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Abstract Let m be a positive integer and Fqr be a finite field with the characteristic of p. We

prove that if p > m2 − m and q ≡ 1 (mod m), the polynomial x1+ q−1

m + ax (a 6= 0) is not a

permutation polynomial over Fqr (r ≥ 2). And we verify that if q ≡ 1 (mod 7) and p 6= 2, 3,

then the polynomial x1+ q−1

7 + ax (a 6= 0) is not a permutation polynomial over Fqr (r ≥ 2).
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1. Introduction

Let q be a prime power, Fq be the finite field of order q, and Fq [x] be the ring of polynomials in

a single indeterminate x over Fq. A polynomial f(x) ∈ Fq[x] is called a permutation polynomial

of Fq if it induces a one-to-one map from Fq to itself. These polynomials first arose in work of

Betti [1] and Hermite [2] as a way to represent permutations. A general theory was developed

by Hermite [2] and Dickson [3], with many subsequent developments by Carlitz and others.

The simplest class of nonconstant polynomials are the monomials xn with n > 0, and one

easily checks that xn permutes Fq if and only if n is coprime to q − 1. However, the question

of whether binomials are permutation polynomials or not is much more mysterious. Given

f(x) = xm+axn ∈ Fq[x] with 0 < n < m < q and a 6= 0, Hou [4] told us that there exist integers

r, t, d > 0 with gcd(t, q− 1) = 1 and d|(q − 1) such that f(xt) ≡ xr(x(q−1)/d + a) (mod xq − x).

Therefore, if a binomial in a statement is assumed to be of the form xr(x(q−1)/d+a), no generality

is lost. Carlitz and Wells [5] relied on a bound on the Weil sum of a multiplicative character of Fq

(see [6]) to prove that for fixed integers d > 1 and c > 0, when q is sufficiently large and satisfies

the conditions d|(q − 1) and gcd(c, q − 1) = 1, there exists a 6= 0 such that xr(x(q−1)/d + a)k

is a permutation polynomial over Fq (Note that k = 1, the polynomial is a binomial). Using

the Hasse-Weil bound on the number of degree one places of an algebraic function field over

Fq (see [7]), Masuda and Zieve [8] refined a result of Carlitz-Wells. They showed that if q ≥ 4
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and (q − 1)/d > 2q(log log q)/ log q, then there exists a 6= 0 such that xr(x(q−1)/d + a) is a

permutation polynomial over Fq. Moreover, they obtained an estimate for the number of a’s

with this property.

From the nonexistence perspective, Niederreiter and Robinson [9] used Riemann Hypothesis

for curves over finite fields to verify that xm+ax (a 6= 0) is not a permutation polynomial over Fq

if q ≥ (m2−4m+6)2. Turnwald [10] improved this result by considering Weil’s bound [11] for the

number of Fq-rational points on the curve (f(x)−f(y))/(x−y). He proved that f(x) = xm+axn

with m > n > 0 and a 6= 0 is not a permutation polynomial over Fq if q > (m − 2)2 + 4m − 4

and m 6= npi; here, p denotes the characteristic of Fq. There are some results on binomial

x1+ q−1

m +ax (q ≡ 1 (mod m)) over Fqr . For r = 1, Carlitz [5] showed that for sufficiently large q

there exists a ∈ F ∗

q for which x1+ q−1

m +ax is a permutation polynomial over Fq. For r ≥ 2, Carlitz

[12] proved that the binomial x1+ q−1

2 + ax (q odd, a 6= 0) cannot be a permutation polynomial

of Fqr , and he raised the same question for x1+ q−1

3 + ax (q ≡ 1 (mod 3), a 6= 0). Wan [13]

answered Carlitz’s question in the case p 6= 2. Kim and Lee [14] proved that x1+ q−1

5 + ax (q ≡ 1

(mod 5), a 6= 0) cannot be a permutation polynomial of Fqr for p 6= 2. Then they also conjectured

that the polynomial x1+ q−1

7 + ax (q ≡ 1 (mod 7), a 6= 0) is not a permutation polynomial over

Fqr . More generally, one may consider x1+ q−1

m + ax ∈ Fqr [x], where q ≡ 1 (mod m), m ≥ 2,

a 6= 0. Clearly, if m = q−1
pi

−1 , where Fpi ⊂ Fqr , then x1+ q−1

m + ax = xpi

+ ax, which is a

permutation polynomial of Fqr if and only if (−a)(q
r
−1)/(pi

−1) 6= 1. When 1+ q−1
m is not a power

of p, it is not known if the binomial can be a permutation polynomial of Fqr .

In this paper, we give some properties of x1+ q−1

m + ax (a 6= 0) over Fqr [x] (r ≥ 2) and

show that a polynomial of the form of x1+ q−1

7 + ax (a 6= 0) is not a permutation polynomial of

Fqr (r ≥ 2), where q ≡ 1 (mod 7) and p 6= 2, 3.

In the following we assume that q = pn, p a prime unless stated otherwise.

2. Auxiliary results

We now present some auxiliary lemmas that will be needed in the sequel.

First, we give Hermite’s criterion. The interest in this criterion is utilizing the degrees of the

power of the polynomial to determine whether the one is permutation.

Lemma 2.1 ([15, Theorem 7.4]) A polynomial f(x) ∈ Fq[x] is permutation polynomial if and

only if

(1) For each i with 0 < i < q− 1, the reduction of f i(x) modulo xq − x has degree less than

q − 1 and

(2) f(x) has precisely one root in Fq .

Wan [13] established the following result about the binomial. Actually, Hermite’s criterion

can produce this outcome. For convenience of exposition of the Theorem 3.5, we still list here.

Lemma 2.2 ([13]) Let 1 < k < q, q − 1 = k([ q−1
k ] − t) + tk + j0, 0 ≤ j0 < k, 0 ≤ t < [ q−1

k ].

Put J = [ q−1
k ]− t+ tk + j0 and suppose p 6 |

(

J
tk+j0

)

. If q − 1 > (k − 1, q − 1)((t+ 1)k − 1), then
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f(x) = xk + ax (a 6= 0) is not a permutation polynomial over Fq.

To determine p being not a divisor of
(

J
tk+j0

)

in Lemma 2.2 and the coefficients of the

expansion of f i(x) in Lemma 2.1, we require the following two lemmas.

Lemma 2.3 ([16]) Let p be a prime and

m =

l
∑

i=0

mip
i, k =

l
∑

i=0

kip
i

be representations of m and k to the basis p, where 0 ≤ mi, ki ≤ p− 1. Then

(

m

k

)

≡
l

∏

i=0

(

mi

ki

)

(mod p).

Let υp(n) be the exponent of the highest power of p that divides n. Furthermore, we denote

by ⌊t⌋ the greatest integer ≤ t.

Lemma 2.4 ([15, Lemma 6.39]) For any nonnegative integer n and any prime p we have

υp(n!) =

∞
∑

i=1

⌊
n

pi
⌋ =

n− sn
p− 1

,

where sn is the sum of digits in the representation of n to the base p.

At last, we list the relationship between the degree of permutation binomials and the order

of the finite field.

Lemma 2.5 ( [10]) If there is a permutation polynomial of Fq of the form xs + axt, where

s > t > 0 and a ∈ F ∗

q , then either s
t is a power of p or q ≤ (s− 2)4 + 4s− 4.

3. Main results

We discuss whether x1+ q−1

m +ax is a permutation polynomial over Fqr or not. We know that

if m = q−1
pt

−1 with t being a divisor of n, we have that

x1+ q−1

m + ax = xpt

+ ax

is a p-polynomial over Fqr . Then xpt

+ ax is a permutation polynomial over Fqr if and only if

−a is not a (pt − 1)th power of an element of F ∗

qr . If m 6= q−1
pt

−1 with t being a divisor of n and

r ≥ 4, we have that 1 + q−1
m is not a power of p and

qr > (1 +
q − 1

m
− 2)4 + 4(1 +

q − 1

m
)− 4.

By Lemma 2.5, x1+ q−1

m + ax (a 6= 0) is not a permutation polynomial over Fqr .

Therefore, for m 6= q−1
pt

−1 with t being a divisor of n, we only need to consider the cases r = 2

and r = 3.

Kim and Lee [14] gave the following properties of x1+ q−1

m + ax (a 6= 0) over Fqr (r = 2, 3).

Proposition 3.1 ( [14]) x1+ q−1

m + ax (a 6= 0) is not a permutation polynomial over Fq2 if
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p > m2 −m and q > m3 − 2m2 −m+ 1 with m ≥ 3.

Proposition 3.2 ( [14]) x1+ q−1

m + ax (a 6= 0) is not a permutation polynomial over Fq3 if

p > m2 −m and q > m+ (m− 1)(m(m− 1)2 − 1) with m ≥ 3.

Here, we give an alternative proof to the above Propositions. In all proofs, techniques used

here are different from the ones used in [14]. As a result, condition q > m3 − 2m2 −m + 1 of

Proposition 3.1 and condition q > m+ (m− 1)(m(m− 1)2 − 1) of Proposition 3.2 are deleted.

Theorem 3.3 For a prime power q and a positive integerm with q ≡ 1 (mod m), the polynomial

x1+ q−1

m + ax (a 6= 0) is not a permutation binomial over Fq2 , if p satisfies one of the following

conditions:

(i) p > m2 −m;

(ii) p < m2 −m < p2 and t +m ≤ p, where t is the least nonnegative residue of m2 − 2m

modulo p.

Proof In Lemma 2.1, let i = mq −m. Then it will suffice to show that the reduction of

(x1+ q−1

m + ax)mq−m (mod xq2 − x)

has degree q2 − 1. Now

(x1+ q−1

m + ax)mq−m =

mq−m
∑

j=0

(

mq −m

j

)

ajx(1+ q−1

m
)(mq−m−j)+j

=

mq−m
∑

j=0

(

mq −m

j

)

ajxq2−1+(m−2)(q−1)− q−1

m
·j .

For j > m(m − 2), the corresponding exponent of x are ≤ q2 − 2. For j < m(m − 2), the

corresponding exponent of x are easily seen to be ≥ q2 and ≤ 2q2 − 3, so that after reduction of

these terms (mod xq2 − x) we get monomials of degree ≤ q2 − 2. The only remaining term is

the one for j = m(m− 2)-namely,
(

mq −m

m2 − 2m

)

am
2
−2mxq2−1.

It suffices then to prove that the binomial coefficient above is not divisible by the characteristic

p of Fq. If sn is as defined above in Lemma 2.4, then p > m2 −m implies that

smq−m = smq−(m2
−m) + sm2

−2m,

hence Lemma 2.4 yields

υp

((

mq −m

m2 − 2m

))

=
1

p− 1

(

smq−(m2
−m) + sm2

−2m − smq−m

)

= 0,

which is the desired fact. 2

By the same method of the proof of Theorem 3.3, we can prove the following theorem. For

convenience of description below, we still give proof.

Theorem 3.4 Let q ≡ 1 (mod m). The polynomial x1+ q−1

m + ax (a 6= 0) is not a permutation
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binomial over Fq3 , if p satisfies one of the following conditions:

(i) p > m2 −m;

(ii) p < m2 −m < p2 and t +m ≤ p, where t is the least nonnegative residue of m2 − 2m

modulo p.

Proof In Lemma 2.1, let i = mq2− (m−1)q−1. Then it will suffice to show that the reduction

of

(x1+ q−1

m + ax)mq2−(m−1)q−1 (mod xq3 − x)

has degree q3 − 1. Now

(x1+ q−1

m + ax)mq2−(m−1)q−1

=

mq2−(m−1)q−1
∑

j=0

(

mq2 − (m− 1)q − 1

j

)

ajx(1+ q−1

m
)[mq2−(m−1)q−1−j]+j

=

mq2−(m−1)q−1
∑

j=0

(

mq2 − (m− 1)q − 1

j

)

ajxq3−1+[(m−1)2q−1−j]· q−1

m .

For j > (m− 1)2q− 1, the corresponding exponent of x are ≤ q3 − 2. For j < (m− 1)2q− 1,

the corresponding exponent of x are easily seen to be ≥ q2 and ≤ 2q3− 3, so that after reduction

of these terms (mod xq2 − x) we get monomials of degree ≤ q3 − 2. The only remaining term

is the one for j = (m− 1)2q − 1-namely,
(

mq2 − (m− 1)q − 1

(m− 1)2q − 1

)

a(m−1)2q−1xq3−1.

It suffices then to prove that the binomial coefficient above is not divisible by the characteristic

p of Fq. If sn is defined as above in Lemma 2.4, then p > m2 −m implies that

smq2−(m−1)q−1 = s(m−1)2q−1 + smq2−(m2
−m+1),

hence Lemma 2.4 yields

υp

((

mq2 − (m− 1)q − 1

(m− 1)2q − 1

))

=
1

p− 1
(s(m−1)2q−1 + smq2−(m2

−m+1) − smq2−(m−1)q−1) = 0,

which is the desired fact. 2

Now we discuss the permutation behavior of polynomial of x1+ q−1

7 +ax (a 6= 0) over Fqr (r ≥

2), where q ≡ 1 (mod 7) and p 6= 2, 3, and give the following theorem.

Theorem 3.5 Let q ≡ 1 (mod 7), p 6= 2, 3. Then the polynomial x1+ q−1

7 + ax (a 6= 0) is not a

permutation polynomial over Fqr (r ≥ 2).

We need some lemmas to prove Theorem 3.5.

Lemma 3.6 Let p = 5 and q be a power of p with q ≡ 1 (mod 7). Then
(

7q − 7

35

)

6≡ 0 (mod p).
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Proof For p = 5, we have

7q − 7 = pq + q + (p− 1)
q

p
+ · · ·+ (p− 1)p2 + (p− 2)p+ (p− 2) and 35 = 25 + 10.

Then by Lemma 2.3, we obtain
(

7q − 7

35

)

≡

(

4

1

)(

3

2

)(

3

0

)

6≡ 0 (mod 5).

We are done. 2

Lemma 3.7 Let p ∈ {13, 19, 37, 41} and q be a power of p with q ≡ 1 (mod 7). Then
(

8q − 8

q + 41

)

6≡ 0 (mod p).

Proof We have

8q − 8 = 7q + (p− 1)
q

p
+ (p− 1)

q

p2
+ · · ·+ (p− 1)p+ (p− 8)

for p > 8 and

q + 41 = q + 3× 13 + 2 = q + 2× 19 + 3 = q + 37 + 4.

Then by Lemma 2.3, we get
(

8q − 8

q + 41

)

≡

(

7

1

)(

12

3

)(

5

2

)

6≡ 0 (mod 13),

(

8q − 8

q + 41

)

≡

(

7

1

)(

18

2

)(

11

3

)

6≡ 0 (mod 19),

(

8q − 8

q + 41

)

≡

(

7

1

)(

36

1

)(

29

4

)

6≡ 0 (mod 37),

(

8q − 8

q + 41

)

≡

(

7

1

)(

40

1

)(

33

0

)

6≡ 0 (mod 41).

We are done. 2

Lemma 3.8 Let p ∈ {5, 37} and q be a power of p. Then
(

7q2 − 5q − 2

37q + 5

)

6≡ 0 (mod p).

Proof We have

7q2 − 5q − 2 =6q2 + (p− 1)
q2

p
+ · · ·+ (p− 1)pq + (p− 6)q+

(p− 1)
q

p
+ · · ·+ (p− 1)p+ (p− 2),

for p = 37, or

7q2 − 5q − 2 =pq2 + q2 + (p− 1)
q2

p
+ · · ·+ (p− 1)p2q+

(p− 2)pq + (p− 1)q + · · ·+ (p− 1)p+ (p− 2),

for p = 5 and

37q + 5 = 25q + 10q + 2q + 5.
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Then by Lemma 2.3, we obtain
(

7q2 − 5q − 2

37q + 5

)

≡

(

4

1

)(

3

2

)(

4

2

)(

4

1

)

6≡ 0 (mod 5),

(

7q2 − 5q − 2

37q + 5

)

≡

(

36

1

)(

35

5

)

6≡ 0 (mod 37).

We are done. 2

Similarly, we can prove the following three lemmas.

Lemma 3.9 Let p = 13 and q be a power of p. Then
(

7q2 − 3q − 4

39q + 17

)

6≡ 0 (mod 13).

Lemma 3.10 Let p = 19 and q be a power of p. Then
(

7q2 − 4q − 3

38q + 11

)

6≡ 0 (mod 19).

Lemma 3.11 Let p = 41 and q be a power of p. Then
(

7q2 − q − 6

41q + 29

)

6≡ 0 (mod 41).

At last, we give a lemma to explain that if p 6= 2, 3, then 1 + (q − 1)/7 is not a power of p.

Lemma 3.12 Let 1 + (q − 1)/7 be a power of p. Then p = 2 or 3.

Proof Since 1 + (q − 1)/7 is a power of p, there exists a positive integer t such that

1 + (q − 1)/7 = pt

or

7(pt − 1) = q − 1.

We have

7pt − 6 = q,

which implies that p|6. We get p = 2 or 3 by p being a prime. 2

Now we show Theorem 3.5.

Proof We already showed that if p 6= 2, 3, then 1+ (q− 1)/7 is not a power of p by Lemma 3.12

and for r ≥ 4, Theorem 3.5 holds. We only need to consider the cases r = 2 and r = 3.

Assume that r = 2. By Theorem 3.3, we need only consider p ∈ {5, 13, 19, 37, 41}. Now

q2 − 1 >
q − 1

7
(8 ·

q + 6

7
− 1) > (

q − 1

7
)2

and we have

q2 − 1 =
q + 6

7
· 7(q − 6) + 35.

If p = 5, we can take t = 0 in Lemma 2.2. Then

J = 7q − 7, tk + j0 = 35.
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According to Lemma 3.6,
(

7q − 7

35

)

6≡ 0 (mod p).

By Lemma 2.2, it can be proved. If p ∈ {13, 19, 37, 41}, taking t = 7, we have

J = 8q − 8, tk + j0 = q + 41.

According to Lemma 3.7,
(

8q − 8

q + 41

)

6≡ 0 (mod p).

Lemma 2.2 implies it.

Assume that r = 3. By Theorem 3.4, we need only consider p < 72 − 7. Now

q3 − 1 >
q − 1

7
(286 ·

q + 6

7
− 1) >

q − 1

7
(273 ·

q + 6

7
− 1)

>
q − 1

7
(266 ·

q + 6

7
− 1) >

q − 1

7
(259 ·

q + 6

7
− 1)

and

q3 − 1 =
q + 6

7
(7(q2 − 6q + 36)− 1) +

q + 6

7
− 217.

If p ∈ {5, 37} and q+6
7 − 217 ≥ 0, then we have q > p2. Taking t = 258, we have

J = 7q2 − 5q − 2, tk + j0 = 37q + 5.

By Lemma 3.8, we have
(

7q2 − 5q − 2

37q + 5

)

6≡ 0 (mod p).

By Lemma 2.2, it can be proved.

If p = 13 and q+6
7 − 217 ≥ 0, we can take t = 272. Then

J = 7q2 − 3q − 4, tk + j0 = 39q + 17.

By Lemma 3.9, we have
(

7q2 − 3q − 4

39q + 17

)

6≡ 0 (mod 13).

By Lemma 2.2, it can be proved.

If p ∈ {5, 13, 37} and q+6
7 − 217 ≤ 0, then we only need to consider q = 132 since q ≡ 1

(mod 7). Thus, Lemma 2.5 can be applied.

If p = 19, we can take t = 265. Then

J = 7q2 − 4q − 3, tk + j0 = 38q + 11.

By Lemma 3.10, we have
(

7q2 − 4q − 3

38q + 11

)

6≡ 0 (mod 19).

By Lemma 2.2, it can be proved.

If p = 41, we can take t = 286. Then

J = 7q2 − q − 6, tk + j0 = 41q + 29.
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By Lemma 3.11, we have
(

7q2 − q − 6

41q + 29

)

6≡ 0 (mod 41).

By Lemma 2.2, it can be proved.

Thus Theorem 3.5 is proved completely. 2
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