every v ∈
⋃r

j 6=i,j=1 Vj(0). Thus,
∑r

j 6=i,j=1 |Vj(0)| ≤
r−1
2 n, for otherwise, svi < 0, contradicting the assumption that svi = 0. By adding up these r

inequalities, we have

(r − 1)
r

∑

j=1

|Vj(0)| ≤
r(r − 1)

2
n,

and thus
r

∑

j=1

|Vj(0)| ≤
rn

2
.

As a result,

w(f) =
1

2

∑

v∈V

sv ≥
1

2
· (rn −

rn

2
) · 2 =

rn

2
≥

(r − 1)

4
n.

Now we have proved that γs
′(Kn,n,...,n) ≥

(r−1)
4 n.

Next we prove the upper bound by constructing an SEDF f onKn,n,...,n such that w(f) = rn
2 .

We consider two cases in the following.

Case 1. n is even. Let f be defined as follows: For e ∈ E1 = E(V1, V2) ∪ E(V3, V4) ∪ · · · ∪

E(Vr−1, Vr), for example, e ∈ E(V1, V2), let

f(v1iv2j) =

{

1, if i > n
2 , j > n

2 , i = j is even,

(−1)i+j+1, otherwise;

For e ∈ E2 = E(V2, V3) ∪E(V4, V5) ∪ · · · ∪ E(Vr, V1), for example, e ∈ E(V2, V3), let

f(v2iv3j) =

{

1, if i ≤ n
2 , j ≤ n

2 , i = j is even,

(−1)i+j+1, otherwise;

For e ∈ E \ (E1 ∪ E2), suppose e ∈ E(Vp, Vq) for some p, q ∈ {1, 2, . . . , r}, without loss of

generality, let f(vpivqj) = (−1)i+j+1.

By our construction, we can easily find that for every p ∈ {1, 2, . . . , r} and i ∈ {1, 2, . . . , n},

svpi = 0 when i is odd, svpi = 2 when i is even. Also, noting the definitions of f(e), it is easy to

check that f is an SEDF on Kn,n,...,n by Observation 2.1, and we have

w(f) =
1

2

∑

v∈V

sv =
1

2
·
n

2
· 2 =

rn

2
,

which means that γs
′(Kn,n,...,n) ≤

rn
2 .

Case 2. n is odd. Let f be defined as follows: For e ∈ E1 = E(V1, V2) ∪ E(V3, V4) ∪ · · · ∪

E(Vr−1, Vr), for example, e ∈ E(V1, V2), let

f(v1iv2j) =

{

1, if i = j is odd,

(−1)i+j+1, otherwise;
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For e ∈ E \E1, suppose e ∈ E(Vp, Vq) for some p, q ∈ {1, 2, . . . , r}, without loss of generality, let

f(vpivqj) =

{

(−1)i+j , if p+ q is odd,

(−1)i+j+1, if p+ q is even.

By our construction, we can easily find that for every p ∈ {1, 2, . . . , r} and i ∈ {1, 2, . . . , n},

svpi = 1. Also, noting the definitions of all f(e), it is easy to check that f is an SEDF on Kn,n,...,n

by Observation 2.1, and we have

w(f) =
1

2

∑

v∈V

sv =
1

2
· n · 1 =

rn

2
,

which means that γs
′(Kn,n,...,n) ≤

rn
2 . This completes the proof of Theorem 2.2. 2

Concluding Remarks For further researches, we are interested in the exact value of γs
′(Kn,n,...,n)

with the number r of the parts even, and interested in the case for r odd, which seems more

difficult and complicated than the case for r even.

References

[1] T. W. HAYNES, S. T. HEDETNIEMI, P. J. SLATER. Fundamentals of Domination in Graphs. Marcel
Dekker, New York, 1998.

[2] Liying KANG, Erfang SHAN. Signed and Minus Dominating Functions in Graphs. Springer, Cham, 2020.

[3] Baogen XU. On signed edge domination numbers of graphs. Discrete Math., 2001, 239(1-3): 179–189.

[4] S. AKBARI, S. BOLOUKI, P. HATAMI, et al. On the signed edge domination number of graphs. Discrete

Math., 2010, 309(3): 587–594.

[5] L. W. BEINEKE, M. A. HENNING. Opinion functions on trees. Discrete Math., 1997, 167/168: 127–139.

[6] Weidong CHEN, Enmin SONG. Lower bounds on several versions of signed domination number. Discrete

Math., 2008, 308(10): 1837–1846.

[7] M. A. HENNING, H. R. HIND. Strict majority functions on graphs. J. Graph Theory, 1998, 28(1): 49–56.

[8] M. A. HENNING, P. J. SLATER. Inequalities relating domination cubic graphs. Discrete Math., 1996,

158(1-3): 87–98.

[9] Erfang SHAN, T. C. E. CHENG. Remarks on the minus (signed) total domination in graphs. Discrete Math.,
2008, 308(15): 3373–3380.

[10] Baogen XU. Two classes of edge domination in graphs. Discrete Appl. Math., 2006, 154(10): 1541–1546.

[11] A. KHODKAR, A. N. GHAMESHLOU. Signed edge domination numbers of complete tripartite graphs: Part

One. Util. Math., 2017, 105: 237–258.


	1. Introduction
	2. Bounds

