Numerical Range of the Linear Combination of Volterra Operator and Its Adjoint

Jinxian WANG*, Yuxia LIANG
School of Mathematical Science, Tianjin Normal University, Tianjin 300387, P. R. China

Abstract

The classical Volterra operator V and its adjoint operator V^{*} play important roles in the complex space $L^{2}[0,1]$. As to the properties of linear combination of V and V^{*}, we present the equivalent condition ensuring $z_{1} V+z_{2} V^{*}\left(z_{1}, z_{2} \in \mathbb{C}\right)$ satisfies the accretive property. Then an accurate representation of the numerical range of $(u+i v) I+m V+n V^{*}(u, v, m, n \in \mathbb{R}, m+n \geq 0)$ is described in this paper.

Keywords Volterra operator; the adjoint operator; numerical range
MR(2020) Subject Classification 47A10; 47A12; 47B44

1. Introduction

Let \mathcal{H} be a complex Hilbert space equipped with the inner product (\cdot, \cdot), which induces the norm $\|\cdot\|$. Denote by $\mathcal{B}(\mathcal{H})$ the Banach algebra of bounded linear operators acting on \mathcal{H}. Let $A \in \mathcal{B}(\mathcal{H})$. The operator norm is defined by

$$
\|A\|=\sup _{\|x\|=1}\|A x\| .
$$

Given $A \in \mathcal{B}(\mathcal{H})$, the spectrum of an operator A is defined by

$$
\sigma(A)=\{\lambda \in \mathbb{C}: A-\lambda I \text { is not invertible }\},
$$

which is a non-empty compact subset of the complex plane. An important method of bounding the spectrum $\sigma(A)$ is by the numerical range of A, which is defined as

$$
W(A)=\{(A x, x), x \in \mathcal{H},\|x\|=1\} .
$$

$W(A)$ has several good properties, such as

$$
\begin{align*}
& W(\alpha I+\beta A)=\alpha+\beta W(A) \text { for } \alpha, \beta \in \mathbb{C}, \text { where } I \text { is the identity operator, } \tag{1.1}\\
& W\left(A^{*}\right)=\{\bar{\lambda}, \lambda \in W(A)\} . \tag{1.2}
\end{align*}
$$

It also holds $W\left(U^{*} A U\right)=W(A)$ for any unitary $U \in \mathcal{B}(\mathcal{H})$. It has been proved that the spectrum of an operator is contained in the closure of its numerical range [1, Theorem 1.2-1]

[^0]and the numerical range of an operator is convex (The Toeplitz-Hausdorff theorem). And an operator A is self-adjoint iff $W(A)$ is real [1, Theorem 1.2-2].

Here we take A as the Volterra operator $V: L^{2}[0,1] \rightarrow L^{2}[0,1]$ defined by

$$
(V f)(x)=\int_{0}^{x} f(t) \mathrm{d} t, \quad f \in L^{2}[0,1]
$$

which plays an important role in developing operator theory in Hilbert spaces. It is well-known that the Volterra operator is a compact universal quasinilpotent operator [2, Theorem 1]. Due to its excellent properties, many scholars have studied Volterra operator on various spaces and formulated many interesting results [3-5]. It has been proved that the norm of V is $2 / \pi$ (see [6, Problem 188]). After that Lyubich and Tsedenbayar obtained an explicit formula for the norm $\|I+b V\|$ with $b \in \mathbb{C}$ (see [7]). There are also some interesting papers [8-11] that pertain to the characterizations about invariant subspaces of Volterra operator and its dynamical properties.

Recently, Khadkhuu calculated the numerical range and the numerical radius of V and described the envelope of its numerical range in [12]. Thus the numerical range $W\left(V^{*}\right)$ of the adjoint operator of V can be deduced by (1.2), where V^{*} is

$$
\left(V^{*} f\right)(x)=\int_{x}^{1} f(t) \mathrm{d} t, \quad f \in L^{2}[0,1]
$$

Following this line, many authors studied the linear combination of V, V^{*} and the identity operator I (see $[7,13,14])$. In this article, we start with the accretive property of $z_{1} V+z_{2} V^{*}\left(z_{1}, z_{2} \in\right.$ \mathbb{C}) in Section 2. And then Section 3 is devoted to characterizing the numerical range of $(u+i v) I+m V+n V^{*}$ with $u, v, m, n \in \mathbb{R}$ and $m+n \geq 0$.

2. Accretive property

In this section, we explore the equivalent condition for accretive operator $z_{1} V+z_{2} V^{*}\left(z_{1}, z_{2} \in\right.$ $\mathbb{C})$. Recall $A \in \mathcal{B}(\mathcal{H})$ is accretive if $\operatorname{Re} A=\left(A+A^{*}\right) / 2 \geq 0$. In [12], Khadkhuu proved $z V(z \in \mathbb{C})$ is accretive iff $\operatorname{Re} z \geq 0$ and $\operatorname{Im} z=0$. As an extension, we explore the accretive property of $z_{1} V+z_{2} V^{*}\left(z_{1}, z_{2} \in \mathbb{C}\right)$ and formulate a scope for the numerical range of $W\left(z_{1} V+z_{2} V^{*}\right)$.

Proposition 2.1 The operator $z_{1} V+z_{2} V^{*}\left(z_{1}, z_{2} \in \mathbb{C}\right)$ is accretive on $L^{2}[0,1]$ if and only if $\operatorname{Re} z_{1}+\operatorname{Re} z_{2} \geq 0$ and $\operatorname{Im} z_{1}=\operatorname{Im} z_{2}$. And then

$$
\begin{equation*}
W\left(z_{1} V+z_{2} V^{*}\right) \subseteq\left\{z: 0 \leq \operatorname{Re} z \leq \frac{1}{2}\left(\operatorname{Re} z_{1}+\operatorname{Re} z_{2}\right)\right\} \tag{2.1}
\end{equation*}
$$

Proof For convenience of writing, we denote $z:=z_{1}+\overline{z_{2}}$.
Necessity. Let $z_{1} V+z_{2} V^{*}\left(z_{1}, z_{2} \in \mathbb{C}\right)$ be accretive. We have

$$
\frac{\left(z_{1} V+z_{2} V^{*}\right)+\left(z_{1} V+z_{2} V^{*}\right)^{*}}{2}=\frac{\left(z_{1}+\overline{z_{2}}\right) V+\left(\overline{z_{1}}+z_{2}\right) V^{*}}{2} \geq 0
$$

that is,

$$
\begin{equation*}
\left(\frac{z V+\bar{z} V^{*}}{2} f, f\right) \geq 0 \text { for all } f \in L^{2}[0,1] \tag{2.2}
\end{equation*}
$$

Putting $f_{k}(x)=e^{i k \pi x}$ into (2.2), we obtain

$$
\left(\frac{z V+\bar{z} V^{*}}{2} f_{k}, f_{k}\right)=\frac{2 \operatorname{Im} z}{k \pi}+\frac{2\left(1-(-1)^{k}\right) \operatorname{Re} z}{k^{2} \pi^{2}} \geq 0, \quad k \in \mathbb{Z} \backslash\{0\}
$$

So $\operatorname{Re} z \geq 0$ and $\operatorname{Im} z=0$, that is, $\operatorname{Re} z_{1}+\operatorname{Re} z_{2} \geq 0$ and $\operatorname{Im} z_{1}=\operatorname{Im} z_{2}$.
Sufficiency. Denote

$$
(P f)(x):=\left(\left(V+V^{*}\right) f\right)(x)=\int_{0}^{1} f(t) \mathrm{d} t
$$

Then it holds that

$$
\begin{align*}
\left(\left(z V+\bar{z} V^{*}\right) f, f\right) & =\left(\left(z P+(\bar{z}-z) V^{*}\right) f, f\right)=z(P f, f)+(\bar{z}-z)\left(V^{*} f, f\right) \\
& =z\left|\int_{0}^{1} f(t) \mathrm{d} t\right|^{2}-2\left(\operatorname{Im} z_{1}-\operatorname{Im} z_{2}\right) i\left(V^{*} f, f\right) \\
& =z\left|\int_{0}^{1} f(t) \mathrm{d} t\right|^{2} \geq 0 \tag{2.3}
\end{align*}
$$

which means $z_{1} V+z_{2} V^{*}$ is accretive. For $f \in L^{2}[0,1]$ with $\|f\|=1$, (2.3) implies (2.1) is true. The proof is completed.

3. Main results

In this section, we first characterize the numerical range of $m V+n V^{*}$ with $m, n \in \mathbb{R}, m+n \geq$ 0. Recall a theorem about the numerical range of $T \in \mathcal{B}(\mathcal{H})$.

Theorem $3.1\left(\left[15\right.\right.$, Theorem 9.3-10]) If $T \in \mathcal{B}(\mathcal{H})$ and $\theta \in[-\pi, \pi]$, put $\lambda_{\theta}=\max \sigma\left(B_{\theta}\right)$, where $B_{\theta}=\frac{1}{2}\left(e^{-i \theta} T+e^{i \theta} T^{*}\right)=B_{\theta}^{*}$. Then

$$
\overline{W(T)}=\bigcap_{\theta \in[-\pi, \pi]} H_{\theta}
$$

where the half-space H_{θ} is defined by

$$
H_{\theta}=\left\{z \in \mathbb{C}: \operatorname{Re}\left(e^{-i \theta} z\right) \leq \lambda_{\theta}\right\}
$$

Using Theorem 3.1, Khadkhuu obtained the numerical range of V.
Proposition 3.2 ([12, Proposition 2]) The numerical range of V is the set lying between the curves

$$
\frac{1-\cos \varphi}{\varphi^{2}} \pm i \frac{\varphi-\sin \varphi}{\varphi^{2}}, \quad \varphi \in[0,2 \pi] .
$$

Moreover, Khadkhuu further gave the numerical range of some special operators.
Lemma 3.3 ([12, Proposition 3]) Let V be the Volterra operator on $L^{2}[0,1]$.
(i) $W(\operatorname{Re} V)=\left[0, \frac{1}{2}\right]$, where $\operatorname{Re} V=\left(V+V^{*}\right) / 2$.
(ii) $W(\operatorname{Im} V)=\left[-\frac{1}{\pi}, \frac{1}{\pi}\right]$, where $\operatorname{Im} V=\left(V-V^{*}\right) / 2$.

Based on Proposition 3.2 and the linear properties (1.1) and (1.2), it is easy to obtain the following statements.

Remark 3.4 (i) The numerical range of $(u+i v) I+m V(u, v, m \in \mathbb{R})$ is the set lying between the curves

$$
u+\frac{m(1-\cos \varphi)}{\varphi^{2}}+i\left(v \pm \frac{m(\varphi-\sin \varphi)}{\varphi^{2}}\right), \quad \varphi \in[0,2 \pi] .
$$

(ii) The numerical range of $((u+i v) I+m V)^{*}(u, v, m \in \mathbb{R})$ is the set lying between the curves

$$
u+\frac{m(1-\cos \varphi)}{\varphi^{2}}+i\left(-v \pm \frac{m(\varphi-\sin \varphi)}{\varphi^{2}}\right), \quad \varphi \in[0,2 \pi] .
$$

Next we consider the numerical range of $m V+n V^{*}$ for the special cases $m= \pm n$.
Proposition 3.5 On $L^{2}[0,1]$, we have
(i) $W\left(m\left(V+V^{*}\right)\right)=[0, m]$ with $m \geq 0$.
(ii) $W\left(m\left(V-V^{*}\right)\right)=\left[-\frac{2|m| i}{\pi}, \frac{2|m| i}{\pi}\right]$.

Proof (i) Denote $A:=m\left(V+V^{*}\right)$. By Eq. (2.1), we have

$$
W(A) \subseteq\{z: 0 \leq \operatorname{Re} z \leq m\}
$$

By Lemma 3.3 and linear property (1.1), we obtain

$$
(A f, f)=\left(m\left(V+V^{*}\right) f, f\right)=2 m \cdot \operatorname{Re}(V f, f)
$$

and then $W(A)=[0, m]$.
(ii) Denote $B:=m\left(V-V^{*}\right)$. It follows that

$$
(B f, f)=\left(m\left(V-V^{*}\right) f, f\right)=2 m i \cdot \operatorname{Im}(V f, f)
$$

and then Lemma 3.3 ensures

$$
W\left(m\left(V-V^{*}\right)\right)=\left[-\frac{2|m| i}{\pi}, \frac{2|m| i}{\pi}\right] .
$$

In the sequel, we make sure $m V+n V^{*}$ is accretive. Then (2.1) entails

$$
W\left(m V+n V^{*}\right) \subseteq\left\{z: 0 \leq \operatorname{Re} z \leq \frac{1}{2}(m+n)\right\}
$$

Further we calculate $W\left(m V+n V^{*}\right)$ with $m \neq \pm n$ in next theorem.
Theorem 3.6 Let $m, n \in \mathbb{R}$ such that $m+n \geq 0$ and $m \neq \pm n$. The numerical range of $m V+n V^{*}$ is the set lying between the curves

$$
\frac{m+n}{\mu_{\theta}{ }^{2}}\left(1-\cos \mu_{\theta}\right) \pm i \frac{n-m}{\mu_{\theta}{ }^{2}}\left(\mu_{\theta}-\sin \mu_{\theta}\right), \quad \theta \in[-\pi, \pi]
$$

where

$$
\mu_{\theta}=\left\{\begin{array}{l}
\arctan \tau_{\theta}, \quad 2 \theta \in\left(-2 \theta_{2},-\pi\right) \cup\left(-2 \theta_{1}, 0\right) \cup\left(0,2 \theta_{1}\right) \cup\left(\pi, 2 \theta_{2}\right), \tag{3.1}\\
\arctan \tau_{\theta}+\pi, \quad 2 \theta \in\left[-2 \pi-2 \theta_{2}\right) \cup\left[-\pi,-2 \theta_{1}\right) \cup\{0\} \cup\left(2 \theta_{1}, \pi\right] \cup\left(2 \theta_{2}, 2 \pi\right], \\
\frac{\pi}{2}, \quad 2 \theta= \pm 2 \theta_{i}, \quad i=1,2,
\end{array}\right.
$$

with $\left(m^{2}+n^{2}\right) \cos \left(2 \theta_{i}\right)+2 m n=0, \theta_{i} \in(0, \pi)$ and

$$
\begin{equation*}
\tau_{\theta}:=\frac{\left(n^{2}-m^{2}\right) \sin (2 \theta)}{\left(m^{2}+n^{2}\right) \cos (2 \theta)+2 m n}, \quad \theta \neq \theta_{i} \tag{3.2}
\end{equation*}
$$

for $i=1,2$.
Proof Denote $A:=m V+n V^{*}$ with $m+n \geq 0, m \neq \pm n$. We apply Theorem 3.1 to calculate the envelope of $W\left(m V+n V^{*}\right)$. Then we proceed from

$$
\begin{equation*}
B_{\theta} f=\lambda f \tag{3.3}
\end{equation*}
$$

to a differential equation by applying the operator $D=\frac{\mathrm{d}}{\mathrm{d} x}$. Thus

$$
\lambda f^{\prime}(x)=\frac{1}{2}\left(e^{-i \theta} f(x)-e^{i \theta} f(x)\right)=(n-m) i \sin (\theta) f(x)
$$

Therefore, $\lambda \neq 0$ and $f=e^{i \mu x}$ for all $x \in[0,1]$, where

$$
\mu:=\frac{(n-m) \sin \theta}{\lambda} .
$$

The actual eigenvalues λ are obtained by putting $f=e^{i \mu x}$ into (3.3). This yields

$$
e^{i \mu}=\frac{\left(m^{2}+n^{2}\right) \cos (2 \theta)+2 m n+i\left(n^{2}-m^{2}\right) \sin (2 \theta)}{m^{2}+n^{2}+2 m n \cos (2 \theta)}
$$

which implies

$$
\begin{equation*}
\cos \mu=\frac{\left(m^{2}+n^{2}\right) \cos (2 \theta)+2 m n}{m^{2}+n^{2}+2 m n \cos (2 \theta)} \text { and } \sin \mu=\frac{\left(n^{2}-m^{2}\right) \sin (2 \theta)}{m^{2}+n^{2}+2 m n \cos (2 \theta)} . \tag{3.4}
\end{equation*}
$$

To find $\lambda_{\theta}=\max \sigma\left(B_{\theta}\right)$, we will prove there is μ_{θ} satisfying (3.4) such that

$$
\lambda_{\theta}=\frac{(n-m) \sin \theta}{\mu_{\theta}}, \quad \theta \in[-\pi, \pi]
$$

For $\theta \neq \pm \theta_{i}(i=1,2)$, we get that $\tan \mu=\tau_{\theta}$. This means

$$
\begin{equation*}
\lambda=\frac{(n-m) \sin \theta}{\arctan \tau_{\theta}+k \pi}, \quad k \in \mathbb{Z} \tag{3.5}
\end{equation*}
$$

Here we deal with the case $n>m$. Because λ is odd with respect to θ, we only need to discuss $\theta \in[0, \pi]$. At this time,

$$
\tau_{\theta}^{\prime}=\frac{2\left(n^{2}-m^{2}\right)\left(m^{2}+n^{2}+2 m n \cos 2 \theta\right)}{\left(\left(m^{2}+n^{2}\right) \cos (2 \theta)+2 m n\right)^{2}} \geq 0
$$

We further suppose $n>0>m$ and deduce that $\cos 2 \theta=-2 m n /\left(m^{2}+n^{2}\right) \in(0,1)$ and $2 \theta_{1} \in(0, \pi / 2)$ and $2 \theta_{2} \in(3 \pi / 2,2 \pi)$.

For the case $2 \theta \in\left(0,2 \theta_{1}\right) \cup\left(\pi, 2 \theta_{2}\right)$, it follows $\tau_{\theta}>0$ and $\arctan \tau_{\theta}>0$, so let $k=0$ in (3.5) to get λ_{θ}. For $2 \theta \in\{0\} \cup\left(2 \theta_{1}, \pi\right] \cup\left(2 \theta_{2}, 2 \pi\right]$, it yields that $\tau_{\theta} \leq 0$ and $\arctan \tau_{\theta} \leq 0$, so let $k=1$ in (3.5) to obtain λ_{θ}. Moreover, it holds that

$$
\lim _{2 \theta \rightarrow 2 \theta_{i}^{+}} \mu_{\theta}=\lim _{2 \theta \rightarrow 2 \theta_{i}^{-}} \mu_{\theta}=\frac{\pi}{2},
$$

then we can supplement the definition at $2 \theta_{i}(i=1,2)$. To sum up, μ_{θ} is same as shown in Eq. (3.1) for $\theta \in[0, \pi]$. Since λ is odd with respect to θ, (3.1) holds for μ_{θ}. The other case $n>m>0$ can be similarly proved. Besides, we can consider μ_{θ} on $[-\pi, 0]$ for $n<m$. It is easy to check the same result (3.1) is true. Next, we calculate the boundary of $W(A)$. The envelope
curve is

$$
\begin{equation*}
x \cos \theta+y \sin \theta=\lambda_{\theta} \tag{3.6}
\end{equation*}
$$

for $\theta \in[-\pi, \pi]$. (3.6) implies that the boundary of numerical range is

$$
\left\{\begin{array}{l}
x \cos \theta+y \sin \theta=\lambda_{\theta} \\
-x \sin \theta+y \cos \theta=\lambda_{\theta}^{\prime}
\end{array}\right.
$$

This entails that

$$
\left\{\begin{array}{l}
x=\lambda_{\theta} \cos \theta-\lambda_{\theta}^{\prime} \sin \theta=\frac{m+n}{\mu_{\theta}^{2}}\left(1-\cos \mu_{\theta}\right) \\
y=\lambda_{\theta} \sin \theta+\lambda_{\theta}^{\prime} \cos \theta=\frac{n-m}{\mu_{\theta}{ }^{2}}\left(\mu_{\theta}-\sin \mu_{\theta}\right)
\end{array}\right.
$$

If $z=(A f, f) \in W(A)$, then $\bar{z}=(A \bar{f}, \bar{f}) \in W(A)$, so we have

$$
\left\{\begin{array}{l}
x=\frac{m+n}{\mu_{\theta}{ }^{2}}\left(1-\cos \mu_{\theta}\right) \\
y= \pm \frac{n-m}{\mu_{\theta}{ }^{2}}\left(\mu_{\theta}-\sin \mu_{\theta}\right)
\end{array}\right.
$$

This means the boundary of $W(A)$ is

$$
\frac{m+n}{\mu_{\theta}^{2}}\left(1-\cos \mu_{\theta}\right) \pm i \frac{n-m}{\mu_{\theta}{ }^{2}}\left(\mu_{\theta}-\sin \mu_{\theta}\right)
$$

When we choose $f_{\mu_{\theta}}(t)=e^{i t \mu_{\theta}}$, it reaches the boundary of $W(A)$ and satisfies

$$
\left\{\begin{array}{l}
x=\operatorname{Re}\left(A f_{\mu_{\theta}}, f_{\mu_{\theta}}\right)=\frac{m+n}{\mu_{\theta}{ }^{2}}\left(1-\cos \mu_{\theta}\right) \\
y=\operatorname{Im}\left(A f_{\mu_{\theta}}, f_{\mu_{\theta}}\right)=\frac{n-m}{\mu_{\theta}{ }^{2}}\left(\mu_{\theta}-\sin \mu_{\theta}\right)
\end{array}\right.
$$

The proof is completed.
Theorem 3.6 together with Proposition 3.5 imply a corollary for $W\left((u+i v) I+m V+n V^{*}\right)$ with $u, v, m, n \in \mathbb{R}$ and $m+n \geq 0$.

Corollary 3.7 Let $u, v, m, n \in \mathbb{R}$ such that $m+n \geq 0$.
(i) For $m \neq \pm n, W\left((u+i v) I+m V+n V^{*}\right)$ is the set lying between the curves

$$
u+\frac{m+n}{\mu_{\theta}^{2}}\left(1-\cos \mu_{\theta}\right)+i\left(v \pm \frac{n-m}{\mu_{\theta}^{2}}\left(\mu_{\theta}-\sin \mu_{\theta}\right)\right),
$$

where μ_{θ} is given in (3.1).
(ii) For $m=n(m \geq 0)$, $W\left((u+i v) I+m\left(V+V^{*}\right)\right)=[u+i v, u+m+i v]$.
(iii) For $m=-n, W\left((u+i v) I+m\left(V-V^{*}\right)\right)=\left[u+i\left(v-\frac{2|m|}{\pi}\right), u+i\left(v+\frac{2|m|}{\pi}\right)\right]$.

Proof of Corollary 3.7 (ii) Proposition 3.5 implies that $W\left(m\left(V+V^{*}\right)\right)=[0, m]$ with $m \geq 0$. From the property of Eq. (1.1), we can get that

$$
W\left((u+i v) I+m\left(V+V^{*}\right)\right)=[u+i v, u+m+i v] .
$$

At the end of this section, we present an interesting remark.
Remark 3.8 Proposition 3.2 can be deduced from Theorem 3.6 with $m=1, n=0$. In this case, $\tau_{\theta}=-\tan (2 \theta)$ and $\mu_{\theta}=-2 \theta \in[0,2 \pi]$.

Acknowledgements We thank the referees for their time and comments.

References

[1] K. E. GUSTAFSSON, D. K. M. RAO. The Numerical Range: the Field of Values of Linear Operators and Matrices. Uiversitext. Springer-Verlag New York, 1997.
[2] D. A. HERRERO. The Volterra operator is a compact universal quasinilpotent. Integral Equations Operator Theory, 1978, 4(1): 580-588.
[3] E. LITSYN. Elements of the theory of linear Volterra operators in Banach spaces. Integral Equations Operator Theory, 2007, 58(2): 239-253.
[4] S. P. EVESON. Asymptotic behaviour of iterates of Volterra operators on $L^{p}(0,1)$. Integral Equations Operator Theory, 2008, 53(3): 331-341.
[5] J. BONET. The spectrum of Volterra operators on Korenblum type spaces of analytic functions. Integral Equations Operator Theory, 2019, 91(5): Paper No. 46, 16 pp.
[6] P. R. HALMOS. A Hilbert Space Problem Book. Springer-Verlag, New York Inc., 1982.
[7] Y. LYUBICH, D. TSEDENBAYAR. The norms and singular numbers of polynomials of the classical Volterra operator in $L^{2}(0,1)$. Studia Math., 2010, 199(2): 171-184.
[8] W. F. DONOGHUE. The lattice of invariant subspaces of a completely continuous quasi-nilpotent transformation. Pacific J. Math., 1957, 7: 1031-1035.
[9] Yuxia LIANG, Rongwei YANG. Quasinilpotent operators and non-Euclidean metrics. J. Math. Anal. Appl., 2018, 468(2): 939-958.
[10] Yuxia LIANG, Rongwei YANG. Energy functional of the Volterra operator. Banach J. Math. Anal., 2019, 13(2): 255-274.
[11] Yuxia LIANG, Zehua ZHOU. Disjoint mixing composition operators on the Hardy space in the unit ball. C. R. Math. Acad. Sci. Paris, 2014, 352(4): 289-294.
[12] L. KHADKHUU, D. TSEDENBAYAR. On the numerical range and numerical radius of the Volterra operator. Izv. Irkutsk. Gos. Univ. Ser. Mat., 2018, 24: 102-108.
[13] D. TSEDENBAYAR. On the power boundedness of certain Volterra operator pencils. Studia Math., 2003, 156(1): 59-66.
[14] L. KHADKHUU, D. TSEDENBAYAR. A note about Volterra operator. Math. Slovaca, 2018, 68(5): 11171120.
[15] E. B. DAVIES. Linear Operators and Their Spectra. Cambridge University Press, Cambridge, 2007.

[^0]: Received April 21, 2022; Accepted June 27, 2022
 Supported by the Tianjin Normal University Research Innovation Project for Postgraduate Students (Grant No. 2022KYCX110Y).

 * Corresponding author

 E-mail address: wjxjinjia@163.com (Jinxian WANG); liangyx1986@126.com (Yuxia LIANG)

