On the A_{α}-Characteristic Polynomials and the A_{α}-Spectra of Two Classes of Hexagonal Systems

Mengyue YUAN, Fei WEN*, Ranran WANG
Institute of Applied Mathematics, Lanzhou Jiaotong University, Gansu 730070, P. R. China

Abstract

The A_{α}-matrix of a graph G is defined as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)(\alpha \in[0,1])$, given by Nikiforov in 2017, where $A(G)$ and $D(G)$ are, respectively, the adjacency matrix and the degree matrix of graph G. Let F_{n} and M_{n} be hexacyclic system graph and Möbius hexacyclic system graph, respectively. In this paper, according to the determinant and the eigenvalues of a circulant matrix, we firstly present A_{α}-characteristic polynomial and A_{α}-spectrum of F_{n} (resp., M_{n}). Furthermore, we obtain the upper bound of the A_{α}-energy of F_{n} (resp., M_{n}).

Keywords $\quad A_{\alpha}$-characteristic polynomial; A_{α}-spectrum; hexagonal system
MR(2020) Subject Classification 05C50

1. Introduction

All graphs considered here are simple finite undirected graph. Let $G=(V(G), E(G))$ be a connected graph with vertex set $V(G)$ and edge set $E(G) .|V(G)|$ and $|E(G)|$ are often called the order and the size of the graph G, respectively. Let $A(G)$ denote the adjacency matrix, and $D(G)$ denote the diagonal matrix of the degrees of G. For any real $\alpha \in[0,1]$, Nikiforov [1] defined the matrix $A_{\alpha}(G)$ as

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

It is clear that $A_{0}(G)=A(G), A_{1}(G)=D(G)$ and $2 A_{1 / 2}(G)=Q(G)$, where $Q(G)$ is the signless Laplacian matrix. Moreover, $L(G)=\frac{A_{\alpha}-A_{\beta}}{\alpha-\beta}$ if $\alpha \neq \beta$ for any $\alpha, \beta \in[0,1]$, where $L(G)$ is the Laplacian matrix. We denote by $\Phi\left(A_{\alpha}(G) ; \lambda\right)=\operatorname{det}\left(\lambda I_{n}-A_{\alpha}(G)\right)$ the A_{α}-characteristic polynomial of graph G, where I_{n} is the identity matrix. For convenience, we assume that the A_{α}-eigenvalues of G are $\lambda_{1}(G) \geq \lambda_{2}(G) \geq \cdots \lambda_{n}(G)$. Then the A_{α}-spectrum of G is a multiset of distinct eigenvalues together with their multiplicities. The largest A_{α}-eigenvalue of $A_{\alpha}(G)$ is called the A_{α}-spectral radius of G, denoted by $\rho\left(A_{\alpha}(G)\right)$. For more properties on $A_{\alpha}(G)$, we refer the reader to [2-7].

A hexagonal system (benzenoid hydrocarbon) is 2-connected plan graph such that each of its interior face is bonded by a regular hexagon of unit length 1 . Let F_{n} and M_{n} be respectively

[^0]hexacyclic system graph and Möbius hexacyclic system graph with n hexagons, shown in Figure 1. For undefined terminologies and notations here, we refer to [8].

It is well-known that Hexagonal systems are very important in theoretical chemistry because they are natural graph representations of benzenoid hydrocarbon. Up to now, the adjacency spectra of hexagonal systems L_{n} and F_{n} are investigated in [9,10]. The adjacency characteristic polynomial of H_{3}^{n} called prolate rectangle of benzenoid system in theoretical chemistry is determined by Lou et al. [11]. In addition, the normalized Laplacian polynomials and spectra of F_{n} and M_{n} were given by Shi et al. [12].

In this paper, we consider the A_{α}-characteristic polynomials and A_{α}-spectra of F_{n} and M_{n}. From a chemical point of view, it is of great interest to find the values of energy for a graph. Therefore, as an application, we obtain the upper bounds of the A_{α}-energy of F_{n} and M_{n}, respectively.

Figure 1 Graphs F_{n} and M_{n}

2. Preliminaries

In this section, we recall some basic lemmas which will be useful for the proof of main results.
Lemma 2.1 ([13]) Let C_{n} be the cycle on n vertices. Then the Q-polynomial of C_{n} is

$$
Q\left(C_{n} ; \lambda\right)=\prod_{j=1}^{n}\left(\lambda-2-2 \cos \frac{2 \pi j}{n}\right)
$$

Lemma 2.2 Let A and B be two $n \times n$ matrices. Then $\left|\begin{array}{ll}A & B \\ B & A\end{array}\right|=|A+B \| A-B|$.
Lemma 2.3 ([14]) Let $(0,1,0, \ldots, 0)$ and $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be the elements of the first row of circulant matrices W and S, respectively. Then

$$
S=\sum_{j=1}^{n} s_{j} \omega^{j-1}
$$

where the eigenvalues of W are $1, \omega, \omega^{2}, \ldots, \omega^{n-1}, \omega=e^{\frac{2 \pi i}{n}}$.
Lemma $2.4([14,15])$ Let S be an $n \times n$ circulant matrix. Then the eigenvalues of S are

$$
\lambda_{r}=\sum_{j=1}^{n} s_{j} w^{(j-1) r}=s_{1}+s_{2} \omega^{r}+\cdots+s_{n} \omega^{(n-1) r}, \quad r=0,1, \ldots, n-1,
$$

and $\operatorname{det}(S)=\prod_{r=0}^{n-1}\left(s_{1}+s_{2} \omega^{r}+\cdots+s_{n} \omega^{(n-1) r}\right)$.
Lemma $2.5([16])$ Let M, N, P and Q be matrices of order $p \times p, p \times q, q \times p$ and $q \times q$, respectively, and M and Q are non-singular square matrices. Then

$$
\left|\begin{array}{ll}
M & N \\
P & Q
\end{array}\right|=|M|\left|Q-P M^{-1} N\right|=|Q|\left|M-N Q^{-1} P\right|
$$

3. Main results

The main results of this section are that the A_{α}-spectra of F_{n} and M_{n} are, respectively, determined.

3.1 The A_{α}-spectrum of F_{n}

At first, we give a partition of the vertex set of F_{n}, denoted by $V\left(F_{n}\right)=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where $V_{i}=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n}\right\}(i=1,2,3,4)$, as shown in the Figure 2. Clearly, $\left|V\left(F_{n}\right)\right|=4 n$. Let $A\left(V_{i}, V_{j}\right)=\left(a_{k l}\right)$ denote the block matrix of $A\left(F_{n}\right)$ corresponding to the V_{i} block row and the V_{j} block column. If $v_{i k} \in V_{i}$ is adjacent with $v_{j l} \in V_{j}$, then $a_{k l}=1$, otherwise $a_{k l}=0$. Then we have

$$
R=A\left(V_{2}, V_{1}\right)=A\left(V_{3}, V_{4}\right)=\left(\begin{array}{cccccc}
1 & & & & & 1 \\
1 & 1 & & & & \\
& 1 & 1 & & & \\
& & \ddots & \ddots & & \\
& & & 1 & 1 & \\
& & & & 1 & 1
\end{array}\right)_{n \times n}
$$

Observe that the matrix R is the incidence matrix of C_{n} and $R R^{\mathrm{T}}=D\left(C_{n}\right)+A\left(C_{n}\right)=Q\left(C_{n}\right)$.

Figure 2 Labeling of graphs F_{n}

Based on the above, we obtain the following theorem.
Theorem 3.1 Let F_{n} be a hexagonal system with n hexagons. Then the A_{α}-characteristic polynomial of F_{n} is

$$
\begin{aligned}
\Phi\left(A_{\alpha}\left(F_{n}\right) ; \lambda\right)= & \prod_{j=1}^{n}\left((\lambda-2 \alpha)(\lambda-2 \alpha-1)-(1-\alpha)^{2}\left(2+2 \cos \frac{2 \pi j}{n}\right)\right) \times \\
& \prod_{j=1}^{n}\left((\lambda-2 \alpha)(\lambda-4 \alpha+1)-(1-\alpha)^{2}\left(2+2 \cos \frac{2 \pi j}{n}\right)\right)
\end{aligned}
$$

Proof In accordance with the vertex partition above, we can express the adjacency matrix and the degree matrix of F_{n} in the form of block matrix below:

$$
A\left(F_{n}\right)=\begin{gathered}
V_{1} \\
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{gathered}\left(\begin{array}{cccc}
\mathbf{0}_{n} & R^{\mathrm{T}} & \mathbf{0}_{n} & \mathbf{0}_{n} \\
R & \mathbf{0}_{n} & I_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & I_{n} & \mathbf{0}_{n} & R \\
\mathbf{0}_{n} & \mathbf{0}_{n} & R^{\mathrm{T}} & \mathbf{0}_{n}
\end{array}\right), \quad \begin{aligned}
& V_{1} \\
& V_{1} \\
& V_{2} \\
& V_{3} \\
& V_{4}
\end{aligned}\left(\begin{array}{cccc}
2 I_{n} & & & V_{2} \\
& 3 I_{n} & & \\
& & 3 I_{n} & \\
& & & 2 I_{n}
\end{array}\right) .
$$

It then follows from the definition of A_{α}-matrix that

$$
A_{\alpha}\left(F_{n}\right)=\alpha D\left(F_{n}\right)+(1-\alpha) A\left(F_{n}\right)=\begin{gathered}
\\
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{gathered}\left(\begin{array}{cccc}
V_{1} & V_{2} & V_{3} & V_{4} \\
2 \alpha I_{n} & (1-\alpha) R^{\mathrm{T}} & \mathbf{0}_{n} & \mathbf{0}_{n} \\
(1-\alpha) R & 3 \alpha I_{n} & (1-\alpha) I_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & (1-\alpha) I_{n} & 3 \alpha I_{n} & (1-\alpha) R \\
\mathbf{0}_{n} & \mathbf{0}_{n} & (1-\alpha) R^{\mathrm{T}} & 2 \alpha I_{n}
\end{array}\right) .
$$

Thus, $\Phi\left(A_{\alpha}\left(F_{n}\right) ; \lambda\right)$ can be represented in the form of determinant as follows:

$$
\Phi\left(A_{\alpha}\left(F_{n}\right) ; \lambda\right)=\left|\lambda I_{4 n}-A_{\alpha}\left(F_{n}\right)\right|=\operatorname{det} B_{0}
$$

where

$$
B_{0}=\lambda I_{4 n}-A_{\alpha}\left(F_{n}\right)=\left(\begin{array}{cccc}
(\lambda-2 \alpha) I_{n} & -(1-\alpha) R^{\mathrm{T}} & \mathbf{0}_{n} & \mathbf{0}_{n} \\
-(1-\alpha) R & (\lambda-3 \alpha) I_{n} & -(1-\alpha) I_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & -(1-\alpha) I_{n} & (\lambda-3 \alpha) I_{n} & -(1-\alpha) R \\
\mathbf{0}_{n} & \mathbf{0}_{n} & -(1-\alpha) R^{\mathrm{T}} & (\lambda-2 \alpha) I_{n}
\end{array}\right)
$$

By multiplying the first block row by $\frac{1-\alpha}{\lambda-2 \alpha} R$ and then adding it to the second block row, and multiplying the fourth row by $\frac{1-\alpha}{\lambda-2 \alpha} R$ and then adding it to the third block row, we get the matrix B_{1} shown as follows:

$$
B_{1}=\left(\begin{array}{cccc}
(\lambda-2 \alpha) I_{n} & -(1-\alpha) R^{\mathrm{T}} & \mathbf{0}_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & (\lambda-3 \alpha) I_{n}-\frac{(1-\alpha)^{2} R R^{\mathrm{T}}}{\lambda-2 \alpha} & -(1-\alpha) I_{n} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & -(1-\alpha) I_{n} & (\lambda-3 \alpha) I_{n}-\frac{(1-\alpha)^{2} R R^{\mathrm{T}}}{\lambda-2 \alpha} & \mathbf{0}_{n} \\
\mathbf{0}_{n} & \mathbf{0}_{n} & -(1-\alpha) R^{\mathrm{T}} & (\lambda-2 \alpha) I_{n}
\end{array}\right)
$$

After that, applying the Laplace's Extension Theorem in the first and fourth block columns of
B_{1}, we get

$$
\operatorname{det} B_{1}=(\lambda-2 \alpha)^{2 n} \cdot \operatorname{det} B_{2},
$$

where

$$
\operatorname{det} B_{2}=\left|\begin{array}{cc}
(\lambda-3 \alpha) I_{n}-\frac{(1-\alpha)^{2} R R^{\mathrm{T}}}{\lambda-2 \alpha} & -(1-\alpha) I_{n} \\
-(1-\alpha) I_{n} & (\lambda-3 \alpha) I_{n}-\frac{(1-\alpha)^{2} R R^{\mathrm{T}}}{\lambda-2 \alpha}
\end{array}\right| .
$$

Note that $R R^{\mathrm{T}}=Q\left(C_{n}\right)$. It follows from Lemmas 2.1 and 2.2 that

$$
\begin{aligned}
\operatorname{det} B_{1}= & (\lambda-2 \alpha)^{2 n} \left\lvert\,(\lambda-3 \alpha) I_{n}-\frac{(1-\alpha)^{2} Q\left(C_{n}\right)}{\lambda-2 \alpha}-(1-\alpha) I_{n}\right. \|(\lambda-3 \alpha) I_{n}- \\
& \left.\frac{(1-\alpha)^{2} Q\left(C_{n}\right)}{\lambda-2 \alpha}+(1-\alpha) I_{n} \right\rvert\, \\
= & (\lambda-2 \alpha)^{2 n}\left|(\lambda-2 \alpha-1) I_{n}-\frac{(1-\alpha)^{2} Q\left(C_{n}\right)}{\lambda-2 \alpha}\right|\left|(\lambda-4 \alpha+1) I_{n}-\frac{(1-\alpha)^{2} Q\left(C_{n}\right)}{\lambda-2 \alpha}\right| \\
= & \left|(\lambda-2 \alpha)(\lambda-2 \alpha-1) I_{n}-(1-\alpha)^{2} Q\left(C_{n}\right)\right|\left|(\lambda-2 \alpha)(\lambda-4 \alpha+1) I_{n}-(1-\alpha)^{2} Q\left(C_{n}\right)\right|
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\Phi\left(A_{\alpha}\left(F_{n}\right) ; \lambda\right)= & \operatorname{det} B_{0}=\operatorname{det} B_{1} \\
= & \prod_{j=1}^{n}\left((\lambda-2 \alpha)(\lambda-2 \alpha-1)-(1-\alpha)^{2}\left(2+2 \cos \frac{2 \pi j}{n}\right)\right) \times \\
& \prod_{j=1}^{n}\left((\lambda-2 \alpha)(\lambda-4 \alpha+1)-(1-\alpha)^{2}\left(2+2 \cos \frac{2 \pi j}{n}\right)\right) .
\end{aligned}
$$

Through Theorem 3.1, we get the following corollary.
Corollary 3.2 Let F_{n} be a hexagonal system with n hexagons. Then the A_{α}-eigenvalues of graph F_{n} are

$$
\begin{cases}\lambda_{1,2}^{j}=\frac{(4 \alpha+1) \pm \sqrt{8\left(1+\cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+1}}{2}, & j=1,2, \ldots, n \\ \lambda_{3,4}^{j}=\frac{(6 \alpha-1) \pm 2 \sqrt{\left(2+2 \cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}}{2}, & j=1,2, \ldots, n\end{cases}
$$

3.2 The A_{α}-spectrum of M_{n}

We give a vertex partition $V\left(M_{n}\right)=V \cup U$ of M_{n}, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ (shown in Figure 3). According to the label of $V\left(M_{n}\right)$, the adjacency matrix of M_{n} can be expressed in the form of block matrix:

$$
A\left(M_{n}\right)=\begin{gathered}
V \\
V \\
U
\end{gathered}\left(\begin{array}{cc}
U & R \\
R^{\mathrm{T}} & \mathbf{0}
\end{array}\right)
$$

where $Y=A(V, V)=\left(\begin{array}{cc}\mathbf{0}_{n} & I_{n} \\ I_{n} & \mathbf{0}_{n}\end{array}\right)$ and $R=A(V, U)=\left(\begin{array}{cccccc}1 & & & & & 1 \\ 1 & 1 & & & & \\ & 1 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 1 & 1 & \\ & & & & 1 & 1\end{array}\right)_{2 n \times 2 n}$.
Note that $D\left(M_{n}\right)=\left(\begin{array}{ll}3 I_{2 n} & \\ & 2 I_{2 n}\end{array}\right)$. So, we get the following theorem.

Figure 3 Labeling of graphs M_{n}

Theorem 3.3 Let M_{n} be the Möbius hexacyclic system graph with n hexagons. Then the A_{α}-characteristic polynomial of M_{n} is

$$
\Phi\left(A_{\alpha}\left(M_{n}\right) ; \lambda\right)=\prod_{r=0}^{n-1}\left(\left(\lambda^{2}-5 \alpha \lambda+4 \alpha^{2}+4 \alpha-2\right)-2(1-\alpha)^{2} \cos \frac{\pi r}{n}-(-1)^{r}(\lambda-2 \alpha)(1-\alpha)\right)
$$

Proof Combining the above with the definition of A_{α}-matrix yields

$$
A_{\alpha}\left(M_{n}\right)=\alpha D\left(M_{n}\right)+(1-\alpha) A\left(M_{n}\right)=\left(\begin{array}{cc}
3 \alpha I_{2 n}+(1-\alpha) Y & (1-\alpha) R \\
(1-\alpha) R^{\mathrm{T}} & 2 \alpha I_{2 n}
\end{array}\right)
$$

The A_{α}-characteristic polynomial of M_{n} can be expressed as:

$$
\Phi\left(A_{\alpha}\left(M_{n}\right) ; \lambda\right)=\left|\lambda I_{4 n}-A_{\alpha}\left(M_{n}\right)\right|=\left|\begin{array}{cc}
(\lambda-3 \alpha) I_{2 n}-(1-\alpha) Y & -(1-\alpha) R \\
-(1-\alpha) R^{\mathrm{T}} & (\lambda-2 \alpha) I_{2 n}
\end{array}\right| .
$$

According to Lemma 2.5, one can get

$$
\begin{aligned}
\Phi\left(A_{\alpha}\left(M_{n}\right) ; \lambda\right) & =(\lambda-2 \alpha)^{2 n} \operatorname{det}\left((\lambda-3 \alpha) I_{2 n}-(1-\alpha) Y-\frac{(1-\alpha)^{2}}{\lambda-2 \alpha} R R^{\mathrm{T}}\right) \\
& =\operatorname{det}\left((\lambda-2 \alpha)(\lambda-3 \alpha) I_{2 n}-(\lambda-2 \alpha)(1-\alpha) Y-(1-\alpha)^{2} R R^{\mathrm{T}}\right) \\
& =\operatorname{det}\left(B_{0}\right)
\end{aligned}
$$

By direct calculation, we have

$$
R R^{\mathrm{T}}=\left(\begin{array}{ccccccc}
2 & 1 & & & & & 1 \\
1 & 2 & 1 & & & & \\
& 1 & 2 & 1 & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & 1 & 2 & 1 & \\
& & & & 1 & 2 & 1 \\
1 & & & & & 1 & 2
\end{array}\right)
$$

Therefore,

$$
\begin{aligned}
& B_{0}=(\lambda-2 \alpha)(\lambda-3 \alpha) I_{2 n}-(\lambda-2 \alpha)(1-\alpha) Y-(1-\alpha)^{2} R R^{\mathrm{T}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cccccc}
2(1-\alpha)^{2} & (1-\alpha)^{2} & & & & (1-\alpha)^{2} \\
(1-\alpha)^{2} & 2(1-\alpha)^{2} & (1-\alpha)^{2} & & & \\
& (1-\alpha)^{2} & 2(1-\alpha)^{2} & (1-\alpha)^{2} & & \\
& & \ddots & \ddots & \ddots & \\
(1-\alpha)^{2} & & & (1-\alpha)^{2} & 2(1-\alpha)^{2} & (1-\alpha)^{2} \\
& & & & (1-\alpha)^{2} & 2(1-\alpha)^{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
B_{01} & B_{02} \\
B_{02} & B_{01}
\end{array}\right),
\end{aligned}
$$

where

$$
B_{01}=\left(\begin{array}{cccc}
\lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2} & -(1-\alpha)^{2} & & \\
-(1-\alpha)^{2} & \lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2} & -(1-\alpha)^{2} \\
& & \ddots & \\
& -(1-\alpha)^{2} & \lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2}
\end{array}\right)_{n \times n}
$$

and

$$
B_{02}=\left(\begin{array}{cccc}
-(\lambda-2 \alpha)(1-\alpha) & & -(1-\alpha)^{2} \\
& -(\lambda-2 \alpha)(1-\alpha) & & \\
& & \ddots & \\
-(1-\alpha)^{2} & & & -(\lambda-2 \alpha)(1-\alpha)
\end{array}\right)_{n \times n}
$$

It can be seen from above that the matrix is a circulant matrix, and the elements in the first row
are

$$
\left[\lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2},-(1-\alpha)^{2}, 0, \ldots, 0,-(\lambda-2 \alpha)(1-\alpha), 0, \ldots, 0,-(1-\alpha)^{2}\right]
$$

i.e.,

$$
\begin{gathered}
s_{1}=\lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2}, s_{2}=-(1-\alpha)^{2} \\
s_{n+1}=-(\lambda-2 \alpha)(1-\alpha), s_{2 n}=-(1-\alpha)^{2}
\end{gathered}
$$

and $s_{i}=0$ otherwise. By Lemma 2.3, we can obtain

$$
\begin{aligned}
B_{0} & =s_{1} W^{0}+s_{2} W^{1}+s_{n+1} W^{n}+s_{2 n} W^{2 n-1} \\
& =\lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2} W^{0}-(1-\alpha)^{2} W^{1}-(\lambda-2 \alpha)(1-\alpha) W^{n}-(1-\alpha)^{2} W^{2 n-1}
\end{aligned}
$$

And then, it follows from Lemma 2.4 that
$\operatorname{det} B_{0}=\prod_{r=0}^{n-1}\left(\lambda^{2}-5 \alpha \lambda+6 \alpha^{2}-2(1-\alpha)^{2}-(1-\alpha)^{2} \omega^{r}-(\lambda-2 \alpha)(1-\alpha) \omega^{n r}-(1-\alpha)^{2} \omega^{(2 n-1) r}\right)$,
where $\omega^{r}=e^{\frac{\pi r}{n} i}, i^{2}=-1$. By simple computation, we have

$$
\omega^{r}=\cos \frac{\pi r}{n}+i \sin \frac{\pi r}{n}, \omega^{n r}=\cos \pi r+i \sin \pi r=(-1)^{r}, \omega^{(2 n-1) r}=\cos \frac{\pi r}{n}-i \sin \frac{\pi r}{n} .
$$

Thus, one can obtain

$$
\begin{aligned}
\Phi\left(A_{\alpha}\left(M_{n}\right) ; \lambda\right)= & \operatorname{det} B_{0}=\prod_{r=0}^{n-1}\left(\left(\lambda^{2}-5 \alpha \lambda+4 \alpha^{2}+4 \alpha-2\right)-(1-\alpha)^{2}\left(\cos \frac{\pi r}{n}+i \sin \frac{\pi r}{n}\right)-\right. \\
& \left.(\lambda-2 \alpha)(1-\alpha)(-1)^{r}-(1-\alpha)^{2}\left(\cos \frac{\pi r}{n}-i \sin \frac{\pi r}{n}\right)\right) \\
= & \prod_{r=0}^{n-1}\left(\left(\lambda^{2}-5 \alpha \lambda+4 \alpha^{2}+4 \alpha-2\right)-2(1-\alpha)^{2} \cos \frac{\pi r}{n}-(-1)^{r}(\lambda-2 \alpha)(1-\alpha)\right),
\end{aligned}
$$

as required.
Corollary 3.4 Let M_{n} be the Möbius hexacyclic system graph with n hexagons. Then the A_{α}-eigenvalues of graph M_{n} are

$$
\left\{\begin{array}{l}
\lambda_{1,2}^{r}=\frac{(4 \alpha+1) \pm \sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{\pi r}{n}}}{2}, \text { when } r=2 k, k=1,2, \ldots, n \\
\lambda_{3,4}^{r}=\frac{(6 \alpha-1) \pm \sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{\pi r}{n}}}{2}, \text { when } r=2 k-1, k=1,2, \ldots, n .
\end{array}\right.
$$

i.e.,

$$
\begin{cases}\lambda_{1,2}^{k}=\frac{(4 \alpha+1) \pm \sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{2 k \pi}{n}},}{2}, & k=1,2, \ldots, n \\ \lambda_{3,4}^{k}=\frac{(6 \alpha-1) \pm \sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{(2 k-1) \pi}{n}}}{2}, & k=1,2, \ldots, n\end{cases}
$$

Remark 3.5 It is noteworthy that $A_{\alpha}(G)$ is the convex combinations of $A(G)$ and $D(G)$, and it can underpin a unified theory of $A(G)$ and $Q(G)$. For the above conclusions, if α takes different values, one can get the A-spectrum, L-spectrum and Q-spectrum of graph F_{n} (resp., M_{n}).

4. Applications

The energy of the graph comes from theoretical chemistry. In [17], the graph energy of a simple graph G is defined by Gutman as the sum of the absolute values of the eigenvalues of the adjacency matrix $A(G)$, namely as $\mathbf{E}(\mathbf{G})=\sum_{j=1}^{n}\left|\mu_{j}\right|$, where $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the eigenvalues of $A(G)$. Somewhere around the year 2006, the number of papers on graph energy began to increase significantly. In view of the above, a natural step in this direction was to investigate some graph energy variants, i.e., apply eigenvalues of various other graph matrix, generally having the similar definitions as the original energy definition. For example, the Laplacian energy [18], the distance energy [19], the signless Laplacian energy [20], the Seidel energy [21] as well as the Hermitian energy [22], etc.

Similarly, we now define the A_{α}-energy of G as $\mathbb{E}_{\alpha}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$, that is, the sum of the absolute values of all eigenvalues of $A_{\alpha}(G)$. As an application, we study the A_{α}-energy of F_{n} and M_{n}, and obtain the upper bounds of the A_{α}-energy of F_{n} and M_{n}, respectively.

Theorem 4.1 Let F_{n} be a hexagonal system with n hexagons, and $\mathbb{E}_{\alpha}\left(F_{n}\right)$ be the A_{α}-energy of F_{n}. Then

$$
\begin{aligned}
\mathbb{E}_{\alpha}\left(F_{n}\right) \leq & \frac{n}{2}\left(8 \alpha+1+\left(\sqrt{16(\alpha-1)^{2}+1}\right)+\left|(6 \alpha-1)+2 \sqrt{4(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}\right|+\right. \\
& \left.\left|6 \alpha-1-2 \sqrt{\alpha^{2}-\alpha+1}\right|\right)
\end{aligned}
$$

Proof According to the definition of A_{α}-energy and Corollary 3.2, we have

$$
\begin{aligned}
\mathbb{E}_{\alpha}\left(F_{n}\right)= & \sum_{j=1}^{n}\left|\frac{(4 \alpha+1)+\sqrt{8\left(1+\cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+1}}{2}\right|+ \\
& \sum_{j=1}^{n}\left|\frac{(4 \alpha+1)-\sqrt{8\left(1+\cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+1}}{2}\right|+ \\
& \sum_{j=1}^{n}\left|\frac{(6 \alpha-1)+2 \sqrt{\left(2+2 \cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}}{2}\right|+ \\
& \sum_{j=1}^{n}\left|\frac{(6 \alpha-1)-2 \sqrt{\left(2+2 \cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}}{2}\right| \\
\leq & \sum_{j=1}^{n}\left(\frac{(4 \alpha+1)+\sqrt{8\left(1+\cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+1}}{2}\right)+\sum_{j=1}^{n}\left(\frac{(4 \alpha+1)-1}{2}\right)+ \\
& \sum_{j=1}^{n}\left|\frac{(6 \alpha-1)+2 \sqrt{\left(2+2 \cos \frac{2 \pi j}{n}\right)(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}}{2}\right|+ \\
& \sum_{j=1}^{n}\left|\frac{(6 \alpha-1)-2 \sqrt{\alpha^{2}-\alpha+1}}{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left.\frac{n}{2}(4 \alpha+1)+\frac{n}{2}\left(\sqrt{16(\alpha-1)^{2}+1}\right)+2 \alpha n+\frac{n}{2} \right\rvert\,(6 \alpha-1)+ \\
& \left.2 \sqrt{4(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}\left|+\frac{n}{2}\right| 6 \alpha-1-2 \sqrt{\alpha^{2}-\alpha+1} \right\rvert\, \\
= & \frac{n}{2}\left(8 \alpha+1+\left(\sqrt{16(\alpha-1)^{2}+1}\right)+\mid(6 \alpha-1)+\right. \\
& 2 \sqrt{4(\alpha-1)^{2}+\left(\alpha^{2}-\alpha+1\right)}\left|+\left|6 \alpha-1-2 \sqrt{\alpha^{2}-\alpha+1}\right|\right)
\end{aligned}
$$

Thus, the result follows.
Theorem 4.2 Let M_{n} be the Möbius hexacyclic system graph with n hexagons, and $\mathbb{E}_{\alpha}\left(M_{n}\right)$ be the A_{α}-energy of M_{n}. Then

$$
\begin{aligned}
\mathbb{E}_{\alpha}\left(M_{n}\right) \leq & \frac{n}{2}\left(14 \alpha+1+\sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2}}+\right. \\
& \left.\left|(6 \alpha-1)+\sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2}}\right|\right) .
\end{aligned}
$$

Proof According to the definition of A_{α}-energy and Corollary 3.4, we can obtain

$$
\begin{aligned}
\mathbb{E}_{\alpha}\left(M_{n}\right)= & \sum_{k=1}^{n}\left|\frac{(4 \alpha+1)+\sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{2 k \pi}{n}}}{2}\right|+ \\
& \sum_{k=1}^{n}\left|\frac{(4 \alpha+1)-\sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{2 k \pi}{n}}}{2}\right|+ \\
& \sum_{k=1}^{n}\left|\frac{(6 \alpha-1)+\sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{(2 k-1) \pi}{n}}}{2}\right|+ \\
& \sum_{k=1}^{n}\left|\frac{(6 \alpha-1)-\sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2} \cos \frac{(2 k-1) \pi}{n}}}{2}\right| \\
\leq & \frac{n}{2}\left|(4 \alpha+1)+\sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2}}\right|+\frac{n}{2}(4 \alpha+1)+ \\
& \frac{n}{2}\left|(6 \alpha-1)+\sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2}}\right|+\frac{n}{2}(6 \alpha-1) \\
= & \frac{n}{2}\left(14 \alpha+1+\sqrt{(4 \alpha+1)^{2}-4\left(\alpha^{2}+6 \alpha-2\right)+8(1-\alpha)^{2}}+\right. \\
& \left.\left|(6 \alpha-1)+\sqrt{(6 \alpha-1)^{2}-4\left(6 \alpha^{2}-2 \alpha-2\right)+8(1-\alpha)^{2}}\right|\right) .
\end{aligned}
$$

Hence, we complete the proof.
Acknowledgements We sincerely thank the referees for their time and comments.

References

[1] V. NIKIFOROV. Merging the A - and Q-spectral theories. Appl. Anal. Discrete Math., 2017, 11: 81-107.
[2] V. NIKIFOROV, G. PASTÉN, O. ROJO, et al. On the A_{α}-spectra of trees. Linear Algebra Appl., 2017, 520: 286-305.
[3] Huiqing LIN, Jie XUE, Jinlong SHU. On the A_{α}-spectra of graphs. Linear Algebra Appl., 2018, 556: 210219.
[4] V. NIKIFOROV, O. ROJO. A note on the positive semidefiniteness of $A_{\alpha}(G)$. Linear Algebra Appl., 2017, 519: 156-163.
[5] V. NIKIFOROV, O. ROJO. On the α-index of graphs with pendent paths. Linear Algebra Appl., 2018, 550: 87-104.
[6] Huiqiu LIN, Xiaogang LIU, Jie XUE. Graphs determined by their A_{α}-spectra. Discrete Math., 2019, 342(2): 441-450.
[7] Xiaogang LIU, Shunyi LIU. On the A_{α}-characteristic polynomial of a graph. Linear Algebra Appl., 2018, 546: 274-288.
[8] D. CVETKOVIĆ, P. ROWLINSON, S. K. SIMIĆ. An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge, 2010.
[9] G. DERFLINGER, H. SOFER. Die HMO-Koeffizienten der linearen Polyacene in geschlossener form. Monatshefte Für Chemie, 1968, 99(5): 1866-1875.
[10] I. GUTMAN. Spectral properties of some graphs derived from bipartite graph. MATCH Commun. Math. Comput. Chem., 1980, 8: 291-314.
[11] Zhenzhen LOU, Qiongxiang HUANG, Daijun YIN. On the characteristic polynomial and the spectrum of a Hexagonal system. MATCH Commun. Math. Comput. Chem., 2014, 72(1): 153-164.
[12] Yinfang SHI, You ZHANG, Fei WEN. Normalized Laplacian spectrum of two classes of Hexagonal systems and the applications. J. Jilin University (Science Edition), 2019, 57(4): 824-832.
[13] D. CVETKOVIĆ. Towards a Spectral Theory of Graphs Based on the Signless Laplacian. III. Appl. Anal. Discrete Math., 2010, 4(1): 156-166.
[14] N. BIGGS. Algebraic Graph Theory. II. Cambridge University Press, Cambridge, 1993.
[15] P. J. DAVIS. Circulant Matrices. John Wiley \& Sons, New York, 1979.
[16] Fuzhen ZHANG. The Schur Complement and Its Application. Springer-Verlag, New York, 2005.
[17] I. GUTMAN. The energy of a graph. Ber Math-Statist Sekt Forsch Graz, 1978, 103: 2177-2187.
[18] I. GUTMAN, Bo ZHOU. Laplacian energy of a graph. Linear Algebra Appl., 2006, 414(1): 29-37.
[19] G. INDULAL, I. GUTMAN, A. VIJAYAKUMAR. On distance energy of graphs. MATCH Commun. Math. Comput. Chem., 2008, 60(2): 461-472.
[20] N. ABREU, D. M. CARDOSO, I. GUTMAN, et al. Bounds for the signless Laplacian energy. Linear Algebra Appl., 2011, 435(10): 2365-2374.
[21] W. H. HAEMERS. Seidel switching and graph energy. MATCH Commun. Math. Comput. Chem., 2012, 68(3): 653-659.
[22] Jianxi LIU, Xueliang LI. Hermitian-adjacency matrices and Hermitian energies of mixed graphs. Linear Algebra Appl., 2015, 466: 182-207.

[^0]: Received April 28, 2022; Accepted August 22, 2022
 Supported by the National Natural Science Foundation of China (Grant No. 11961041), the Natural Science Foundation of Gansu Province (Grant No. 21JR11RA065) and the Excellent Postgraduates of Gansu Provincial Department of Education "Star of Innovation" Foundation (Grant No. 2021CXZX-594).

 * Corresponding author

 E-mail address: wenfei@lzjtu.edu.cn (Fei WEN)

