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Abstract The classical Volterra operator V and its adjoint operator V ∗ play important roles in

the complex space L2[0, 1]. As to the properties of linear combination of V and V ∗, we present

the equivalent condition ensuring z1V +z2V
∗(z1, z2 ∈ C) satisfies the accretive property. Then an

accurate representation of the numerical range of (u+iv)I+mV +nV ∗ (u, v,m, n ∈ R,m+n ≥ 0)

is described in this paper.
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1. Introduction

Let H be a complex Hilbert space equipped with the inner product (·, ·), which induces the

norm ‖ · ‖. Denote by B(H) the Banach algebra of bounded linear operators acting on H. Let

A ∈ B(H). The operator norm is defined by

‖A‖ = sup
‖x‖=1

‖Ax‖.

Given A ∈ B(H), the spectrum of an operator A is defined by

σ(A) = {λ ∈ C : A− λI is not invertible},

which is a non-empty compact subset of the complex plane. An important method of bounding

the spectrum σ(A) is by the numerical range of A, which is defined as

W (A) = {(Ax, x), x ∈ H, ‖x‖ = 1}.

W (A) has several good properties, such as

W (αI + βA) = α+ βW (A) for α, β ∈ C, where I is the identity operator, (1.1)

W (A∗) = {λ, λ ∈ W (A)}. (1.2)

It also holds W (U∗AU) = W (A) for any unitary U ∈ B(H). It has been proved that the

spectrum of an operator is contained in the closure of its numerical range [1, Theorem 1.2-1]
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and the numerical range of an operator is convex (The Toeplitz-Hausdorff theorem). And an

operator A is self-adjoint iff W (A) is real [1, Theorem1.2-2].

Here we take A as the Volterra operator V : L2[0, 1] → L2[0, 1] defined by

(V f)(x) =

∫ x

0

f(t)dt, f ∈ L2[0, 1],

which plays an important role in developing operator theory in Hilbert spaces. It is well-known

that the Volterra operator is a compact universal quasinilpotent operator [2, Theorem 1]. Due

to its excellent properties, many scholars have studied Volterra operator on various spaces and

formulated many interesting results [3–5]. It has been proved that the norm of V is 2/π (see [6,

Problem 188]). After that Lyubich and Tsedenbayar obtained an explicit formula for the norm

‖I + bV ‖ with b ∈ C (see [7]). There are also some interesting papers [8–11] that pertain to the

characterizations about invariant subspaces of Volterra operator and its dynamical properties.

Recently, Khadkhuu calculated the numerical range and the numerical radius of V and de-

scribed the envelope of its numerical range in [12]. Thus the numerical range W (V ∗) of the

adjoint operator of V can be deduced by (1.2), where V ∗ is

(V ∗f)(x) =

∫ 1

x

f(t)dt, f ∈ L2[0, 1].

Following this line, many authors studied the linear combination of V , V ∗ and the identity oper-

ator I (see [7,13,14]). In this article, we start with the accretive property of z1V +z2V
∗ (z1, z2 ∈

C) in Section 2. And then Section 3 is devoted to characterizing the numerical range of

(u+ iv)I +mV + nV ∗ with u, v,m, n ∈ R and m+ n ≥ 0.

2. Accretive property

In this section, we explore the equivalent condition for accretive operator z1V +z2V
∗ (z1, z2 ∈

C). Recall A ∈ B(H) is accretive if ReA = (A+A∗)/2 ≥ 0. In [12], Khadkhuu proved zV (z ∈ C)

is accretive iff Re z ≥ 0 and Imz = 0. As an extension, we explore the accretive property of

z1V + z2V
∗ (z1, z2 ∈ C) and formulate a scope for the numerical range of W (z1V + z2V

∗).

Proposition 2.1 The operator z1V + z2V
∗ (z1, z2 ∈ C) is accretive on L2[0, 1] if and only if

Re z1 +Re z2 ≥ 0 and Im z1 = Im z2. And then

W (z1V + z2V
∗) ⊆ {z : 0 ≤ Re z ≤

1

2
(Re z1 +Re z2)}. (2.1)

Proof For convenience of writing, we denote z := z1 + z2.

Necessity. Let z1V + z2V
∗ (z1, z2 ∈ C) be accretive. We have

(z1V + z2V
∗) + (z1V + z2V

∗)∗

2
=

(z1 + z2)V + (z1 + z2)V
∗

2
≥ 0,

that is,

(
zV + zV ∗

2
f, f) ≥ 0 for all f ∈ L2[0, 1]. (2.2)
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Putting fk(x) = eikπx into (2.2), we obtain

(
zV + zV ∗

2
fk, fk) =

2 Im z

kπ
+

2(1− (−1)k)Re z

k2π2
≥ 0, k ∈ Z \ {0}.

So Re z ≥ 0 and Im z = 0, that is, Re z1 +Re z2 ≥ 0 and Im z1 = Im z2.

Sufficiency. Denote

(Pf)(x) := ((V + V ∗)f)(x) =

∫ 1

0

f(t)dt.

Then it holds that

((zV + zV ∗)f, f) = ((zP + (z − z)V ∗)f, f) = z(Pf, f) + (z − z)(V ∗f, f)

= z
∣

∣

∣

∫ 1

0

f(t)dt
∣

∣

∣

2

− 2(Im z1 − Im z2)i(V
∗f, f)

= z
∣

∣

∣

∫ 1

0

f(t)dt
∣

∣

∣

2

≥ 0, (2.3)

which means z1V + z2V
∗ is accretive. For f ∈ L2[0, 1] with ‖f‖ = 1, (2.3) implies (2.1) is true.

The proof is completed. 2

3. Main results

In this section, we first characterize the numerical range of mV +nV ∗ with m,n ∈ R,m+n ≥

0. Recall a theorem about the numerical range of T ∈ B(H).

Theorem 3.1 ([15, Theorem 9.3-10]) If T ∈ B(H) and θ ∈ [−π, π], put λθ = max σ(Bθ), where

Bθ = 1
2 (e

−iθT + eiθT ∗) = B∗
θ . Then

W (T ) =
⋂

θ∈[−π,π]

Hθ,

where the half-space Hθ is defined by

Hθ = {z ∈ C : Re(e−iθz) ≤ λθ}.

Using Theorem 3.1, Khadkhuu obtained the numerical range of V .

Proposition 3.2 ([12, Proposition 2]) The numerical range of V is the set lying between the

curves
1− cosϕ

ϕ2
± i

ϕ− sinϕ

ϕ2
, ϕ ∈ [0, 2π].

Moreover, Khadkhuu further gave the numerical range of some special operators.

Lemma 3.3 ([12, Proposition 3]) Let V be the Volterra operator on L2[0, 1].

(i) W (ReV ) = [0, 12 ], where ReV = (V + V ∗)/2.

(ii) W (ImV ) = [− 1
π
, 1
π
], where ImV = (V − V ∗)/2.

Based on Proposition 3.2 and the linear properties (1.1) and (1.2), it is easy to obtain the

following statements.
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Remark 3.4 (i) The numerical range of (u+ iv)I +mV (u, v,m ∈ R) is the set lying between

the curves

u+
m(1− cosϕ)

ϕ2
+ i(v ±

m(ϕ− sinϕ)

ϕ2
), ϕ ∈ [0, 2π].

(ii) The numerical range of ((u + iv)I + mV )∗ (u, v,m ∈ R) is the set lying between the

curves

u+
m(1− cosϕ)

ϕ2
+ i(−v ±

m(ϕ− sinϕ)

ϕ2
), ϕ ∈ [0, 2π].

Next we consider the numerical range of mV + nV ∗ for the special cases m = ±n.

Proposition 3.5 On L2[0, 1], we have

(i) W (m(V + V ∗)) = [0,m] with m ≥ 0.

(ii) W (m(V − V ∗)) = [− 2|m|i
π

, 2|m|i
π

].

Proof (i) Denote A := m(V + V ∗). By Eq. (2.1), we have

W (A) ⊆ {z : 0 ≤ Re z ≤ m}.

By Lemma 3.3 and linear property (1.1), we obtain

(Af, f) = (m(V + V ∗)f, f) = 2m ·Re(V f, f)

and then W (A) = [0,m].

(ii) Denote B := m(V − V ∗). It follows that

(Bf, f) = (m(V − V ∗)f, f) = 2mi · Im(V f, f)

and then Lemma 3.3 ensures

W (m(V − V ∗)) = [−
2|m|i

π
,
2|m|i

π
]. 2

In the sequel, we make sure mV + nV ∗ is accretive. Then (2.1) entails

W (mV + nV ∗) ⊆ {z : 0 ≤ Re z ≤
1

2
(m+ n)}.

Further we calculate W (mV + nV ∗) with m 6= ±n in next theorem.

Theorem 3.6 Let m,n ∈ R such that m + n ≥ 0 and m 6= ±n. The numerical range of

mV + nV ∗ is the set lying between the curves

m+ n

µθ
2

(1 − cosµθ)± i
n−m

µθ
2

(µθ − sinµθ), θ ∈ [−π, π],

where

µθ =















arctan τθ, 2θ ∈ (−2θ2,−π) ∪ (−2θ1, 0) ∪ (0, 2θ1) ∪ (π, 2θ2),

arctan τθ + π, 2θ ∈ [−2π − 2θ2) ∪ [−π,−2θ1) ∪ {0} ∪ (2θ1, π] ∪ (2θ2, 2π],

π
2 , 2θ = ±2θi, i = 1, 2,

(3.1)

with (m2 + n2) cos(2θi) + 2mn = 0, θi ∈ (0, π) and

τθ :=
(n2 −m2) sin(2θ)

(m2 + n2) cos(2θ) + 2mn
, θ 6= θi (3.2)
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for i = 1, 2.

Proof Denote A := mV + nV ∗ with m+ n ≥ 0, m 6= ±n. We apply Theorem 3.1 to calculate

the envelope of W (mV + nV ∗). Then we proceed from

Bθf = λf (3.3)

to a differential equation by applying the operator D = d
dx . Thus

λf ′(x) =
1

2
(e−iθf(x)− eiθf(x)) = (n−m)i sin(θ)f(x).

Therefore, λ 6= 0 and f = eiµx for all x ∈ [0, 1], where

µ :=
(n−m) sin θ

λ
.

The actual eigenvalues λ are obtained by putting f = eiµx into (3.3). This yields

eiµ =
(m2 + n2) cos(2θ) + 2mn+ i(n2 −m2) sin(2θ)

m2 + n2 + 2mn cos(2θ)
,

which implies

cosµ =
(m2 + n2) cos(2θ) + 2mn

m2 + n2 + 2mn cos(2θ)
and sinµ =

(n2 −m2) sin(2θ)

m2 + n2 + 2mn cos(2θ)
. (3.4)

To find λθ = maxσ(Bθ), we will prove there is µθ satisfying (3.4) such that

λθ =
(n−m) sin θ

µθ

, θ ∈ [−π, π].

For θ 6= ±θi (i = 1, 2), we get that tanµ = τθ. This means

λ =
(n−m) sin θ

arctan τθ + kπ
, k ∈ Z. (3.5)

Here we deal with the case n > m. Because λ is odd with respect to θ, we only need to discuss

θ ∈ [0, π]. At this time,

τ ′θ =
2(n2 −m2)(m2 + n2 + 2mn cos 2θ)

((m2 + n2) cos(2θ) + 2mn)2
≥ 0.

We further suppose n > 0 > m and deduce that cos 2θ = −2mn/(m2 + n2) ∈ (0, 1) and

2θ1 ∈ (0, π/2) and 2θ2 ∈ (3π/2, 2π).

For the case 2θ ∈ (0, 2θ1) ∪ (π, 2θ2), it follows τθ > 0 and arctan τθ > 0, so let k = 0 in (3.5)

to get λθ. For 2θ ∈ {0} ∪ (2θ1, π] ∪ (2θ2, 2π], it yields that τθ ≤ 0 and arctan τθ ≤ 0, so let k = 1

in (3.5) to obtain λθ. Moreover, it holds that

lim
2θ→2θ+

i

µθ = lim
2θ→2θ−

i

µθ =
π

2
,

then we can supplement the definition at 2θi (i = 1, 2). To sum up, µθ is same as shown in

Eq. (3.1) for θ ∈ [0, π]. Since λ is odd with respect to θ, (3.1) holds for µθ. The other case

n > m > 0 can be similarly proved. Besides, we can consider µθ on [−π, 0] for n < m. It is easy

to check the same result (3.1) is true. Next, we calculate the boundary of W (A). The envelope
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curve is

x cos θ + y sin θ = λθ (3.6)

for θ ∈ [−π, π]. (3.6) implies that the boundary of numerical range is






x cos θ + y sin θ = λθ,

−x sin θ + y cos θ = λ′
θ.

This entails that






x = λθ cos θ − λ′
θ sin θ = m+n

µθ
2 (1− cosµθ),

y = λθ sin θ + λ′
θ cos θ = n−m

µθ
2 (µθ − sinµθ).

If z = (Af, f) ∈ W (A), then z = (Af, f) ∈ W (A), so we have






x = m+n
µθ

2 (1− cosµθ),

y = ±n−m
µθ

2 (µθ − sinµθ).

This means the boundary of W (A) is

m+ n

µθ
2

(1− cosµθ)± i
n−m

µθ
2

(µθ − sinµθ).

When we choose fµθ
(t) = eitµθ , it reaches the boundary of W (A) and satisfies






x = Re(Afµθ
, fµθ

) = m+n
µθ

2 (1− cosµθ),

y = Im(Afµθ
, fµθ

) = n−m
µθ

2 (µθ − sinµθ).

The proof is completed. 2

Theorem 3.6 together with Proposition 3.5 imply a corollary for W ((u + iv)I +mV + nV ∗)

with u, v,m, n ∈ R and m+ n ≥ 0.

Corollary 3.7 Let u, v,m, n ∈ R such that m+ n ≥ 0.

(i) For m 6= ±n, W ((u+ iv)I +mV + nV ∗) is the set lying between the curves

u+
m+ n

µθ
2

(1− cosµθ) + i(v ±
n−m

µθ
2

(µθ − sinµθ)),

where µθ is given in (3.1).

(ii) For m = n (m ≥ 0), W ((u+ iv)I +m(V + V ∗)) = [u + iv, u+m+ iv].

(iii) For m = −n, W ((u+ iv)I +m(V − V ∗)) = [u+ i(v − 2|m|
π

), u+ i(v + 2|m|
π

)].

Proof of Corollary 3.7 (ii) Proposition 3.5 implies that W (m(V +V ∗)) = [0,m] with m ≥ 0.

From the property of Eq. (1.1), we can get that

W ((u+ iv)I +m(V + V ∗)) = [u+ iv, u+m+ iv]. 2

At the end of this section, we present an interesting remark.

Remark 3.8 Proposition 3.2 can be deduced from Theorem 3.6 with m = 1, n = 0. In this

case, τθ = − tan(2θ) and µθ = −2θ ∈ [0, 2π].
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