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Abstract Motivated by the concept of Rota-Baxter family algebras arising from associative

Yang-Baxter family equations and Volterra integral equations, we introduce the notion of a

Rota-Baxter family system which generalizes the Rota-Baxter system proposed by Brzeziński.

We show that this notion is also related to an associative Yang-Baxter family pair and the pre-

Lie family algebras. Furthermore, as an analogue of Rota-Baxter family system, we introduce a

notion of averaging family system and prove that an averaging family system induces a dialgebra

family structure. We also study Rota-Baxter family systems on a dendriform algebra and show

how they induce quadri family algebra structures. Finally, we give a linear basis of the Rota-

Baxter family system by the methods of Gröbner-Shirshov bases.
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1. Introduction

The concept of Rota-Baxter family algebra was proposed by Guo, which arises naturally

in renormalization of quantum field theory [1]. Based on his excellent work, free Rota-Baxter

family algebras and (tri)dendriform family algebras [2], free (tri)dendriform family algebras [3,4]

appeared successively. Recently, Das showed that Rota-Baxter family algebras have some new

motivations from associative Yang-Baxter family equations [5]. More precisely, Das [5] called the

corresponding equation

r13αβr
12
α − r12α r23β + r23β r13αβ = 0

an associative Yang-Baxter family equation (AYBFE). Paralleled to the fact that solutions of the

associative Yang-Baxter family equation naturally give Rota-Baxter family operators, the Rota-

Baxter family operators are determined by solutions of an AYBFE [5]. Considering the Rota-

Baxter system is another generalization of the Rota-Baxter algebra, it is especially interesting

to study Rota-Baxter system in the context of family version. This is one of our purposes of this

paper.

The concept of Rota-Baxter systems was introduced by Brzeziński [6] in the study of the

Jackson q-integral as a Rota-Baxter operator and the extended connections between Rota-Baxter
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algebras [7, 8], dendriform algebras and infinitesimal bialgebras. Motivated by the terminology

of Rota-Baxter family algebras [1] and Rota-Baxter systems, different from [9], we introduce the

notion of Rota-Baxter family systems and give some characterizations and new constructions of

it, we modify the definition of Rota-Baxter family systems by adding a curvature term and then

derive the conditions that the curvature has to satisfy in order to make a connection with the

pre-Lie family algebra.

Our second source of motivation comes from the Gröbner-Shirshov bases, which is an effec-

tive tool to construct a free object for some algebraic structures. In 2009, Bokut, Chen and

Qiu [10] established the Composition-Diamond lemma for associative algebras with multiple lin-

ear operators. As a consequence, they obtained Gröbner-Shirshov bases of free Rota-Baxter

algebras. This method has been successfully used to construct some other free objects, such as

free Rota-Baxter algebras [11], free Ω-Lie algebras [12], free intergro-differential algebras [13],

free differential algebras [14], free pre-associative algebras [15], replicated algebras [16], free Lie

differential Rota-Baxter algebras [17], free Rota-Baxter systems [18], operated algebraic struc-

tures [19] and so on. In this paper, we construct free objects in the category of Rota-Baxter

family system, via a method of Gröbner-Shirshov bases.

The paper is organized as follows. In Section 2, we first recall some basic concepts that will be

used in this paper. In Section 3, we introduce the notion of Rota-Baxter family systems and give

some characterizations and new constructions. In Section 4, as a particular case of Rota-Baxter

family system, we introduce a notion of averaging family system and prove that an averaging

family system induces a dialgebra family structure. In Section 5, we consider Rota-Baxter family

systems on a dendriform algebra and show how they induce quadri family algebra structures. In

Section 6, we construct free objects in the category of Rota-Baxter family systems, via a method

of Gröbner-Shirshov bases.

Throughout this paper, let k be a unitary commutative ring unless the contrary is specified.

It will be the base ring of all modules, algebras, tensor products, as well as linear maps.

2. Preliminaries

In this section, we recall some useful definitions which will be used in this paper from [2, 4].

Definition 2.1 Let Ω be a semigroup and λ ∈ k. A Rota-Baxter family algebra of weight λ is

a pair (A, {Rω|ω ∈ Ω}) consisting of an associative algebra A and a collection of linear operators

{Rω|ω ∈ Ω} such that

Rα(x)Rβ(y) = Rαβ(xRβ(y) +Rα(x)y + λxy), ∀x, y ∈ A,α, β ∈ Ω. (2.1)

Definition 2.2 Let Ω be a semigroup. A dendriform family algebra is a k-module D together

with a collection of binary operations {≺ω,≻ω |ω ∈ Ω}, such that, for x, y, z ∈ D and α, β ∈ Ω,

there is

(x ≺α y) ≺β z = x ≺αβ (y ≺β z + y ≻α z), (2.2)

(x ≻α y) ≺β z = x ≻α (y ≺β z), (2.3)
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(x ≺β y + x ≻α y) ≻αβ z = x ≻α (y ≻β z). (2.4)

We now recall the concept of a pre-Lie family algebra and its construction by typed rooted

trees which was used by [4] to obtain that the operad of pre-Lie family algebras is isomorphic to

the operad of typed labeled rooted trees.

Definition 2.3 Let Ω be a commutative semigroup. A (left) pre-Lie family algebra is a pair

(A, {∗ω|ω ∈ Ω}) consisting of a k-module A and a collection of binary operations ∗ω : A⊗A →

A,ω ∈ Ω, that satisfy

x ∗α (y ∗β z)− (x ∗α y) ∗αβ z = y ∗β (x ∗α z)− (y ∗β x) ∗βα z

for all x, y ∈ A,α, β ∈ Ω.

3. Rota-Baxter family systems

In this section, we introduce the notion of a Rota-Baxter family system and provide some

examples of Rota-Baxter family systems.

Let us first recall the concept of Rota-Baxter system introduced by Brzeziński [6].

Definition 3.1 A triple (A,R, S) consisting of an associative algebra A and two linear maps

R,S : A → A is called a Rota-Baxter system if

R(x)R(y) = R(R(x)y) +R(xS(y)),

S(x)S(y) = S(R(x)y) + S(xS(y)) for all x, y ∈ A.

Guo et al. studied the family compatibility of algebraic structures carrying multiple copies of

the same operations [1]. Applying it to the case of Rota-Baxter system, we obtain the following

concept.

Definition 3.2 Let Ω be a semigroup. A Rota-Baxter family system is a triple (A, {Rω|ω ∈

Ω}, {Sω|ω ∈ Ω}) consisting of an associative algebra A and a collection of linear operators

{Rω, Sω|ω ∈ Ω} such that

Rα(x)Rβ(y) = Rαβ(Rα(x)y + xSβ(y)),

Sα(x)Sβ(y) = Sαβ(Rα(x)y + xSβ(y)) for all x, y ∈ A,α, β ∈ Ω.

Any Rota-Baxter family system can be viewed as a Rota-Baxter system by taking Ω to be a

trivial semigroup.

The following result shows the relation between Rota-Baxter family systems and ordinary

Rota-Baxter family systems.

Proposition 3.3 Let (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) be a Rota-Baxter family system. Consider

the linear maps

R : A⊗ kΩ → A⊗ kΩ, x⊗ ω 7→ RΩ(x)⊗ ω,
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S : A⊗ kΩ → A⊗ kΩ, x⊗ ω 7→ SΩ(x)⊗ ω.

Then (A⊗ kΩ, R, S) is a Rota-Baxter system.

Proof For any x, y ∈ A and α, β ∈ Ω, we have

R(x⊗ α)R(y ⊗ β) = (Rα(x)⊗ α)(Rβ(y)⊗ β) = Rα(x)Rβ(y)⊗ αβ

= Rαβ(Rα(x)y + xSβ(y))⊗ αβ = R{(Rα(x)y + xSβ(y))⊗ αβ}

= R{(Rα(x)⊗ α)(y ⊗ β) + (x ⊗ α)(Sβ(y)⊗ β)}

= R{R(x⊗ α)(y ⊗ β) + (x⊗ α)S(y ⊗ β)}.

Similarly, we have

S(x⊗ α)S(y ⊗ β) = S{R(x⊗ α)(y ⊗ β) + (x⊗ α)S(y ⊗ β)}.

This completes the proof. 2

We have seen that Rota-Baxter family systems generalize Rota-Baxter family algebra. In the

following, we show that they also generalize Rota-Baxter family algebras of arbitrary weight.

Proposition 3.4 Let (A, {Rω|ω ∈ Ω}) be a Rota-Baxter family algebra of weight λ. Then

(A, {Rω|ω ∈ Ω}, {Rω + λid|ω ∈ Ω}) is a Rota-Baxter family system.

Proof For any x, y ∈ A and α, β ∈ Ω, we have

Rα(x)Rβ(y) = Rαβ(xRβ(y)) +Rαβ(Rα(x)y) + λRαβ(xy)

= Rαβ(Rα(x)y) +Rαβ(x(Rβ + λid)(y))

and

(Rα + λid)(x)(Rβ + λβid)(y) = Rα(x)Rβ(y) + λRα(x)y + λxRβ(y) + λ2xy

= Rαβ(xRβ(y)) +Rαβ(Rα(x)y) + λRαβ(xy) + λRα(x)y + λxRβ(y) + λ2xy

= (Rαβ + λid)(Rα(x)y) + (Rαβ + λid)(x(Rβ + λid)(y)).

This shows that (A, {Rω|ω ∈ Ω}, {Rω + λid|ω ∈ Ω}) is a Rota-Baxter family system. 2

The following example shows that Rota-Baxter family systems arise from twisted Rota-Baxter

family algebras.

Definition 3.5 Let A be an associative algebra and Ω be a semigroup. A collection of linear

operators {Rω : A → A|ω ∈ Ω} is said to be a {σω|ω ∈ Ω}-twisted Rota-Baxter family operator

if there exist a collection of algebra morphisms {σω : A → A|ω ∈ Ω} such that, for all x, y ∈

A,α, β ∈ Ω

Rα(x)Rβ(y) = Rαβ(Rα(x)y + x(σ ◦R)β(y)),

where σβ ◦ Rβ := (σ ◦ R)β . Then the pair (A, {Rω|ω ∈ Ω}) is called a {σω|ω ∈ Ω}-twisted

Rota-Baxter family algebra.

Remark 3.6 (1) When σ = id, a σ-twisted Rota-Baxter family algebra is nothing but a Rota-

Baxter family algebra.
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(2) When Ω is the trivial monoid with one single element, the σΩ-twisted Rota-Baxter family

algebra is the σ-twisted Rota-Baxter algebra proposed by Brzeziński [6].

Definition 3.7 A differential Rota-Baxter family algebra of weight λ is an associative algebra

A together with a collection of linear maps {Rω, ∂ω : A → A, |ω ∈ Ω} satisfying the following set

of identities

(dRF1) Rα(x)Rβ(y) = Rαβ(xRβ(y) +Rα(x)y + λxy),

(dRF2) ∂αβ(xy) = ∂α(x)y + x∂β(y) + λ∂α(x)∂β(y),

(dRF3) ∂β ◦Rβ = id for all α, β ∈ Ω.

Let (A, {Rω|ω ∈ Ω}, {∂ω|ω ∈ Ω}) be a differential Rota-Baxter family algebra of weight λ.

It follows from (dRF2) that the map

σβ : A → A, σβ(x) = x+ λ∂β(x) for all x ∈ A, β ∈ Ω

is an algebra morphism. Further, (dRF3) implies that

(σ ◦R)β(x) = Rβ(x) + λx for all x ∈ A, β ∈ Ω.

Hence, by (dRF2), we get

Rα(x)Rβ(y) = Rαβ(Rα(x)y + x(σ ◦R)β(y)) for all x, y ∈ A,α, β ∈ Ω.

This shows that (A, {Rω|ω ∈ Ω}, {σω|ω ∈ Ω}) is a {σω|ω ∈ Ω}-twisted Rota-Baxter family

algebra.

Proposition 3.8 Let (A,RΩ) be a σΩ-twisted Rota-Baxter family algebra. Then (A, {Rω|ω ∈

Ω}, {(σ ◦R)ω|ω ∈ Ω}) is a Rota-Baxter family system.

Proof Note that the condition (dRF1) is same as the first condition of a Rota-Baxter family

system. To prove the second one, we observe that

(σ ◦R)α(x)(σ ◦R)β(y) = (σ ◦R)α(x)(Rβ(y) + λy)

= (Rα(x) + λαx)(Rβ(y) + λy) = Rα(x)Rβ(y) + λRα(x)y + λxRβ(y) + λ2xy

= Rαβ(Rα(x)y + x(σ ◦R)β(y)) + λRα(x)y + λxRβ(y) + λ2xy

= Rαβ(Rα(x)y) + λRα(x)y +Rαβ(x(σ ◦R)β(y)) + λxRβ(y) + λ2xy

= Rαβ(Rα(x)y) + λRα(x)y +Rαβ(x(σ ◦R)β(y)) + λx(σ ◦R)β(y)

= (σ ◦R)αβ(Rα(x)y) + (σ ◦R)αβ(x(σ ◦R)β(y)).

This shows that (A, {Rω|ω ∈ Ω}, {(σ ◦R)ω|ω ∈ Ω}) is a Rota-Baxter family system. 2

We now establish the connections between Rota-Baxter family systems and dendriform family

algebras. For the classical case of one linear operator [6].

Proposition 3.9 (1) A Rota-Baxter family system (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) induces a
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dendriform family algebra (A, {≺ω,≻ω |ω ∈ Ω}), where

x ≺ω y := xSω(y), x ≻ω y := Rω(x)y for all x, y ∈ A,ω ∈ Ω. (3.1)

(2) If A is a non-degenerate algebra and (A, {≺ω,≻ω |ω ∈ Ω}) is a dendriform family algebra,

then (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) is a Rota-Baxter family system.

Proof (a) We just verify Eqs. (2.2)–(2.4) can be verified in the same way. For any x, y, z ∈ A

and α, β ∈ Ω, we have

(x ≺α y) ≺β z = xSα(y)Sβ(z) = xSαβ(Rα(y)z) + xSαβ(ySβ(z))

= x ≺αβ (y ≺β z) + x ≺αβ (y ≻α z).

(b) In the converse direction, let us assume that (A, {≺ω,≻ω |ω ∈ Ω}) with {≺ω,≻ω |ω ∈ Ω}

given by Eq. (3.1), is a dendriform family algebra. Then the dendriform family relation given by

Eq. (2.4) comes out as

(Rα(x)Rβ(y)−Rαβ(Rα(x)y)−Rαβ(xSβ(y)))z = 0,

and hence it gives a Rota-Baxter family system by the non-degeneracy of the product in A. 2

According to [4], we have

Corollary 3.10 Let (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) be a Rota-Baxter family system and Ω be a

commutative semigroup. Then (A, (∗ω)ω∈Ω) with ∗ω : A⊗A → A, defined by

x ∗ω y = Rω(x)y − ySω(x) for all x, y ∈ A,ω ∈ Ω,

is a pre-Lie family algebra.

Combining [6] and [5], we give the following definition.

Definition 3.11 Let A be an associative algebra with a unit 1. An associative Yang-Baxter

family pair is a collection of elements {rω, sω ∈ A⊗A|ω ∈ Ω} that satisfy the following equations

r13αβr
12
α − r12α r23β + s23β r13αβ = 0, s13αβr

12
α − s12α s23β + s23β s13αβ = 0,

where r12α = r
[1]
α ⊗ r

[2]
α ⊗ 1, r23α = 1⊗ r

[1]
α ⊗ r

[2]
α , for any α, β ∈ Ω.

Proposition 3.12 Let {rω, sω ∈ A⊗A|ω ∈ Ω} be an associative Yang-Baxter family pair. Then

the linear operators

Rω, Sω : A → A, Rω(x) := r[1]ω xr[2]ω , Sω(x) := s
[1]
ω,jxs

[2]
ω

determine a Rota-Baxter family system.

Proof If

r13αβr
12
α − r12α r23β + s23β r13αβ = 0, s13αβr

12
α − s12α s23β + s23β s13αβ = 0,

then

r
[1]
αβr

[1]
α ⊗ r[2]α ⊗ r

[2]
αβ − r[1]α ⊗ r[2]α r

[1]
β ⊗ r

[2]
β + r

[1]
αβ ⊗ s

[1]
β ⊗ s

[2]
β r

[2]
αβ = 0,
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s
[1]
αβr

[1]
α ⊗ r[2]α ⊗ s

[2]
αβ − s[1]α ⊗ s[2]α s

[1]
β ⊗ s

[2]
β + s

[1]
αβ ⊗ s

[1]
β ⊗ s

[2]
β s

[2]
αβ = 0.

Replacing tensor products in above equations by x and y, we have

Rα(x)Rβ(y) = Rαβ(Rα(x)y) +Rαβ(xSβ(y)),

Sα(x)Sβ(y) = Sαβ(Rα(x)y) + Sαβ(xSβ(y)) for all x, y ∈ A,α, β ∈ Ω,

as required. 2

4. Averaging family systems

In this section, we introduce a notion of averaging family systems and prove that a averaging

family system induces an associative family dialgebra structure.

Definition 4.1 Let Ω be a semigroup. A left (resp., right) averaging family system is a triple

(A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) consisting of an associative algebra A and a collection of linear

operators {Rω, Sω|ω ∈ Ω} that satisfy
{

Rα(x)Rβ(y) = Rαβ(Rα(x)y),

Sα(x)Sβ(y) = Sαβ(Rα(x)y),

(

resp.,

{

Rα(x)Rβ(y) = Rαβ(xSβ(y)),

Sα(x)Sβ(y) = Sαβ(xSβ(y)),

)

for any x, y ∈ A,α, β ∈ Ω.

An averaging family system is a triple (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) which is both a left

averaging family system and a right averaging family system.

Definition 4.2 Let Ω be a semigroup. An associative family dialgebra is a module D together

with a collection of binary operations {⊣ω,⊢ω |ω ∈ Ω} such that, for x, y, z ∈ D and α, β ∈ Ω,

there is

x ⊣α (y ⊣β z) = (x ⊣α y) ⊣β z = x ⊣αβ (y ⊢α z),

(x ⊢α y) ⊣β z = x ⊢α (y ⊣β z),

(x ⊣β y) ⊢α z = (x ⊢α y) ⊢αβ z = x ⊢α (y ⊢β z).

We now establish the connections between averaging family systems and associative family

dialgebras.

Proposition 4.3 An averaging family system (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) induces an asso-

ciative family dialgebra (A, {⊣ω,⊢ω |ω ∈ Ω}), where

x ⊣ω y := xSω(y), x ⊢ω y := Rω(x)y for all x, y ∈ A,ω ∈ Ω.

Proof For any x, y, z ∈ A, we have

x ⊣α (y ⊣β z) = xSα(ySβ(z)) = xSα(y)Sβ(z) =

{

(xSα(y))Sβ(z) = (x ⊣α y) ⊣β z,

xSαβ(Rα(y)z) = x ⊣αβ (y ⊢α z).

Further,

(x ⊢α y) ⊣β z = (Rα(x)y)Sβ(z) = Rα(x)(ySβ(z)) = x ⊢α (y ⊣β z).
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Moreover,

(x ⊣β y) ⊢α z = Rα(xSβ(y))z = Rα(x)Rβ(y)z =

{

Rα(x)(Rβ(y)z) = x ⊢α (y ⊢β z),

Rαβ(Rα(x)y)z = (x ⊢α y) ⊢αβ z.

This completes the proof. 2

Proposition 4.4 Let {rω|ω ∈ Ω} and {sω|ω ∈ Ω} be two elements in A⊗A such that r13αβr
12
α =

r12α r23β and s13αβr
12
α = s12α s23β . Then the linear operators

Rω, Sω : A → A, Rω(x) = r[1]ω xr[2]ω , Sω(x) = s[1]ω xs[2]ω

determine a left averaging family system.

Proof If r13αβr
12
α = r12α r23β and s13αβr

12
α = s12α s23β , then

r
[1]
αβr

[1]
α ⊗ r[2]α ⊗ r

[2]
αβ = r[1]α ⊗ r[2]α r

[1]
β ⊗ r

[2]
β ,

s
[1]
αβr

[1]
α ⊗ r[2]α ⊗ s

[2]
αβ = s[1]α ⊗ s[2]α s

[1]
β ⊗ s

[2]
β .

Replacing tensor products in above equations by x and y, we have

Rα(x)Rβ(y) = Rαβ(Rα(x)y), Sα(x)Sβ(y) = Sαβ(Rα(x)y),

as required. This completes the proof. 2

Remark 4.5 Similar to the proof of above proposition, if r, s satisfy r12α r23β = s23β r13αβ and

s12α s23β = s23β s13αβ , then the above-defined (A,RΩ, SΩ) is a right averaging family system. There-

fore, if r, s satisfy

r13αβr
12
α = r12α r23β = s23β r13αβ , s13αβr

12
α = s12α s23β = s23β s13αβ ,

then (A, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) is an averaging family system.

5. Commuting Rota-Baxter systems and quadri family algebras

In this section, we consider Rota-Baxter family systems on a dendriform algebra and com-

muting Rota-Baxter systems on an associative algebra. We introduce the notion of quadri family

algebras and show how these structures induce quadri family algebras.

Definition 5.1 Let Ω be a semigroup. A Rota-Baxter family system on a dendriform algebra

is a quintuple (D,≺,≻, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) consisting of a dendriform algebra (D,≺,≻)

and a collection of linear operators {Rω, Sω|ω ∈ Ω} that satisfy
{

Rα(x) ≺ Rβ(y) = Rαβ(Rα(x) ≺ y) +Rα(x ≺ Sβ(y)),

Sα(x) ≺ Sβ(y) = Sαβ(Rα(x) ≺ y) + Sα(x ≺ Sβ(y)),

and
{

Rα(x) ≻ Rβ(y) = Rαβ(Rα(x) ≻ y) +Rα(x ≻ Sβ(y)),

Sα(x) ≻ Sβ(y) = Sαβ(Rα(x) ≻ y) + Sα(x ≻ Sβ(y)),
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for any x, y ∈ D,α, β ∈ Ω.

Definition 5.2 A quadri family algebra is a k-module D equipped with a collection of binary

operations {տω,րω,ւω,ցω |ω ∈ Ω} such that

(x տα y) տβ z = x տαβ (y տβ z) + x տαβ (y րβ z) + x տαβ (y ւα z) + x տαβ (y ցα z),

(x րα y) տβ z = x րαβ (y տβ z) + x րαβ (y ւα z),

(x տα y) րβ z + (x րα y) րβ z = x րα (y րβ z) + x րβ (y ցα z),

(x ւα y) տβ z = x ւαβ (y տβ z) + x ւαβ (y րα z),

(x ցα y) տβ z = x ցα (y տβ z),

(x ւβ y) րαβ z + (x ցα y) րαβ z = x ցα (y րβ z),

(x տβ y) ւαβ z + (x ւα y) ւαβ z = x ւαβ (y ւβ z) + x ւαβ (y ցα z),

(x րβ y) ւαβ z + (x ցα y) ւαβ z = x ցα (y ւβ z),

(x տβ y) ցαβ z + (x րβ y) ցαβ z + (x ւβ y) ցαβ z + (x ցα y) ցαβ z = x ցα (y ցβ z),

for any x, y, z ∈ D and α, β ∈ Ω.

It turns out that in a quadri family algebra, (D, {տω + ւω,րω + ցω |ω ∈ Ω}) and

(D, {տω + րω,ւω + ցω |ω ∈ Ω}) are both dendriform family algebras.

Proposition 5.3 Let (D, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) be a Rota-Baxter family system. Then

(D, {տω,րω,ւω,ցω |ω ∈ Ω}) is a quadri family algebra, where

x տω y := x ≺ Sω(y), x րω y := x ≻ Sω(y), x ւω y := Rω(x) ≺ y, x ցω y := Rω(x) ≻ y

for any x, y ∈ D and ω ∈ Ω.

Proof For any x, y, z ∈ D and α, β ∈ Ω, we have

(x տα y) տβ z = (x ≺ Sα(y)) ≺ Sβ(z) = x ≺ (Sα(y) ≺ Sβ(z)) + x ≺ (Sα(y) ≻ Sβ(z))

= x ≺ (Sαβ(Rα(y) ≺ z) + Sαβ(y ≺ Sβ(z))) + x ≺ (Sαβ(Rα(y) ≻ z) + Sαβ(y ≻ Sβ(z)))

= x ≺ Sαβ(Rα(y) ≺ z) + x ≺ Sαβ(y ≺ Sβ(z)) + x ≺ Sαβ(Rα(y) ≻ z) + x ≺ Sαβ(y ≻ Sβ(z))

= x տαβ (y տβ z) + x տαβ (y րβ z) + x տαβ (y ւα z) + x տαβ (y ցα z).

Further,

(x րα y) տβ z = (x ≻ Sα(y)) ≺ Sβ(z) = x ≻ (Sα(y) ≺ Sβ(z))

= x ≻ (Sαβ(Rα(y) ≺ z) + Sαβ(y ≺ Sβ(z)))

= x ≻ Sαβ(Rα(y) ≺ z) + x ≻ Sαβ(y ≺ Sβ(z))

= x րαβ (y տβ z) + x րαβ (y ւα z).

Moreover,

(x տα y) րβ z + (x րα y) րβ z = (x ≺ Sα(y)) ≻ Sβ(z) + (x ≻ Sα(y)) ≻ Sβ(z)

= x ≻ (Sα(y) ≻ Sβ(z)) = x ≻ (Sαβ(Rα(x) ≻ y) + Sαβ(x ≻ Sβ(y)))
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= x ≻ Sαβ(Rα(x) ≻ y) + x ≻ Sαβ(x ≻ Sβ(y))

= x րαβ (y րβ z) + x րαβ (y ցα z).

By the same argument, the other identities are similar to verify. This completes the proof. 2

Proposition 5.4 Let (D, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω}) be a Rota-Baxter family system and

(A,P,Q) a Rota-Baxter system, if

P ◦Rω = Rω ◦ P, P ◦ Sω = Sω ◦ P, Q ◦Rω = Rω ◦Q, Q ◦ Sω = Sω ◦Q, ω ∈ Ω,

then they are said to commute. With the notations as above, then (D, {Rω|ω ∈ Ω}, {Sω|ω ∈ Ω})

is a Rota-Baxter family system on the dendriform algebra (D,≺,≻) induced from (P,Q), i.e.,

x ≺ y := xQ(y) and x ≻ y := P (x)y, for x, y ∈ D.

Proof For any x, y ∈ D and α, β ∈ Ω, we have

Rα(x) ≺ Rβ(y) = Rα(x)(QRβ(y)) = Rα(x)(RβQ(y))

= Rαβ(Rα(x)Q(y)) +Rαβ(xSβQ(y))

= Rαβ(Rα(x) ≺ y) +Rαβ(x ≺ Sβ(y))

and

Sα(x) ≺ Sβ(y) = Sα(x)(QSβ(y)) = Sα(x)(SβQ(y))

= Sαβ(Rα(x)Q(y)) + Sαβ(xSβQ(y))

= Sαβ(Rα(x) ≺ y) + Sαβ(x ≺ Sβ(y)).

Here we have verified the first two identities. The other two identities can be verified similarly.

This completes the proof. 2

Combining Propositions 5.3 and 5.4, we get the following.

Proposition 5.5 With the notations as above, then (D, {տω,րω,ւω,ցω |ω ∈ Ω}) is a quadri

family algebra, where

x տω y := xQSω(y), x րω y := P (x)Sω(y), x ւω y := Rω(x)Q(y), x ցω y := PRω(x)y

for any x, y ∈ D and ω ∈ Ω.

6. Free Rota-Baxter family systems and Gröbner-Shirshov bases

In this section, we construct free objects in the category of Rota-Baxter family systems, via

a method of Gröbner-Shirshov bases. For the rest of this paper, we will use the infix notation Ω

to denote the set of multiple operators.

First, we recall the construct of the free monoid with multiple operators and the free asso-

ciative algebra with multiple linear operators [10, 18], which generalise simultaneously the free

associative algebra with unary operators constructed by Guo [1] and the free associative algebra

with one operator captured by Ebrahimi-Fard and Guo [20].
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Definition 6.1 ([10]) An associative algebra with multiple linear operators is an associative

k-algebra R with a set Ω of multilinear operators (operations).

Let X be a set and

Ω =

∞
⋃

n=1

Ωn,

where Ωn is a set of n-ary operations. For any set Y , denote by

Ω(Y ) :=

∞
⋃

n=1

{ω(n)(y1, . . . , yn) |ω
(n) ∈ Ωn}.

Define

〈X ; Ω〉0 := M(X).

Assume that we have defined 〈X ; Ω〉n−1, and define

〈X ; Ω〉n := M(X ∪ 〈X ; Ω〉n−1).

Then we have 〈X ; Ω〉n ⊆ 〈X ; Ω〉n+1 for any n ≥ 0. Denote by

〈X ; Ω〉 := lim
−→

〈X ; Ω〉n =
⋃

n≥0

〈X ; Ω〉n.

We now collect some basic definitions and facts on 〈X ; Ω〉 from [10], which will be used in

the rest of the paper.

(1) For any u ∈ 〈X ; Ω〉, define dep(u) := min{n |u ∈ 〈X ; Ω〉n} to be the depth of u.

(2) Let k〈X ; Ω〉 be the linear space spanned by 〈X ; Ω〉 over k. Then the element in 〈X ; Ω〉

(resp., k〈X ; Ω〉) is called an Ω-word (resp., Ω-polynomial).

(3) For any u ∈ X ∪ Ω(〈X ; Ω〉), u is called prime. Then for any 〈X ; Ω〉, u has a unique

canonical form u = u1u2 · · ·un, n ≥ 0, where each ui is prime.

(4) If u = u1u2 · · ·un ∈ 〈X ; Ω〉, where ui is prime Ω-word for all i, then the breath of u is

defined to be the number n, denoted by bre(u).

(5) Each

ω(n) : 〈X ; Ω〉n → 〈X ; Ω〉, (x1, x2, . . . , xn) 7→ ω(n)(x1, x2, . . . , xn)

can be extended linearly to k〈X ; Ω〉.

Proposition 6.2 ([10]) The k〈X ; Ω〉 is a free associative algebra with multiple linear operators

Ω on the set X .

We first recall the Composition-Diamond lemma for the free associative algebra with multiple

linear operators k〈X ; Ω〉, with an eye toward constructing a linear basis of a free Rota-Baxter

family system on a set X . See [10, 21, 23, 24] for more details.

Definition 6.3 ([10]) Let k〈X ; Ω〉 be a free associative algebra with multiple linear operators

Ω on X and ⋆ /∈ X .

(1) By a ⋆-Ω-word, we mean any expression in 〈X ∪ {⋆}; Ω〉 with exactly one occurrence of

⋆, counting multiplicities. The set of all ⋆-Ω-words on X is defined by 〈X ; Ω〉⋆.
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(2) Let u be a ⋆-Ω-word and s ∈ k〈X ; Ω〉. Then

u|s := u|⋆ 7→s

is called an s-Ω-word.

(3) For q ∈ 〈X ; Ω〉⋆ and s = Σiciq|ui
∈ k〈X ; Ω〉, where ci ∈ k and ui ∈ 〈X ; Ω〉, we define

q|s := Σiciq|ui

and give this notation an expansion to any q ∈ k〈X ; Ω〉⋆ by linearity.

Definition 6.4 ([10]) (1) A monomial order on 〈X ; Ω〉 is a well order ≤ on 〈X ; Ω〉 such that for

any v, w ∈ 〈X ; Ω〉, u ∈ 〈X ; Ω〉⋆,

w < v ⇒ u|w < u|v.

(2) For every Ω-polynomial f ∈ k〈X ; Ω〉, let f̄ be the leading Ω-word of f . If the coefficient

of f̄ is 1, then we call f is monic with respect to a monomial order ≤.

The following is the concept of compositions.

Definition 6.5 ([10]) Let f and g be two monic Ω-polynomials. Then there are two kinds of

compositions.

(1) If there exists an Ω-word w = f̄a = bḡ for some a, b ∈ 〈X ; Ω〉 such that bre(w) <

bre(f̄) + bre(ḡ), then we call (f, g)w = fa − bg the intersection composition of f and g with

respect to w.

(2) If there exists an Ω-word w = f̄ = u|ḡ for some u ∈ 〈X ; Ω〉⋆, then we call (f, g)w = f−u|g

the including composition of f and g with respect to w. In this case transformation f 7→ (f, g)w

is called the Elimination of the Leading Word (ELW) of g in f .

Definition 6.6 ([10]) Let S be a set of monic Ω-polynomials.

(1) The composition (f, g)w is called trivial modulo (S,w) if

(f, g)w =
∑

αiui|si ,

where each αi ∈ k, ui ∈ 〈X ; Ω〉⋆, si ∈ S and ui|si < w. In this case, we may write

(f, g)w ≡ 0 mod (S,w).

(2) In general, for any two Ω-polynomials p and q, p ≡ q mod (S,w) means that p − q =
∑

αiui|si , where each αi ∈ k, ui ∈ 〈X ; Ω〉⋆, si ∈ S and ui|si < w.

(3) S is called a Gröbner-Shirshov basis in k〈X ; Ω〉 if any composition (f, g)w of f, g ∈ S is

trivial modulo (S,w).

The following theorem is the Composition-Diamond Lemma for Ω-(unitary) algebras, adapt-

ing from the case for Ω-nonunitary algebras in [10, 22].

Theorem 6.7 (Composition-Diamond lemma) Let S be a set of monic Ω-polynomials in k〈X ; Ω〉,

≤ a monomial ordering on 〈X ; Ω〉 and Id(S) the Ω-ideal of k〈X ; Ω〉 generated by S. Then the

following statements are equivalent:
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(1) S is a Gröbner-Shirshov basis in k〈X ; Ω〉.

(2) f ∈ Id(S) ⇒ f̄ = u|s for some u ∈ 〈X ; Ω〉⋆ and s ∈ S.

(3) f ∈ Id(S) ⇒ f = α1u1|s1 + α2u2|s2 + · · · + αnun|sn where each αi ∈ k, si ∈ S,

ui ∈ 〈X ; Ω〉⋆ and u1|s1 > u2|s2 > · · · > un|sn .

(4) Irr(S) = {w ∈ 〈X ; Ω〉|w 6= u|s for any u ∈ 〈X ; Ω〉⋆ and s ∈ S} is a k-basis of k〈X ; Ω|S〉 =

k〈X ; Ω〉/Id(S).

We first give a Gröbner-Shirshov basis of k〈X ; Ω〉 and then a linear basis of the free Rota-

Baxter family system is obtained by the Composition-Diamond lemma.

We first recall the concept of a degree lexicographical order ≤dl, the reader is refereed to

[10,18] for more details on degree lexicographical orders. Denote by RΩ⊔SΩ = (Rω)ω∈Ω⊔(Sω)ω∈Ω

a set of unary linear operators. Without loss of confusion, we still use the set Ω to identify them.

Definition 6.8 Let X be a well-ordered set. Let RΩ ⊔ SΩ be a well-ordered set of unary linear

operators and suppose that Sα < Rβ for any α, β ∈ Ω.

(1) For any u ∈ 〈X ; Ω〉, we define deg(u) to be the number of all occurrence of x ∈ X and

Rω, Sω with ω ∈ Ω. For instance, if u = x1x2x3Sα(x4Rβ(x5)), where xi ∈ X, 1 ≤ i ≤ 5, then

deg(u) = 7.

(2) For any u = u1u2 · · ·un ∈ 〈X ; Ω〉 with n ≥ 1, where each ui is prime [18], in other words,

for each 1 ≤ i ≤ n− 1, either ui or ui+1 is in X , we set

wt(u) = (deg(u), bre(u), u1, u2, . . . , un).

(3) For any u = u1u2 · · ·un ∈ 〈X ; Ω〉 with n ≥ 1, v = v1v2 · · · vm ∈ 〈X ; Ω〉 with m ≥ 1,

where ui, vj are prime, define

u ≤dl v if wt(u) < wt(v) lexicographically.

Here ui < vi if deg(ui) < deg(vi) or deg(ui) = deg(vi) such that one of the following conditions

holds:

(a) ui, vi ∈ X and ui < vi;

(b) ui ∈ X and vi = Rω(v
′
i) for some ω ∈ Ω;

(c) ui ∈ X and vi = Sω(v
′
i) for some ω ∈ Ω;

(d) ui = Rα(u
′
i) and vi = Rβ(v

′
i) for some α, β ∈ Ω such that

(Rα, u
′
i) < (Rβ , v

′
i) lexicographically;

(e) ui = Sα(u
′
i) and vi = Sβ(v

′
i) for some α, β ∈ Ω such that

(Sα, u
′
i) < (Sβ , v

′
i) lexicographically;

(f) ui = Sα(u
′
i) and vi = Rβ(v

′
i) for some α, β ∈ Ω such that

(Sα, u
′
i) < (Rβ , v

′
i) lexicographically.

With a similar argument to the case of ≤dl on 〈X ; {R,S}〉 (see [18]), the above defined ≤dl

is a monomial order on 〈X ; Ω〉. In fact when Ω is a singleton, the above defined ≤dl is exactly

the one given in [18] on 〈X ; {R,S}〉.
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We now show that the defining relations of the Rota-Baxter family system is a Gröbner-

Shirshov basis in k〈X ; Ω〉.

Theorem 6.9 With the order ≤dl on 〈X ; Ω〉, the defining relations of Rota-Baxter family system

S :=

{

Rα(x)Rβ(y)−Rαβ(xSβ(y))−Rαβ(Rα(x)y)

Sα(x)Sβ(y)− Sαβ(xSβ(y))− Sαβ(Rα(x)y)

∣

∣

∣

∣

x, y ∈ 〈X ; Ω〉

}

(6.1)

is a Gröbner-Shirshov basis in k〈X ; Ω〉.

Proof For any x, y, z ∈ 〈X ; Ω〉, we write

f := fα, β(x, y) = Rα(x)Rβ(y)−Rαβ(xSβ(y))−Rαβ(Rα(x)y),

g := gα, β(y, z) = Sα(x)Sβ(y)− Sαβ(xSβ(y))− Sαβ(Rα(x)y).

Then the ambiguities of all possible compositions of Ω-polynomials in S are the following cases.

(1) (fα, β(x, y), fβ, γ(y, z))w1
, w1 = Rα(x)Rβ(y)Rγ(z),

(2) (fαβ, γ(u |Rα(x)Rβ(y), y), fα, β(x, y))w2
, w2 = Rαβ(u |Rα(x)Rβ(y))Rγ(z),

(3) (fα, βγ(x, u |Rβ(y)Rγ(z)), fβ, γ(y, z))w3
, w3 = Rα(x)Rβγ(u |Rβ(y)Rγ(z)),

(4) (fαβ, γ(u |Sα(x)Sβ(y), y), gα,β(x, y))w4
, w4 = Rαβ(u |Sα(x)Sβ(y))Rγ(z),

(5) (fα, βγ(x, u |Sβ(y)Sγ(z)), gβ, γ(y, z))w5
, w5 = Rα(x)Rβγ(u |Sβ(y)Sγ(z)),

(6) (gα, βγ(x, y), gβ, γ(y, z))w6
, w6 = Sα(x)Sβ(y)Sγ(z),

(7) (gαβ, γ(u |Sα(x)Sβ(y), y), gα,β(x, y))w7
, w7 = Sαβ(u |Sα(x)Sβ(y))Sγ(z),

(8) (gα, βγ(x, u |Sβ(y)Sγ(z)), gβ, γ(y, z))w8
, w8 = Sα(x)Sβγ(u |Sβ(y)Sγ(z)),

(9) (gαβ, γ(u |Rα(x)Rβ(y), y), fα, β(x, y))w9
, w9 = Sαβ(u |Rα(x)Rβ(y))Sγ(z),

(10) (gα, βγ(x, u |Rβ(y)Rγ(z)), fβ, γ(y, z))w10
, w10 = Sα(x)Sβγ(u |Rβ(y)Rγ(z)),

where x, y, z ∈ 〈X ; Ω〉, Rα, Rβ, Rγ , Sα, Sβ , Sγ ∈ Ω, u ∈ 〈X ; Ω〉⋆. It remains to prove that all the

compositions are trivial. Without loss of generality, we just show the case (a), as the other cases

can be verified similarly. In the case (a), we have

(fα, β(x, y), fβ, γ(y, z))w1
= fα, β(x, y)Rγ(z)−Rα(x)fβ, γ(y, z)

= Rα(x)Rβ(y)Rγ(z)−Rαβ(xSβ(y))Rγ(z)−Rαβ(Rα(x)y)Rγ(z)−

Rα(x)Rβ(y)Rγ(z) +Rα(x)Rβγ(ySγ(z)) +Rα(x)Rβγ(Rβ(y)z)

= −Rαβ(xSβ(y))Rγ(z)−Rαβ(Rα(x)y)Rγ(z) +Rα(x)Rβγ(ySγ(z)) +Rα(x)Rβγ(Rβ(y)z)

= −fαβ, γ(xSβ(y), z)−Rαβγ(xSβ(y)Sγ(z))−Rαβγ(Rα(xSβ(y))z)−

fαβ, γ(Rα(x)y, z)−Rαβγ(Rα(x)ySγ(z))−Rαβγ(Rαβ(Rα(x)y)z)+

fα, βγ(x, ySγ(z)) +Rαβγ(xSβ(ySγ(z))) +Rαβγ(Rα(x)ySγ(z))+

fα, βγ(x,Rβ(y)z) +Rαβγ(xSβγ(Rβ(y)z)) +Rαβγ(Rα(x)Rβ(y)z)∗

= −fαβ, γ(xSβ(y), z)−Rαβγ(xSβ(y)Sγ(z))−Rαβγ(Rαβ(xSβ(y))z)−

fαβ, γ(Rα(x)y, z)−Rαβγ(Rαβ(Rα(x)y)z) + fα, βγ(x, ySγ(z))+

Rαβγ(xSβγ(ySγ(z))) + fα, γ(x,Rβ(y)z) +Rαβγ(xSβγ(Rβ(y)z)) +Rαβγ(Rα(x)Rβ(y)z)

= −fαβ, γ(xSβ(y), z)−Rα(xgβ, γ(y, z))−Rαβγ(xSβγ(ySγ(z)))−Rαβγ(xSβγ(Rβ(y)z))−
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Rαβγ(Rαβ(xSβ(y))z)− fαβ, γ(Rα(x)y, z)− Rαβγ(Rαβ(Rα(x)y)z) + fα, βγ(x, ySγ(z))+

Rαβγ(xSβγ(ySγ(z))) + fα, βγ(x,Rβ(y)z) +Rαβγ(xSβγ(Rβ(y)z)) +Rαβγ(fα, β(x, y)z)+

Rαβγ(Rαβ(xSβ(y))z) +Rαβγ(Rαβ(Rα(x)y)z)

= −Rαβγ(x gβ, γ(y, z)) +Rαβγ(fα, β(x, y)z)− fαβ, γ(xSβ(y), z)− fαβ, γ(Rα(x)y, z)+

fα, βγ(x, ySγ(z)) + fα, βγ(x,Rβ(y)z)

= −Rαβγ(x ⋆ |gβ, γ(y,z)) +Rαβγ(⋆|fα, β(x,y) z)− ⋆|fαβ, γ(xSβ(y),z) − ⋆|fαβ, γ(Rα(x)y,z)+

⋆ |fα, βγ(x,ySγ(z)) + ⋆|fα, βγ(x,Rβ(y)z),

where

Rαβγ(x ⋆ | ¯gβ, γ(y,z)
) = Rαβγ(x ⋆ |Rβ(y)Rγ(z)) = Rαβγ(xRβ(y)Rγ(z))dlRα(x)Rβ(y)Rγ(z) = w1,

Rαβγ(⋆| ¯fα, β(x,y)
z) = Rαβγ(⋆|Rα(x)Rβ(y)z) = Rαβγ(Rα(x)Rβ(y)z)dlRα(x)Rβ(y)Rγ(z) = w1,

⋆ | ¯fαβ, γ(xSβ(y),z)
= ⋆|Rαβ(xSβ(y))Rγ(z) = Rαβ(xSβ(y))Rγ(z)dlRα(x)Rβ(y)Rγ(z) = w1,

⋆ | ¯fαβ, γ(Rα(x)y,z) = ⋆|Rαβ(Rα(x)y)Rγ(z) = Rαβ(Rα(x)y)Rγ(z)dlRα(x)Rβ(y)Rγ(z) = w1,

⋆ | ¯fα, βγ(x,ySγ(z))
= ⋆|Rα(x)Rβγ(ySγ(z)) = Rα(x)Rβγ(ySγ(z))dlRα(x)Rβ(y)Rγ(z) = w1,

⋆ | ¯fα, βγ(x,Rβ(y)z)
= ⋆|Rα(x)Rβγ(Rβ(y)z) = Rα(x)Rβγ(Rβ(y)z)dlRα(x)Rβ(y)Rγ(z) = w1.

Hence

(fα, β(x, y), fβ, γ(y, z))w1
≡ 0 mod (S,Rα(x)Rβ(y)Rγ(z)).

This completes the proof. 2

Theorem 6.10 With the order ≤dl on 〈X ; Ω〉 and the S given in Eq. (6.1), the set

Irr(S) = {w ∈ 〈X ; Ω〉 | w 6= q |s̄, q ∈ 〈X ; Ω〉⋆, s ∈ S}

is a linear basis of the free Rota-Baxter family system k〈X ; Ω|S〉 on the set X .

Proof It follows from Theorem 6.9. 2

Acknowledgements We thank the referees for their time and comments.
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[6] T. BRZEZIŃSKI. Rota-Baxter systems, dendriform algebras and covariant bialgebras. J. Algebra, 2016, 460:
1–25.

[7] G. C. ROTA. Baxter algebras and combinatorial identities I, II. Bull. Amer. Math. Soc., 1969, 75: 325–329,

330–334.



190 Shuangjian GUO

[8] Li GUO. An Introduction to Rota-Baxter Algebra. International Press, Somerville, MA; Higher Education

Press, Beijing, 2012.

[9] Shuangjian GUO, Yi ZHANG.Matching Rota-Baxter systems and Gröbner-Shirshov bases. appear in Algebr.
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[11] L. A. BOKUT, Yuqun CHEN, Xueming DENG. Gröbner-Shirshov bases for Rota-Baxter algebras. Sibirsk.

Mat. Zh., 2010, 51(6): 1237–1250; translation in Sib. Math. J., 2010, 51(6): 978–988.

[12] L. A. BOKUT, Yuqun CHEN, O. ABDUKADIR. Some new results on Gröbner-Shirshov bases for Lie
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Symbolic Comput., 2021, 107: 167–189.
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