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Abstract In this paper, we study mixed non-linear fractional delay differential equations with

integral boundary conditions. We obtain an equivalence result between the proposed problem

and non-linear Fredholm integral equation of the second kind. Further, we establish existence and

uniqueness of positive solutions for the problem using Guo-Krasnoseleskii’s fixed point theorem

and Banach contraction principle.
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1. Introduction

The concept of fractional differentiation and integration are usually associated with the name

of Liouville. However, the creators of differential and integral calculus had already taken into

consideration derivatives no longer only of integer order, but of fractional order too. We under-

stand that fractional derivatives were the subjects of Leibniz’s study. Euler also took an interest

in fractional derivatives. Liouville, Abel, Riemann, Letnikov, Weyl, Hadamard and many differ-

ent well-known mathematicians of the past and present influenced the development of fractional

integro-differentiation, which has now grown to be an extensive subject matter in mathematical

evaluation [1].

Fractional Differential Equations (FDEs) have achieved the attention of scientists, due to its

applications in applied sciences and engineering problems, such as Viscoelasticity, Food Science,

Fractional Diffusion Equations [2]. Fractional order delay differential equations (FDDEs) also

have applications in all disciplines which include chemistry, physics and finance [3].

“Riemann-Liouville fractional derivative” or “Caputo fractional derivative” are most popular.

However, a new fractional derivative has been added through Khalil et al. in [4] named as “the

conformable fractional derivative” that fulfills all of the requirements of the standard derivative.
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Lately, fractional differential equations which include both left and right fractional deriva-

tives are also attracting much attention, and there are more results on boundary value problems

concerning mixed fractional derivatives of several types. Recently Ntouyas et al. [5] investigated

the existence and uniqueness of solutions of single and multi-valued boundary value problem-

s containing both Riemann-Liouville and Caputo fractional derivatives and nonlocal fractional

integro-differential boundary conditions. The authors proved the existence of solutions for a

boundary value problem having both left Riemann-Liouville and right Caputo fractional deriva-

tives by using Krasnoselskii’s fixed point theorem [6]. Somia and Brahimin [7] proved the ex-

istence of positive solutions for integral boundary conditions involving left Caputo fractional

derivatives and right conformable fractional derivative by the use of Krasnoselskii’s fixed point

theorem.

Li, Zhang and Jiang [8] investigated the existence and uniqueness of positive solutions of

following integral boundary value problems of fractional differential equations with delay:

CDβz(t) + g(t, zt) = 0, t ∈ [0, 1],

z(t) = φ(t), t ∈ [−τ, 0],

z(0) = z′′(0) = z′′′(0) = 0,

z(1) = k

∫ 1

0

z(θ)dθ,

where 3 < β ≤ 4, 0 < k < 2, CDβ is the caputo fractional derivative.

In this paper, we look on existence, uniqueness of positive solution of mixed non-linear

fractional delay differential equations with integral boundary conditions (MFDDEIBC):

Dν
1−(

CD
µ

0+z)(t) = g(t, zt), t ∈ [0, 1], (1.1)

z(t) = ψ(t), t ∈ [−τ, 0], (1.2)

z(0) = β

∫ 1

0

z(t)dt, (1.3)

CD
µ

0+z(1) = 0, (1.4)

where 0 < µ ≤ 1, 0 < ν ≤ 1, 0 < β < 1, Dν
1− is the right conformable fractional derivative,

CD
µ

0+ is the left caputo fractional derivative, g : [0, 1] × C[−τ, 0] → [0,+∞] is a continuous

function, zt(s) = z(t+ s), for t ∈ [0, 1], s ∈ [−τ, 0], ψ ∈ C[−τ, 0], C[−τ, 0] is a Banach space with

||ψ||[−τ,0] = maxs∈[−τ,0] |ψ(t)|.

2. Preliminaries

In this section we introduce the some definitions, important lemmas and theorems.

Definition 2.1 ([4, 9]) The left conformable fractional derivative starting from a of a function

z : [a,+∞) → R of order 0 < ν ≤ 1 is defined as

D
(ν)
a+ z(t) = lim

ǫ→0

z(t+ ǫ(t− a)1−ν)− z(t)

ǫ
, for all t > 0.
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If D
(ν)
a+ z(t) exists on (a, b), then D

(ν)
a+ z(a) = limt→a+ D

(ν)
a+ z(t).

Definition 2.2 ([4,9]) The right conformable fractional derivative terminating at b of a function

z of order 0 < ν ≤ 1 z is defined as

D
(ν)
b−
z(t) = − lim

ǫ→0

z(t+ ǫ(b − t)1−ν)− z(t)

ǫ
, for all t > 0.

If D
(ν)
b−
z(t) exists on (a, b), then D

(ν)
b−
z(b) = limt→b− D

(ν)
b−
z(t).

Definition 2.3 ([4, 9]) The left and right conformable fractional integrals of order 0 < ν ≤ 1

are defined as follows, respectively:

Iνa+z(t) =

∫ t

a

(s− a)ν−1z(s)ds, (2.1)

Iνb−z(t) =

∫ b

t

(b − s)ν−1z(s)ds. (2.2)

Definition 2.4 ([10]) The left Caputo fractional derivative of order 0 < µ ≤ 1 starting at a of

an absolutely continuous function z : [a, b] → R is given by

CD
µ
a+z(t) =

1

Γ(1− µ)

∫ t

a

(t− s)−µz′(s)ds. (2.3)

Definition 2.5 ([10]) The right Caputo fractional derivative of order 0 < µ ≤ 1 terminating at

b of an absolutely continuous function z : [a, b] → R is given by

CD
µ
b−z(t) =

1

Γ(1− µ)

∫ b

t

(s− t)−µz′(s)ds. (2.4)

Definition 2.6 ([10]) The left and right Riemann-Liouville fractional integral of order 0 < µ ≤ 1

of a function z are as follows, respectively:

J
µ

a+z(t) =
1

Γ(µ)

∫ t

a

(t− s)µ−1z(s)ds, (2.5)

J
µ

b−
x(t) =

1

Γ(µ)

∫ b

t

(s− t)µ−1z(s)ds, (2.6)

where Γ(.) is the Euler Gamma function [10, p. 24].

Lemma 2.7 ([4, 9, 10]) (1) If z is a continuous function on (a, b), then

Dν
b−(I

ν
b−z(t)) = Dν

a+(Iνa+z(t)) = CD
µ

b−
(Jµ

b−
z(t)) = CD

µ

a+(J
µ

a+z(t)) = z(t). (2.7)

(2) If Dν
a+ , Dν

b−
, CD

µ

a+ ,
CD

µ

b−
are continuous on (a, b), then

Iνa+(Dν
a+z(t)) = J

µ

a+(
CD

µ

a+z(t)) = z(t)− z(a), (2.8)

Iνb−(D
ν
b−z(t)) = J

µ

b−
( CD

µ

b−
z(t)) = z(t)− z(b). (2.9)

(3) If z is differentiable on (a, b), then

Dν
a+z(t) = (t− a)1−νz′(s), (2.10)
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Dν
b−z(t) = −(b− t)1−νz′(s). (2.11)

Theorem 2.8 (Banach Contraction Principle [11,12]) Let (E, || · ||) be a Banach space, P ⊂ E

a non-empty closed subset. If T : P → P is of strict contraction i.e., ∃L ∈ (0, 1), ∀x, y ∈ P such

that ||Tx− Ty|| ≤ L||x− y||, then T has unique fixed point in P .

Theorem 2.9 (Guo-Kransnoselskii’s fixed point theorem [13]) Let (E, || · ||) be a Banach space,

P ⊂ E be a cone and Ω1,Ω2 be two bounded open sets in E, such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2.

Let operator T : P ∩ (Ω2\Ω1) → P be completely continuous. Suppose that one of the two

conditions,

(1) ||Tz|| ≤ ||z||, ∀ z ∈ P ∩ ∂Ω1 and ||Tz|| ≥ ||z||, ∀ z ∈ P ∩ ∂Ω2 and

(2) ||Tz|| ≥ ||z||, ∀ z ∈ P ∩ ∂Ω1 and ||Tz|| ≤ ||z||, ∀ z ∈ P ∩ ∂Ω2

is satisfied, then T has at least one fixed point in P ∩ (Ω2\Ω1).

3. Existence solution

In this section, we will study the existence of solution and equivalence result between given

problems (1.1)–(1.4) and nonlinear integral Fredholm equation of the second kind. For this, we

define the Banach space E = C([−τ, 1],R) with norm ||z||[−τ,1] = max{|z| : z ∈ [−τ, 1]}.

Theorem 3.1 Let µ, ν ∈ (0, 1], β ∈ (0, 1), g : [0, 1] × C[−τ, 0] → R
+ be continuous function.

Then z ∈ E is a solution of MFDDEIBC given by (1.1)–(1.4) if and only if z ∈ E satisfies the

non-linear and homogeneous Fredholm integral equation of second kind,

z(t) =

{

∫ 1

0 G(t, s)g(s, zs)ds, t ∈ [0, 1],

ψ(t), t ∈ [−τ, 0],
(3.1)

where G is the Green’s function given by

G(t, s) =

{

[ β
(1−β)(µ+1) (1− (1 − s)µ+1) + tµ − (t− s)µ] (1−s)ν−1

β(µ+1) , if 0 ≤ s ≤ t ≤ 1,

[ β
(1−β)(µ+1) (1− (1 − s)µ+1) + tµ] (1−s)ν−1

β(µ+1) , if 0 ≤ t ≤ s ≤ 1.
(3.2)

Proof In the first part we show the necessity:

Applying the right fractional integral Iν1− in (2.2) on the Eq. (1.1) and using (2.9) and (1.4),

we get

CD
µ

0+z(t) = Ib1−g(t, zt). (3.3)

Applying the left fractional integral Jµ

0+ in (2.5) on the Eq. (3.3) and using (2.8) and (1.3), we

get

z(t) = β

∫ 1

0

z(t)dt+ J
µ

0+I
ν
1−g(t, zt). (3.4)

Next, using (2.2) and (2.5), we get

J
µ

0+I
ν
1−g(t, zt) =

1

Γµ

∫ t

o

(t−m)µ−1Iν1−g(m, zm)dm
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=
1

Γµ

∫ t

o

(t−m)µ−1
[

∫ 1

m

(1− s)ν−1g(s, zs)ds
]

dm

=
1

Γµ

∫ t

o

(t−m)µ−1
[

∫ t

m

(1− s)ν−1g(s, zs)ds+

∫ 1

t

(1 − s)ν−1g(s, zs)ds
]

dm.

Using Fubini theorem, we obtain

J
µ

0+I
ν
1−g(t, zt) =

1

Γµ

∫ t

o

(

∫ s

0

(t−m)µ−1dm
)

(1− s)ν−1g(s, zs)ds+

1

Γµ

∫ 1

t

(

∫ t

0

(t−m)µ−1dm
)

(1− s)ν−1g(s, zs)ds

=
1

Γ(µ+ 1)

∫ t

o

(tµ − (t− s)µ)(1− s)ν−1g(s, zs)ds+

1

Γ(µ+ 1)

∫ 1

t

tµ(1− s)ν−1g(s, zs)ds

=
1

Γ(µ+ 1)

[

∫ 1

o

tµ(1 − s)ν−1g(s, zs)ds−

∫ t

0

(t− s)µ(1 − s)ν−1g(s, zs)ds
]

.

Now, Eq. (3.4) becomes,

z(t) =β

∫ 1

0

z(t)dt+
1

Γ(µ+ 1)

[

∫ 1

o

tµ(1− s)ν−1g(s, zs)ds−

∫ t

0

(t− s)µ(1− s)ν−1g(s, zs)ds
]

. (3.5)

Integrating (3.5) on [0, 1] in both sides gives,

(1− β)

∫ 1

0

z(t)dt =
1

Γ(µ+ 1)

∫ 1

0

[

∫ 1

o

tµ(1− s)ν−1g(s, zs)ds
]

dt−

1

Γ(µ+ 1)

∫ 1

0

[

∫ t

0

(t− s)µ(1 − s)ν−1g(s, zs)ds
]

dt.

Using Fubini theorem, we obtain

(1− β)

∫ 1

0

z(t)dt =
1

Γ(µ+ 1)

∫ 1

0

tµdt

∫ 1

o

(1 − s)ν−1g(s, zs)ds−

1

Γ(µ+ 1)

∫ 1

0

[

∫ 1

s

(t− s)µdt
]

(1− s)ν−1g(s, zs)ds

∫ 1

0

z(t)dt =
1

(1 − β)Γ(µ+ 2)

∫ 1

0

[(1− s)ν−1 − (1− s)µ+ν ]g(s, zs)ds. (3.6)

Substituting Eq. (3.6) in (3.5), we get

z(t) =

∫ t

0

[
β

(1− β)(µ+ 1)
(1 − (1− s)µ+1) + tµ − (t− s)µ]

(1− s)ν−1

Γ(µ+ 1)
g(s, zs)ds+

∫ 1

t

[
β

(1− β)(µ+ 1)
(1 − (1− s)µ+1) + tµ]

(1− s)ν−1

Γ(µ+ 1)
g(s, zs)ds

=

∫ 1

0

G(t, s)g(s, zs)ds
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and also, we have

z(t) = ψ(t), t ∈ [−τ, 0].

Thus the first part is proved.

Now, next part is sufficient part:

Let z ∈ E be the solution of Eq. (3.1). We first prove that z satisfies (1.3). Using (3.1) and

(3.2), we get

z(0)− β

∫ 1

0

z(t)dt =

∫ 1

0

G(0, s)g(s, zs)ds+

β

∫ 1

0

[

∫ t

0

G(t, s)g(s, zs)ds+

∫ 1

t

G(t, s)g(s, zs)ds
]

dt.

Using Fubini theorem, we get

z(0)− β

∫ 1

0

z(t)dt =

∫ 1

0

G(0, s)g(s, zs)ds−

β

∫ 1

0

[

∫ 1

s

G(t, s)dt +

∫ s

0

G(t, s)dt
]

g(s, zs)ds. (3.7)

Now, from (3.2) it follows
∫ 1

s

G(t, s)dt =
β(1 − s)

(1− β)Γ(µ+ 2)
[(1− s)ν−1 − (1 − s)µ+ν ]+

1

Γ(µ+ 2)
[1− sµ+1 − (1− s)µ+1](1 − s)ν−1 (3.8)

and
∫ s

0

G(t, s)dt =
βs

(1− β)Γ(µ + 2)
[(1− s)ν−1 − (1− s)µ+ν ] +

1

Γ(µ+ 2)
sµ+1(1 − s)ν−1. (3.9)

Substituting (3.8) and (3.9) in (3.7) and using (3.2), we obtain

z(0)− β

∫ 1

0

z(t)dt =

∫ 1

0

G(0, s)g(s, zs)ds−

β

(1 − β)Γ(µ+ 2)

∫ 1

0

[1− (1− s)µ+1](1− s)ν−1g(s, zs)ds

=

∫ 1

0

G(0, s)g(s, zs)ds−

∫ 1

0

G(0, s)g(s, zs)ds = 0,

z(0) = β

∫ 1

0

z(t)dt.

Now, we have to prove z ∈ E satisfies boundary condition (1.4).

Using (3.1), (3.2) and (2.3) gives

CD
µ
0+z(1) =

1

Γ(1− µ)

∫ 1

0

(1− s)−µz′(s)ds

=
1

Γ(1− µ)

∫ 1

0

(1− s)−µ

∫ s

0

∂G

∂s
(s,m)g(m, zm)dmds+

1

Γ(1− µ)

∫ 1

0

(1− s)−µ

∫ 1

s

∂G

∂s
(s,m)g(m, zm)dmds
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=
1

Γ(µ)Γ(1 − µ)

∫ 1

0

∫ s

0

(1− s)−µ[sµ−1 − (s−m)µ−1](1−m)ν−1g(m, zm)dmds+

1

Γ(µ)Γ(1 − µ)

∫ 1

0

∫ 1

s

(1 − s)−µsµ−1(1−m)ν−1g(m, zm)dmds

=
1

Γ(µ)Γ(1 − µ)

∫ 1

0

∫ 1

0

(1 − s)−µsµ−1(1−m)ν−1g(m, zm)dmds−

1

Γ(µ)Γ(1 − µ)

∫ 1

0

∫ s

0

(1− s)−µ(s−m)µ−1(1−m)ν−1g(m, zm)dmds.

By Fubini theorem,

CD
µ
0+z(1) =

1

Γ(µ)Γ(1 − µ)

[

∫ 1

0

(1− s)−µsµ−1ds
][

∫ 1

0

(1−m)ν−1g(m, zm)dm
]

−

1

Γ(µ)Γ(1 − µ)

∫ 1

0

[

∫ 1

m

(1− s)−µ(s−m)µ−1ds
]

(1−m)ν−1g(m, zm)dm. (3.10)

Using relation formula of Euler gamma function and beta [10, p. 26], we get

B(µ, ν) =

∫ 1

0

(1− s)µ−1sν−1ds =
Γ(µ)Γ(ν)

Γ(µ+ ν)
(3.11)

and by change of variable α = s−m
1−m

, we have
∫ 1

m

(1− s)−µ(s−m)µ−1ds = B(µ, 1− µ). (3.12)

So, from (3.10)–(3.12), we get
CD

µ
0+z(1) = 0.

Next, it remains to prove that z ∈ E satisfies (1.1). By using (2.3), (3.1) and (3.2),

CD
µ
0+z(t) =

1

Γ(1− µ)

∫ t

0

(t− s)−µz′(s)ds

=
1

Γ(µ)Γ(1 − µ)

∫ t

0

∫ s

0

(t− s)−µ[sµ−1 − (s−m)µ−1](1 −m)ν−1g(m, zm)dmds+

1

Γ(µ)Γ(1 − µ)

∫ t

0

∫ 1

s

(t− s)−µsµ−1(1−m)ν−1g(m, zm)dmds

=
1

Γ(µ)Γ(1 − µ)

∫ t

0

∫ 1

0

(t− s)−µsµ−1(1−m)ν−1g(m, zm)dmds−

1

Γ(µ)Γ(1 − µ)

∫ t

0

∫ s

0

(t− s)−µ(s−m)µ−1(1 −m)ν−1g(m, zm)dmds.

Now, we use Fubini theorem to get

CD
µ
0+z(t) =

1

Γ(µ)Γ(1 − µ)

[

∫ t

0

(t− s)−µsµ−1ds
][

∫ 1

0

(1−m)ν−1g(m, zm)dm
]

−

1

Γ(µ)Γ(1 − µ)

∫ t

0

[

∫ t

m

(t− s)−µ(s−m)µ−1ds
]

(1−m)ν−1g(m, zm)dm. (3.13)

By change of variable α = s
t
, we obtain
∫ t

0

(t− s)−µsµ−1ds = B(µ, 1 − µ) (3.14)
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and change of variable α = s−m
t−m

, we obtain

∫ t

m

(t− s)−µ(s−m)µ−1ds = B(µ, 1− µ). (3.15)

So, from (3.13), (3.14), (3.15) and (3.11), we have

CD
µ
0+z(t) =

∫ 1

0

(1−m)ν−1g(m, zm)dm−

∫ t

0

(1−m)ν−1g(m, zm)dm. (3.16)

Now, applying right conformable derivative defined in (2.11) in both sides of (3.16), we get

Dν
1−(

CD
µ

0+z)(t) =− (1− t)1−ν ∂

∂t

[

∫ 1

0

(1−m)ν−1g(m, zm)dm−

∫ t

0

(1 −m)ν−1g(m, zm)dm
]

.

Using Leibniz integral rule, we get

Dν
1−(

CD
µ

0+z)(t) = (1 − t)1−ν(1− t)ν−1g(t, zt) = g(t, zt).

Hence, the proof is completed. 2

Lemma 3.2 For all s ∈ [0, 1] and t ∈ [0, 1]

(1) G(t, s) > 0.

(2) tµG(1, s) ≤ G(t, s) ≤ G(1, s).

Proof (1) For all t ∈ [0, 1], using (3.2), we get

∂G

∂t
(t, s) =

1

Γµ

{

(tµ−1 − (t− s)µ−1)(1− s)ν−1, if 0 ≤ s ≤ t ≤ 1,

(tµ−1(1− s)ν−1), if 0 ≤ t ≤ s ≤ 1.
(3.17)

Clearly, it is seen that ∂G
∂t

(t, s) ≥ 0 for all s ∈ [0, 1] and t ∈ [0, 1], which implies G(t, s) is

increasing with respect to t ∈ [0, 1]. Therefore, for all s ∈ [0, 1] and t ∈ [0, 1], we have

G(t, s) ≥ G(0, s) =
[ β

(1− β)Γ(µ+ 2)
(1− (1 − s)µ+1)

]

(1 − s)ν−1 > 0.

(2) Now using increasing of Green’s function G(t, s) with respect to t ∈ [0, 1], we get for all

s ∈ [0, 1] and t ∈ [0, 1],

G(t, s) ≤ G(1, s) =
1

Γ(µ+ 1)

[ β

(1− β)Γ(µ+ 1)
(1− (1 − s)µ+1) + 1− (1 − s)µ

]

(1− s)ν−1.

Using (3.2) yields

G(t, s)− tµG(1, s) =

{

β(1−tµ)(1−s)ν−1

(1−β)Γ(µ+2) [1− (1 − s)µ+1] + tµ(1−s)ν−1

Γ(µ+1) [(1 − s)µ − (1− s
t
)µ], if s ≤ t,

β(1−tµ)(1−s)ν−1

(1−β)Γ(µ+2) [1− (1 − s)µ+1] + tµ(1−s)µ(1−s)ν−1

Γ(µ+1) , if s ≥ t,

G(t, s)− tµG(1, s) ≥ 0,

this implies that,

tµG(1, s) ≤ G(t, s) ≤ G(1, s). 2
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4. Existence of positive solution

In this section, we show the existence of positive solution of problem (1.1)–(1.4).

Let Ωq ⊂ E be bounded open set defined as

Ωq = {z ∈ E; ‖z‖ < q, q > 0}

and P be defined as

P = {z ∈ E; z(t) ≥ tµ‖z‖, t ∈ [0, 1]}.

Now, we define the operator T : E → E such that

Tz(t) =

{

∫ 1

0 G(t, s)g(s, zs)ds, t ∈ [0, 1],

ψ(t), t ∈ [−τ, 0].
(4.1)

Lemma 4.1 There hold the following conclusions

(1) T (P ) ⊂ P .

(2) The operator T : P → P is completely continuous.

Proof (1) Let z ∈ P . Using Lemma 3.2, we get

Tz(t) =

∫ 1

0

G(t, s)g(s, zs)ds ≥ tµ
∫ 1

0

G(1, s)g(s, zs)ds

≥ tµ
∫ 1

0

G(t, s)g(s, zs)ds, t ∈ [0, 1],

and

Tz(t) ≥ tµ max
t∈[0,1]

∫ 1

0

G(t, s)g(s, zs)ds ≥ tµ‖Tz‖.

Thus, Tz ∈ P .

(2) Let Ωn ⊂ P be defined as Ωn = {z ∈ P ; ‖z‖ < n, n > 0} and define

Ln = max
t∈[0,1],z∈Ωn

g(s, zs).

Then, for all z ∈ Ωn, we get

‖Tz(t)‖ = max
t∈[0,1]

∫ 1

0

G(t, s)g(s, zs)ds ≤ Ln

∫ 1

0

G(1, s)ds.

Therefore, T (Ωn) is bounded in P . For every z ∈ Ωn, we get

|(Tz)′(t)| =
∣

∣

∣

∫ 1

0

∂G

∂t
(t, s)g(s, zs)ds

∣

∣

∣

=
∣

∣

∣

1

Γµ

∫ t

0

(tµ−1 − (t− s)µ−1)(1 − s)ν−1g(s, zs)ds+

1

Γµ

∫ 1

t

tµ−1(1− s)ν−1g(s, zs)ds
∣

∣

∣

=
∣

∣

∣

1

Γµ

∫ 1

0

tµ−1(1− s)ν−1g(s, zs)ds−

1

Γµ

∫ t

0

(t− s)µ−1(1 − s)ν−1g(s, zs)ds
∣

∣

∣
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≤
Ln

Γµ

∫ 1

0

(1− s)ν−1ds+
Ln

Γµ

∫ t

0

(t− s)µ−1ds

≤
Ln

Γµ
[
1

ν
+

1

µ
] ≤

(µ+ ν)Ln

νΓ(µ+ 1)
.

Let z ∈ Ωn and t1 < t2, t1, t2 ∈ [−τ, 1].

If 0 ≤ t1 < t2 ≤ 1, then

|(Tz)(t2)− (Tz)(t1)| =
∣

∣

∣

∫ t2

t1

(Tz)′(s)ds
∣

∣

∣
≤

∫ t2

t1

|(Tz)′(s)|ds ≤
(µ+ ν)Ln

νΓ(µ+ 1)
|t2 − t1|.

If −τ ≤ t1 < t2 ≤ 0, then

|(Tz)(t2)− (Tz)(t1)| = |ψ(t2)− ψ(t1)|.

If −τ ≤ t1 < 0 < t2 ≤ 1, then

|(Tz)(t2)− (Tz)(t1)| = |(Tz)(t2)− (Tz)(0)|+ |(Tz)(0)− (Tz)(t1)|

≤

∫ 1

0

|G(t2, s)−G(0, s)||g(s, zs)|ds+ |ψ(0)− ψ(t2)|

≤ Ln||t2 − t1|+ |ψ(0)− ψ(t2)|.

Therefore, T (Ωn) is equicontinuous.

Now, using Arzelà-Ascoli theorem [11], we say that T (Ωn) is relatively compact. Thus,

T : P → P is completely continuous. 2

Next, we study the positive solution for problem (1.1)–(1.4). For this, some notations are

presented below

g0 = lim
‖z‖→0

max
t∈[0,1]

g(t, zt)

‖z‖[−τ,0]
, g∞ = lim

||z||→+∞
max
t∈[0,1]

g(t, zt)

‖z‖[−τ,0]
,

g0 = lim
‖z‖→0

min
t∈[0,1]

g(t, zt)

‖z‖[−τ,0]
, g∞ = lim

||z||→+∞
min
t∈[0,1]

g(t, zt)

‖z‖[−τ,0]
,

λ1 =

∫ 1

0

G(1, s)ds, λ2 = σµ

∫ 1−σ

σ

G(1, s)ds,

where σ ∈ (0, 12 ) and the function G is defined in (3.2).

Theorem 4.2 Suppose that any one of the three following conditions is satisfied, then problem

(1.1)–(1.4) has at least one positive solution.

(1) There exists m2 > m1 > 0, such that ∀z ∈ [m1,m2], ∀ t ∈ [0, 1] : m1

λ2
≤ g(t, zt) ≤

m2

λ1
.

(2) λ1g
0 ≤ 2

3 and λ2g∞ ≥ 3.

(3) λ2g0 ≥ 3 and λ1g
∞ ≤ 3

4 .

Proof (1) Let z ∈ P ∩ ∂Ωm1
, which implies that, z ∈ P and ‖z‖ = m1. Using Lemma 3.2, we

get

‖Tz(t)‖ =

{

maxt∈[0,1]

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]
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≥

{

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

tµ
∫ 1

0
G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

m1

λ2
tµ

∫ 1

0
G(1, s)ds

‖ψ(t)‖[−τ,0]

≥

{

m1

λ2
tµ

∫ 1−σ

σ
G(1, s)ds

‖ψ(t)‖[−τ,0]

≥

{

m1

λ2

(

t
σ

)µ
σµ

∫ 1−σ

σ
G(1, s)ds

‖ψ(t)‖[−τ,0]

≥

{

m1

λ2
λ2

‖ψ(t)‖[−τ,0]

≥

{

m1

‖ψ(t)‖[−τ,0]

∴ ||Tz(t)|| ≥ ||z||[−τ,1]

For z ∈ P ∩ ∂Ωm2
, which implies that, z ∈ P and ‖z‖ = m2, using Lemma 3.2, we get

‖Tz(t)‖ =

{

maxt∈[0,1]

∫ 1

0
G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≤

{

∫ 1

0 G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≤

{

m2

λ1

∫ 1

0
G(1, s)ds

‖ψ(t)‖[−τ,0]

≤

{

m2

λ1
λ1

‖ψ(t)‖[−τ,0]

≤

{

m2

‖ψ(t)‖[−τ,0]

∴ ‖Tz(t)‖ ≤ ‖z‖[−τ,1],

then by Theorem 2.9, T has an at least one fixed point in z ∈ P ∩Ωm2
\Ωm1

with m1 ≤ ||z|| ≤ m2.

This implies that problem (1.1)–(1.4) has at least one positive solution.

(2) Using definition of f0, we may choose ‖ψ(t)‖[−τ,0] ≤ m1 such that g(t, zt) ≤ (f0 + δ)‖z‖

for 0 < ‖z‖ ≤ m1, where δ > 0 satisfies λ1δ ≤
1
3 . Let z ∈ P ∩ ∂Ωm1

, which implies that, z ∈ P

and ‖z‖ = m1. Using Lemma 3.2, we get

‖Tz(t)‖ =

{

maxt∈[0,1]

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]
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≤

{

∫ 1

0 G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≤

{

(f0 + δ)
∫ 1

0
G(1, s)‖z‖ds

‖ψ(t)‖[−τ,0]

≤

{

λ1(f
0 + δ)‖z‖

‖ψ(t)‖[−τ,0]

∴ ‖Tz(t)‖ ≤ ‖z‖[−τ,1].

By definition of f∞, we may choose m2 ≥ ||ψ(t)||[−τ,0] such that g(t, zt) ≥ (f∞ − δ)||z|| for

‖z‖ ≥ m2, where δ > 0 satisfies λ2δ ≤ 2. Let z ∈ P ∩ ∂Ωm2
, which implies that, z ∈ P and

‖z‖ = m2. Using Lemma 3.2, we get

‖Tz(t)‖ =

{

maxt∈[0,1]

∫ 1

0
G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

tµ
∫ 1

0
G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

tµ
∫ 1−σ

σ
G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

tµ(f∞ − δ)
∫ 1−σ

σ
G(1, s)‖z‖ds

‖ψ(t)‖[−τ,0]

≥

{

( t
σ
)µ(f∞ − δ)‖z‖σµ

∫ 1−σ

σ
G(1, s)ds

‖ψ(t)‖[−τ,0]

≥

{

λ2(f∞ − δ)‖z‖

‖ψ(t)‖[−τ,0]

∴ ‖Tz(t)‖ ≥ ‖z‖[−τ,1],

then by Theorem 2.9, operator T has at least one fixed point in z ∈ P ∩ Ωm2
\Ωm1

with m1 ≤

‖z‖ ≤ m2. This implies that, the problem (1.1)–(1.4) has at least one positive solution.

(3) By definition of f0, we may choosem2 ≥ ‖ψ(t)‖[−τ,0] ≤ m1 such that g(t, zt) ≥ (f0−δ)‖z‖

for 0 < ‖z‖ ≤ m1, where δ > 0 satisfies λ2δ ≤ 2. Let z ∈ P ∩ ∂Ωm1
, which implies that z ∈ P

and ‖z‖ = m1. Using Lemma 3.2, we get

‖Tz(t)‖ =

{

maxt∈[0,1]

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]
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≥

{

tµ
∫ 1

0 G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

tµ
∫ 1−σ

σ
G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≥

{

tµ(f0 − δ)
∫ 1−σ

σ
G(1, s)‖z‖ds

‖ψ(t)‖[−τ,0]

≥

{

( t
σ
)µ(f0 − δ)‖z‖σµ

∫ 1−σ

σ
G(1, s)ds

‖ψ(t)‖[−τ,0]

≥

{

λ2(f0 − δ)‖z‖

‖ψ(t)‖[−τ,0]

∴ ‖Tz(t)‖ ≥ ‖z‖[−τ,1].

Using definition of f∞, we may choose ||ψ(t)||[−τ,0] ≥ m2 such that g(t, zt) ≤ (f∞ + δ)||z||

for ‖z‖ ≥ m2, where δ > 0 satisfies λ1δ ≤ 1
4 . Let z ∈ P ∩ ∂Ωm2

. This implies that z ∈ P and

‖z‖ = m2. Using Lemma 3.2, we get

‖Tz(t)‖ =

{

maxt∈[0,1]

∫ 1

0 G(t, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≤

{

∫ 1

0 G(1, s)g(s, zs)ds

‖ψ(t)‖[−τ,0]

≤

{

(f∞ + δ)
∫ 1

0
G(1, s)‖z‖ds

‖ψ(t)‖[−τ,0]

≤

{

λ1(f
∞ + δ)‖z‖

‖ψ(t)‖[−τ,0]

∴ ‖Tz(t)‖ ≤ ‖z‖[−τ,1],

then by Theorem 2.9, operator T has at least one fixed point in z ∈ P ∩ Ωm2
\Ωm1

with m1 ≤

‖z‖ ≤ m2. This implies that problem (1.1)–(1.4) has at least one positive solution. 2

5. Uniqueness of positive solution

In this section, we will discuss the uniqueness of positive solution of problem (1.1)–(1.4).

Theorem 5.1 Suppose there exists K > 0 such that

‖g(s, xs)− g(s, ys)‖ ≤ K‖xs − ys‖ for all t ∈ [0, 1] and every x, y ∈ E. (5.1)

If

0 < Kλ < 1, (5.2)

then, the problem (1.1)–(1.4) has exactly one positive solution in E.
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Proof Let x, y : [−τ, 1] → R+ and x 6= y be two solutions of problem (1.1)–(1.4). Using (5.1)

and Lemma 3.1, we have

‖Tx− Ty‖ ≤

∫ 1

0

G(1, s)‖g(s, xs)− g(s, ys)‖ds

≤ K

∫ 1

0

G(1, s)‖xs − ys)‖ds ≤ Kλ‖xs − ys)‖

∴ ||Tx− Ty|| ≤ Kλ‖xs − ys)‖.

As 0 < Kλ < 1, this implies that operator T is a strict contraction. Then, from Theorem 2.8,

the given problem (1.1)–(1.4) has exactly one positive solution in E. 2

6. Conclusion

In this paper, we obtained existence of positive solution of mixed non-linear fractional delay

differential equations with integral boundary conditions using Guo-Krasnoseleskii’s fixed point

theorem and uniqueness of positive solution by using Banach contraction principle. This work

may provide a new way for the research to get positive solution of Fractional differential equations

with delay.
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