The Spectral Properties of p-Sombor (Laplacian) Matrix of Graphs

Hechao LIU*, Lihua YOU
School of Mathematical Sciences, South China Normal University, Guangdong 510631, P. R. China

Abstract

The Sombor index, which was recently introduced into chemical graph theory, can predict physico-chemical properties of molecules. In this paper, we investigate the properties of $\left(p\right.$-)Sombor index from an algebraic viewpoint. The p-Sombor matrix $\mathcal{S}_{p}(G)$ is the square matrix of order n whose (i, j)-entry is equal to $\left(\left(d_{i}\right)^{p}+\left(d_{j}\right)^{p}\right)^{\frac{1}{p}}$ if $v_{i} \sim v_{j}$, and 0 otherwise, where d_{i} denotes the degree of vertex v_{i} in G. The matrix generalizes the famous Zagreb matrix $(p=1)$, Sombor matrix $(p=2)$ and inverse sum index matrix $(p=-1)$. In this paper, we find a pair of p-Sombor noncospectral equienergetic graphs and determine some bounds for the p-Sombor (Laplacian) spectral radius. Then we describe the properties of connected graphs with k distinct p-Sombor Laplacian eigenvalues. At last, we determine the Sombor spectrum of some special graphs. As a by-product, we determine the spectral properties of Sombor matrix ($p=2$), Zagreb matrix ($p=1$) and inverse sum index matrix ($p=-1$).

Keywords p-Sombor matrix; p-Sombor Laplacian matrix; p-Sombor spectrum
MR(2020) Subject Classification 05C09; 05C50

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The degree $d\left(v_{i}\right)$ (or d_{i}) of vertex v_{i} denotes number of edges connecting with vertex v_{i}. We use $e=v_{i} v_{j}$ to denote edge connecting vertex v_{i} and vertex v_{j}. Let $K_{n}, S_{n}, K_{n_{1}, n_{2}}, S_{n_{1}, n_{2}}$ denote complete graph, star graph, complete bipartite graph, and double star graph, respectively. $G \backslash\{e\}$ denotes deleting the edge e in graph G. We refer to [1] for all notations and terminologies utilized but not defined in this article.

As we know, the adjacent matrix $A(G)=\left[a_{i j}\right]_{n \times n}$ is defined as

$$
a_{i j}= \begin{cases}1, & v_{i} v_{j} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the adjacent eigenvalues of the graph G.

[^0]The (adjacent) energy of a simple graph is introduced by Ivan Gutman [2]

$$
\mathcal{E}(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The Laplacian matrix is defined as follows: $L(G)=D(G)-A(G)$, where $D(G)$ is the degree of diagonal matrix. Let $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ be the Laplacian eigenvalues of the graph G.

Recently, Gutman proposed the novel index, Sombor index [3], which is defined as

$$
\mathrm{SO}(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{d_{i}^{2}+d_{j}^{2}}
$$

The Sombor index can help to exert modest discriminative potential and predict physico-chemical properties of molecules [4]. We can also see [5-8] for more details about Sombor index.

Soon after, Réti, Došlić and Ali introduced the p-Sombor index [9], which is defined as

$$
\mathrm{SO}_{p}(G)=\sum_{v_{i} v_{j} \in E(G)}\left(\left(d_{i}\right)^{p}+\left(d_{j}\right)^{p}\right)^{\frac{1}{p}}
$$

The p-Sombor matrix [10] is defined as $\mathcal{S}_{p}=\mathcal{S}_{p}(G)=\left[s_{i j}^{p}\right]_{n \times n}(p \neq 0)$, where

$$
s_{i j}^{p}= \begin{cases}\left(\left(d_{i}\right)^{p}+\left(d_{j}\right)^{p}\right)^{\frac{1}{p}}, & v_{i} v_{j} \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Let $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n}$ be the eigenvalues of \mathcal{S}_{p}. The p-Sombor matrix generalizes the famous Zagreb matrix $(p=1)$, Sombor matrix $(p=2)$ and inverse sum index matrix $(p=-1)$. The spectral properties of these matrices can be found in [11-14].

The p-Sombor energy [10] is defined as

$$
S_{p} E(G)=\sum_{i=1}^{n}\left|\theta_{i}\right| .
$$

The p-Sombor Laplacian matrix [10] is defined as

$$
\mathcal{L}_{p}(G)=\mathcal{D}_{p}(G)-\mathcal{S}_{p}(G),
$$

where

$$
\mathcal{D}_{p}(G)=\operatorname{Diag}\left(\sum_{j=1}^{n} s_{1 j}^{p}, \sum_{j=1}^{n} s_{2 j}^{p}, \ldots, \sum_{j=1}^{n} s_{n j}^{p}\right) .
$$

Let $\eta_{1} \geq \eta_{2} \geq \cdots \geq \eta_{n}$ be the eigenvalues of $\mathcal{L}_{p}(G)$. By giving a direction of every edge of G, we can obtain the directed graph \mathcal{D}. Let $S_{R}(G)=\left[s_{i e}\right]_{n \times m}$ be the association matrix of directed graph \mathcal{D}, where

$$
s_{i e}= \begin{cases}\left(\left(d_{i}\right)^{p}+\left(d_{j}\right)^{p}\right)^{\frac{1}{2 p}}, & e=\overrightarrow{v_{j} v_{i}} ; \\ -\left(\left(d_{i}\right)^{p}+\left(d_{j}\right)^{p}\right)^{\frac{1}{2 p}}, & e=\overrightarrow{v_{i} v_{j}} ; \\ 0, & \text { otherwise }\end{cases}
$$

Thus, we always have $\mathcal{L}_{p}(G)=S_{R}(G)\left[S_{R}(G)\right]^{\mathrm{T}}$.
Much work about the weighted adjacency matrix [15] had been considered, such as ABC matrix [16], sum-connectivity Laplacian matrix [17], extended adjacency matrix [18], p-Sombor
matrix [10]. Motivated by above results, it is also interesting to obtain more spectral properties of p-Sombor (Laplacian) matrix.

2. Bounds of p-Sombor spectral radius

In [10], Liu et al. obtained the upper bounds of p-Sombor spectral radius ($p \geq 1$) among trees with n vertices. It should be noted that in [10, Theorem 4.7], they missed the condition $p \geq 1$.

Theorem 2.1 ([10]) Let $G \in T_{n}$ and $\theta_{1}(G)$ be the p-Sombor spectral radius of G. If $p \geq 1$, then $\theta_{1}(G) \leq \theta_{1}\left(K_{1, n-1}\right)$ with equality iff $G \cong K_{1, n-1}$.

Let $C=\left(c_{i j}\right), D=\left(d_{i j}\right)$ be real matrix. If $c_{i j} \leq d_{i j}$ for $1 \leq i, j \leq n$, we denote $C \preceq D$. In the following, we consider more bounds of p-Sombor spectral radius $\theta_{1}(G)$ with given parameters.

Theorem 2.2 Let $G \in U_{n}$ with maximum degree Δ. Then $\theta_{1}(G) \leq 2^{\frac{1}{p}+1}(n-1) \sqrt{\Delta-1}$ with equality iff $G \cong C_{3}$.

Proof By the properties of p-Sombor matrix, $\mathcal{S}_{p} \preceq 2^{\frac{1}{p}}(n-1) A$, thus $\theta_{1} \leq 2^{\frac{1}{p}}(n-1) \lambda_{1}$. Since $G \in$ U_{n}, then $\lambda_{1}(G) \leq 2 \sqrt{\Delta-1}$, with equality iff $G \cong C_{n}$ (see [19]). Thus $\theta_{1} \leq 2^{\frac{1}{p}+1}(n-1) \sqrt{\Delta-1}$.

If $G \cong C_{3}$, then $\theta_{1}\left(C_{3}\right)=2^{\frac{1}{p}+2}=2^{\frac{1}{p}+1}(n-1) \sqrt{\Delta-1}$. If $\theta_{1}(G)=2^{\frac{1}{p}+1}(n-1) \sqrt{\Delta-1}$, then $G \cong C_{n}$, then $d_{u}=2$ for $u \in V(G)$. Then $2^{\frac{1}{p}+1}(n-1)=\theta_{1}\left(C_{n}\right)=2^{\frac{1}{p}+1} \lambda_{1}\left(C_{n}\right)=2^{\frac{1}{p}+2}$, thus $n=3$, i.e., $G \cong C_{3}$.

Theorem 2.3 Let G be a connected graph with $|V(G)|=n,|E(G)|=m$. Then $\theta_{1} \leq$ $2^{\frac{1}{p}}(n-1) \sqrt{2 m-n+1}$ with equality iff $G \cong K_{n}$.

Proof By the properties of p-Sombor matrix, $\mathcal{S}_{p}(G) \preceq 2^{\frac{1}{p}}(n-1) A(G)$, thus $\theta_{1} \leq 2^{\frac{1}{p}}(n-1) \lambda_{1}$. Since $\lambda_{1} \leq \sqrt{2 m-n+1}$ with equality iff $G \cong K_{1, n-1}$ or $G \cong K_{n}$ (see [20]). Thus $\theta_{1} \leq$ $2^{\frac{1}{p}}(n-1) \sqrt{2 m+1-n}$ with equality iff $G \cong K_{n}$.

Lemma 2.4 ([10]) Let G be a graph with maximum degree (resp., minimum degree) Δ (resp., $\delta)$. Then $2^{\frac{1}{p}} \delta \lambda_{1} \leq \theta_{1} \leq 2^{\frac{1}{p}} \Delta \lambda_{1}$ with equality iff G is regular graph.

Since $\delta \leq \lambda_{1} \leq \Delta$, by Lemma 2.4, we immediately have
Corollary 2.5 Let G be a graph with maximum degree (resp., minimum degree) Δ (resp., δ). Then $2^{\frac{1}{p}} \delta^{2} \leq \theta_{1} \leq 2^{\frac{1}{p}} \Delta^{2}$ with equality iff G is regular graph.

Let U_{n}^{*} denote the collection of unicyclic even graphs. $U_{4}^{n-4}=C_{4} \cdot S_{n-3}$ is the graphs obtained from cycle C_{4} and star S_{n-3} by identifying one vertex of C_{4} and the central of S_{n-3}.

Lemma 2.6 ([21]) Let $G \in U_{n}^{*}(n \geq 4)$. Then $\lambda_{1}(G) \leq \lambda_{1}\left(U_{4}^{n-4}\right)$, where $\lambda_{1}\left(U_{4}^{n-4}\right)$ is the maximal root of polynomial $x^{4}-n x^{2}+2 n-8$.

By Lemma 2.6, we have $\theta_{1}(G) \leq 2^{\frac{1}{p}}(n-1) \lambda_{1}(G) \leq 2^{\frac{1}{p}}(n-1) \lambda_{1}\left(U_{4}^{n-4}\right)$. Thus
Theorem 2.7 Let $G \in U_{n}^{*}(n \geq 4)$. Then we have $\theta_{1} \leq 2^{\frac{1}{p}}(n-1) \lambda_{1}\left(U_{4}^{n-4}\right)$ with equality iff
$G \cong C_{4}$. And $\lambda_{1}\left(U_{4}^{n-4}\right)$ is the maximal root of polynomial $x^{4}-n x^{2}+2 n-8$.
Let $U(l, \Delta)$ be the graphs obtained by connecting $\Delta-2$ pendent edges to every vertex of C_{l}.
Lemma 2.8 ([22]) Let $G \in U(l, \Delta)$. Then $\lambda_{1}(G)=1+\sqrt{\Delta-1}$.
Since $\theta_{1}(G) \leq 2^{\frac{1}{p}} \Delta \lambda_{1}(G)$, by Lemma 2.8, we have
Theorem 2.9 Let $G \in U(l, \Delta)$. Then $\theta_{1}(G) \leq 2^{\frac{1}{p}} \Delta(1+\sqrt{\Delta-1})$ with equality iff $G \cong C_{l}$.

3. The p-Sombor equienergetic graphs

The joint graph $G_{1} \vee G_{2}$ is derived from vertices of G_{1}, G_{2} and connecting each of the vertices of G_{1} and the vertices of G_{2}.

Theorem 3.1 Let G_{1} be an r_{1}-regular graph with $\left|V\left(G_{1}\right)\right|=n_{1}, G_{2}$ be an r_{2}-regular graph with $\left|V\left(G_{2}\right)\right|=n_{2}$. Then the p-Sombor eigenvalues of $G_{1} \vee G_{2}$ are

$$
\begin{aligned}
& 2^{\frac{1}{p}}\left(r_{1}+n_{2}\right) \lambda_{i}\left(G_{1}\right), \quad i=2,3, \ldots, n_{1} ; \\
& 2^{\frac{1}{p}}\left(r_{2}+n_{1}\right) \lambda_{i}\left(G_{2}\right), \quad i=2,3, \ldots, n_{2} ; \\
& 2^{\frac{1}{p}-1}\left(\left(n_{1}+r_{2}\right) r_{2}+\left(n_{2}+r_{1}\right) r_{1}\right) \pm \\
& \sqrt{2^{\frac{2}{p}-2}\left(\left(n_{1}+r_{2}\right) r_{2}-\left(n_{2}+r_{1}\right) r_{1}\right)^{2}+n_{1} n_{2}\left(\left(n_{1}+r_{2}\right)^{p}+\left(n_{2}+r_{1}\right)^{p}\right)^{\frac{2}{p}}} .
\end{aligned}
$$

Proof By the definition of p-Sombor matrix, we have

$$
\mathcal{S}_{p}\left(G_{1} \vee G_{2}\right)=\left(\begin{array}{cc}
2^{\frac{1}{p}}\left(r_{1}+n_{2}\right) A\left(G_{1}\right) & \left(\left(r_{1}+n_{2}\right)^{p}+\left(r_{2}+n_{1}\right)^{p}\right)^{\frac{1}{p}} J_{n_{1} \times n_{2}} \\
\left(\left(r_{1}+n_{2}\right)^{p}+\left(r_{2}+n_{1}\right)^{p}\right)^{\frac{1}{p}} J_{n_{2} \times n_{1}} & 2^{\frac{1}{p}}\left(r_{2}+n_{1}\right) A\left(G_{2}\right)
\end{array}\right) .
$$

Thus, by the properties of quotient matrix, the p-Sombor eigenvalues of $G_{1} \vee G_{2}$ are

$$
\begin{aligned}
& 2^{\frac{1}{p}}\left(r_{1}+n_{2}\right) \lambda_{i}\left(G_{1}\right), \quad i=2,3, \ldots, n_{1} ; \\
& 2^{\frac{1}{p}}\left(r_{2}+n_{1}\right) \lambda_{i}\left(G_{2}\right), \quad i=2,3, \ldots, n_{2} ; \\
& 2^{\frac{1}{p}-1}\left(\left(n_{1}+r_{2}\right) r_{2}+\left(n_{2}+r_{1}\right) r_{1}\right) \pm \\
& \sqrt{2^{\frac{2}{p}-2}\left(\left(n_{1}+r_{2}\right) r_{2}-\left(n_{2}+r_{1}\right) r_{1}\right)^{2}+n_{1} n_{2}\left(\left(n_{1}+r_{2}\right)^{p}+\left(n_{2}+r_{1}\right)^{p}\right)^{\frac{2}{p}}} .
\end{aligned}
$$

By the definition of p-Sombor energy and Theorem 3.1, then
Theorem 3.2 Let G_{1} be an r_{1}-regular graph with $\left|V\left(G_{1}\right)\right|=n_{1}, G_{2}$ be an r_{2}-regular graph with $\left|V\left(G_{2}\right)\right|=n_{2}$. Then the p-Sombor energy of $G_{1} \vee G_{2}$ is

$$
\begin{aligned}
& 2^{\frac{1}{p}}\left(r_{1}+n_{2}\right) \mathcal{E}\left(G_{1}\right)+2^{\frac{1}{p}}\left(r_{2}+n_{1}\right) \mathcal{E}\left(G_{2}\right)-2^{\frac{1}{p}}\left(r_{1}+n_{2}\right) r_{1}-2^{\frac{1}{p}}\left(r_{2}+n_{1}\right) r_{2}+ \\
& \sqrt{2^{\frac{2}{p}}\left(\left(n_{1}+r_{2}\right) r_{2}-\left(n_{2}+r_{1}\right) r_{1}\right)^{2}+4 n_{1} n_{2}\left(\left(n_{1}+r_{2}\right)^{p}+\left(n_{2}+r_{1}\right)^{p}\right)^{\frac{2}{p}}} .
\end{aligned}
$$

We call G and G^{\prime} (non-isomorphic) equienergetic if $|V(G)|=n=\left|V\left(G^{\prime}\right)\right|, G^{\prime}$ and G have no identical spectra and they have the same energy. Similarly, we call G and G^{\prime} (non-isomorphic) p-Sombor equienergetic if $|V(G)|=n=\left|V\left(G^{\prime}\right)\right|, G^{\prime}$ and G have no identical p-Sombor spectra and they have the same p-Sombor energy. We find some p-Sombor equienergetic graphs.

Theorem 3.3 The graphs $G_{1} \vee K_{t}$ and $G_{2} \vee K_{t}$ are p-Sombor equienergetic graphs, where G_{1} and G_{2} are depicted in Figure 1.

G_{1}

G_{2}

Figure 1 Two equienergetic 4-regular graphs

Proof The graphs G_{1}, G_{2} are 4-regular equienergetic graphs which was introduced in [23]. $\mathcal{E}\left(G_{2}\right)=16=\mathcal{E}\left(G_{1}\right), S_{p} E\left(G_{2}\right)=2^{\frac{1}{p}+6}=S_{p} E\left(G_{1}\right)$. By Theorem 3.2,

$$
\begin{aligned}
S_{p} E\left(G_{1} \vee K_{t}\right)= & S_{p} E\left(G_{2} \vee K_{t}\right)=3 \times 2^{\frac{1}{p}+2}(t+4)+2^{\frac{1}{p}}(t+8)(t-1)+ \\
& \sqrt{2^{\frac{2}{p}}\left(t^{2}+3 t-24\right)^{2}+36 t\left((t+4)^{p}+(t+8)^{p}\right)^{\frac{2}{p}}}
\end{aligned}
$$

Thus, the graphs $G_{1} \vee K_{t}$ and $G_{2} \vee K_{t}$ are p-Sombor noncospectral equienergetic graphs.
Corollary 3.4 (i) The p-Sombor spectrum of $K_{n_{1}, n_{2}}$ is $\left\{0^{\left[n_{1}+n_{2}-2\right]}, \pm \sqrt{n_{1} n_{2}}\left(n_{1}^{p}+n_{2}^{p}\right)^{\frac{1}{p}}\right\}$.
(ii) The p-Sombor spectrum of S_{n} is $\left\{0^{[n-2]}, \pm \sqrt{n-1}\left((n-1)^{p}+1\right)^{\frac{1}{p}}\right\}$.
(iii) The p-Sombor spectrum of $C S_{w, n-w}=K_{w} \vee \overline{K_{n-w}}$ (i.e., complete split graph) is

$$
\begin{aligned}
& \left\{0^{[n-1-w]},-2^{\frac{1}{p}}(n-1)^{[w-1]}, 2^{\frac{1}{p}-1}(w-1)(n-1) \pm\right. \\
& \left.\quad \sqrt{2^{\frac{2}{p}-2}(w-1)^{2}(n-1)^{2}+w(n-w)\left(w^{p}+(n-1)^{p}\right)^{\frac{2}{p}}}\right\} .
\end{aligned}
$$

By Corollary 3.4, we can obtain the p-Sombor energy of these special graphs.
Corollary 3.5 (i) The p-Sombor energy of $K_{n_{1}, n_{2}}$ is $2 \sqrt{n_{1} n_{2}}\left(n_{1}^{p}+n_{2}^{p}\right)^{\frac{1}{p}}$.
(ii) The p-Sombor energy of S_{n} is $2 \sqrt{n-1}\left(1+(n-1)^{p}\right)^{\frac{1}{p}}$.
(iii) The p-Sombor energy of $C S_{w, n-w}$ is

$$
2^{\frac{1}{p}}(w-1)(n-1)+2 \sqrt{2^{\frac{2}{p}-2}(w-1)^{2}(n-1)^{2}+w(n-w)\left(w^{p}+(n-1)^{p}\right)^{\frac{2}{p}}}
$$

Note that when $p=2$, we can obtain the Sombor spectrum, Sombor energy of S_{n} and $K_{n_{1}, n_{2}}$ which is the results of [24, Theorem 2.8 and 2.6].

Note that $K_{n} \backslash\{e\} \cong C S_{n-2,2}$ for any $e=u v \in K_{n}$. By Case (iii) of Corollary 3.5, we can calculate the Sombor energy of $K_{n} \backslash\{e\}$. We have $S_{2} E\left(K_{n}\right)=2 \sqrt{2}(n-1)^{2}$ and

$$
S_{2} E\left(K_{n} \backslash\{e\}\right)=\sqrt{2}(n-3)(n-1)+\sqrt{2} \sqrt{(n-3)^{2}(n-1)^{2}+4(n-2)\left((n-2)^{2}+(n-1)^{2}\right)}
$$

Thus $S_{2} E\left(K_{n}\right)>S_{2} E\left(K_{n} \backslash\{e\}\right)(n \geq 3)$. We partially answer the problem proposed by Ghanbari in [24] about what is the relationship between $S_{2} E(G)$ and $S_{2} E(G \backslash\{e\})$.

4. Spectral properties of p-Sombor Laplacian matrices

In the following, we determine some spectral properties of p-Sombor Laplacian matrices.
Proposition 4.1 The p-Sombor Laplacian matrix $\mathcal{L}_{p}(G)$ is a positive semi-definite matrix.
Proof Let $\mathcal{L}_{p}=\mathcal{D}_{p}-\mathcal{S}_{p}$, where $\mathcal{D}_{p}(G)=\operatorname{Diag}\left(\sum_{j=1}^{n} s_{1 j}^{p}, \sum_{j=1}^{n} s_{2 j}^{p}, \ldots, \sum_{j=1}^{n} s_{n j}^{p}\right)$.

$$
\left[\mathcal{S}_{p}(G)\right]_{i j} \triangleq s_{i j}^{p}= \begin{cases}\left(\left(d_{i}\right)^{p}+\left(d_{j}\right)^{p}\right)^{\frac{1}{p}}, & v_{i} v_{j} \in E(G) ; \\ 0, & \text { otherwise }\end{cases}
$$

Let $\varphi=\left(\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \ldots, \varphi\left(v_{n}\right)\right)^{\mathrm{T}}$ be the unit column vector with respect to vertices $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. There exists a real number λ such that $\lambda \varphi(x)=\left(\mathcal{L}_{p}(G) \varphi\right)(x)$. Since

$$
\begin{aligned}
\varphi^{\mathrm{T}} \mathcal{L}_{p}(G) \varphi & =\varphi^{\mathrm{T}} \mathcal{D}_{p}(G) \varphi-\varphi^{\mathrm{T}} \mathcal{S}_{p}(G) \varphi, \\
\varphi^{\mathrm{T}} \mathcal{S}_{p}(G) \varphi & =\sum_{v_{i} \sim v_{j}} s_{i j}^{p} \varphi\left(v_{i}\right) \varphi\left(v_{j}\right), \\
\varphi^{\mathrm{T}} \mathcal{D}_{p}(G) \varphi & =\sum_{i=1}^{n}\left(\sum_{k=1}^{n} s_{i k}^{p}\right) \varphi^{2}\left(v_{i}\right)=\sum_{v_{i} \sim v_{j}} s_{i j}^{p}\left(\varphi^{2}\left(v_{i}\right)+\varphi^{2}\left(v_{j}\right)\right) .
\end{aligned}
$$

Thus

$$
\varphi^{\mathrm{T}} \mathcal{L}_{p}(G) \varphi=\sum_{v_{i} \sim v_{j}} s_{i j}^{p}\left(\varphi\left(v_{i}\right)-\varphi\left(v_{j}\right)\right)^{2} \geq 0
$$

By Proposition 4.1, we have that the multiplicity of zero among p-Sombor Laplacian eigenvalues is equal to the number of connected components.

Similar to the incidence matrix $R(G)$, for matrix $S_{R}(G)$, we also have
Lemma 4.2 Let G be a connected graph with $|V(G)|=n$. Then $\operatorname{rank}\left(S_{R}(G)\right)=n-1$.
Proof Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a vector, such that $x^{\mathrm{T}} S_{R}(G)=\mathbf{0}$. Then for any $v_{i} \sim v_{j}$, and $v_{i} \rightarrow v_{j}$ in the digraph D, we have $-x_{i}\left(d_{i}^{p}+d_{j}^{p}\right)^{\frac{1}{2 p}}+x_{j}\left(d_{j}^{p}+d_{i}^{p}\right)^{\frac{1}{2 p}}=0$. Thus $x_{i}=x_{j}$ for $v_{i} \sim v_{j}$. Since G is a connected graph, we have $x_{1}=x_{2}=\cdots=x_{n}$. Then $x=k(1,1, \ldots, 1)^{\mathrm{T}}$. Thus $\operatorname{rank}\left(S_{R}(G)\right) \geq n-1$. By the definition of $S_{R}(G)$, we know the rows of $S_{R}(G)$ are linearly dependent, such that $\operatorname{rank}\left(S_{R}(G)\right) \leq n-1$. Thus we have $\operatorname{rank}\left(S_{R}(G)\right)=n-1$.

By Lemma 4.2, $\operatorname{rank}\left(\mathcal{L}_{p}(G)\right)=\operatorname{rank}\left(S_{R}(G)\left[S_{R}(G)\right]^{\mathrm{T}}\right)=\operatorname{rank}\left(S_{R}(G)\right)=n-k$, where k denotes the number of connected components. Thus, multiplicity of 0 as an eigenvalue of \mathcal{L}_{p} is equal to the number of components in G.

In the following, we describe the properties of connected graphs with k distinct p-Sombor Laplacian eigenvalues. The proof is similar to that of [16, Lemma 2.2], the detail is omitted.

Theorem 4.3 Let G be a connected graph with $|V(G)|=n$. Then $\mathcal{L}_{p}(G)$ has $k(2 \leq k \leq n)$ distinct eigenvalues iff there exist $k-1$ distinct non-zero numbers $t_{1}, t_{2}, \ldots, t_{k-1}$ such that

$$
\prod_{i=1}^{k-1}\left(\mathcal{L}_{p}(G)-t_{i} I\right)=(-1)^{k-1} \frac{\prod_{i=1}^{k-1} t_{i}}{n} J
$$

where J denotes all-one matrix, I is a unit matrix.

An (s, t)-semiregular bipartite graph is a bipartite graph (X, Y) with $|X|=s,|X|=t$ and the degree of each vertex in the same partite set is the same.

Theorem 4.4 (i) If G is a k-regular graph, then $\eta_{i}(G)=2^{\frac{1}{p}} k \mu_{i}(G), i=1,2, \ldots, n$. Specifically, if G is $K_{n}, \eta_{n}\left(K_{n}\right)=0$,

$$
\eta_{1}\left(K_{n}\right)=\eta_{2}\left(K_{n}\right)=\cdots=\eta_{n-1}\left(K_{n}\right)=2^{\frac{1}{p}}(n-1) n
$$

If $G \cong C_{n}$, then

$$
\eta_{i}\left(C_{n}\right)=2^{\frac{1}{p}+2}\left(1-\cos \frac{2 \pi i}{n}\right), \quad i=0,1, \ldots, n-1
$$

(ii) If G is an (s, t)-semiregular bipartite graph, then $\eta_{i}(G)=\left(s^{p}+t^{p}\right)^{\frac{1}{p}} \mu_{i}(G), i=1,2, \ldots, n$. Specifically, if G is $K_{a, b}(a+b=n, a \geq b)$,

$$
\begin{gathered}
\eta_{1}\left(K_{a, b}\right)=n\left(a^{p}+b^{p}\right)^{\frac{1}{p}}, \eta_{2}\left(K_{a, b}\right)=\eta_{3}\left(K_{a, b}\right)=\cdots=\eta_{b}\left(K_{a, b}\right)=a\left(a^{p}+b^{p}\right)^{\frac{1}{p}} \\
\eta_{b+1}\left(K_{a, b}\right)=\eta_{b+2}\left(K_{a, b}\right)=\cdots=\eta_{n-1}\left(K_{a, b}\right)=b\left(a^{p}+b^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

and $\eta_{n}\left(K_{a, b}\right)=0$.
Proof (i) Since G is a k-regular graph, then $\mathcal{L}_{p}(G)=2^{\frac{1}{p}} k L(G)$, thus $\eta_{i}=2^{\frac{1}{p}} k \mu_{i}$. If $G \cong K_{n}$, then $\mu_{1}\left(K_{n}\right)=\mu_{2}\left(K_{n}\right)=\cdots=\mu_{n-1}\left(K_{n}\right)=n, \mu_{n}\left(K_{n}\right)=0$. If $G \cong C_{n}$, then $\mu_{i}\left(C_{n}\right)=$ $2\left(1-\cos \frac{2 \pi i}{n}\right), i=0,1, \ldots, n-1$.
(ii) If G is an (s, t)-semiregular bipartite graph, then $\mathcal{L}_{p}(G)=\left(s^{p}+t^{p}\right)^{\frac{1}{p}} L(G)$, thus $\eta_{i}(G)=\left(s^{p}+t^{p}\right)^{\frac{1}{p}} \mu_{i}(G), i=1,2, \ldots, n$. If $G \cong K_{a, b}(a+b=n, a \geq b)$, then $n=\mu_{1}\left(K_{a, b}\right)$, $\mu_{2}\left(K_{a, b}\right)=\mu_{3}\left(K_{a, b}\right)=\cdots=\mu_{b}\left(K_{a, b}\right)=a, \mu_{b+1}\left(K_{a, b}\right)=\mu_{b+2}\left(K_{a, b}\right)=\cdots=\mu_{n-1}\left(K_{a, b}\right)=b$ and $\mu_{n}\left(K_{a, b}\right)=0$.

Theorem 4.5 Let G be a graph with $|V(G)|=n$. Then G has exactly one p-Sombor Laplacian eigenvalue iff $G \cong n K_{1}$.

Proof Since $\mathcal{L}_{p}(G)$ is a positive semi-definite matrix (by Proposition 4.1), then $\eta_{n}(G)=0$. If G has one p-Sombor Laplacian eigenvalue, $\eta_{1}=\eta_{2}=\cdots=\eta_{n}=0$, then $\mathcal{L}_{p}(G)=\mathbf{0}$, thus $G \cong n K_{1}$. If $G \cong n K_{1}$, then $\mathcal{L}_{p}(G)=\mathbf{0}$, thus $\eta_{1}=\eta_{2}=\cdots=\eta_{n}=0$.

Theorem 4.6 Let G be a connected graph with $|V(G)|=n(\geq 2)$. Then G has two distinct p-Sombor Laplacian eigenvalues iff $G \cong K_{n}$.

Proof By Theorem 4.3, we know G has two distinct p-Sombor Laplacian eigenvalues iff there exists non-zero number t_{1} such that $\mathcal{L}_{p}(G)-t_{1} I=-\frac{t_{1}}{n} J$. Then off-diagonal entries of $\mathcal{L}_{p}(G)$ are not 0 , thus $G \cong K_{n}$. If $G \cong K_{n}$, by Theorem 4.4, K_{n} has two p-Sombor Laplacian eigenvalues 0 and $2^{\frac{1}{p}}(n-1) n$.

Lemma 4.7 ([10]) Let G be a connected graph with $|V(G)|=n$. Then $\mathrm{SO}_{p} \leq 2^{\frac{1}{p}-1} n(n-1)^{2}$ with equality iff $G \cong K_{n}$.

By Lemma 4.7, we can obtain the sharp bounds of the second minimal p-Sombor Laplacian eigenvalue η_{n-1}.

Theorem 4.8 Let G be a connected graph with $|V(G)|=n$. Then $\eta_{n-1} \leq 2^{\frac{1}{p}}(n-1) n$ with equality iff $G \cong K_{n}$.

Proof Since $\eta_{n}+\sum_{i=1}^{n-1} \eta_{i}=2 \mathrm{SO}_{p}(G)$, then $\eta_{n-1} \leq \frac{2}{n-1} \mathrm{SO}_{p}(G)$. By Lemma 4.7,

$$
\mathrm{SO}_{p}(G) \leq\binom{ n}{2} 2^{\frac{1}{p}}(n-1)=2^{\frac{1}{p}-1} n(n-1)^{2}
$$

Thus $\eta_{n-1}(G) \leq 2^{\frac{1}{p}} n(n-1)$ with equality iff $G \cong K_{n}$.

5. The Sombor spectrum of some special graphs

In the following, we introduce a way of matrix decomposition introduced in [25]. Let M be an $n \times n$ symmetric matrix given in (5.1) where block $E \in R^{t \times t}$, block $\gamma \in R^{t \times s}$, block $F \in R^{s \times s}$, block $Q \in R^{s \times s}$ and $n=z s+t, z$ denotes number of copies of F. Denote by $\sigma(X)$ spectrum of matrix X, and $\sigma^{k}(X)$ the multiset with k copies of $\sigma(X)$.

$$
M=\left(\begin{array}{ccccc}
E & \gamma & \gamma & \cdots & \gamma \tag{5.1}\\
\gamma^{T} & F & Q & \cdots & Q \\
\gamma^{T} & Q & F & \cdots & Q \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\gamma^{T} & Q & Q & \cdots & F
\end{array}\right)
$$

Lemma 5.1 ([25]) Let M be the matrix in (5.1). Then
(i) The spectrum $\sigma(F-Q) \subseteq \sigma(M)$ with multiplicity $z-1$, where z denotes the number of copies of the block in matrix M.
(ii) The spectrum $\sigma(M) \backslash \sigma^{z-1}(F-Q)=\sigma\left(M^{\prime}\right)$ is the set of remaining $s+t$ eigenvalues of M, and

$$
M^{\prime}=\left(\begin{array}{cc}
E & \sqrt{z} \gamma \\
\sqrt{z} \gamma^{T} & F+(z-1) Q
\end{array}\right)
$$

The conclusion of Lemma 5.1 means that $\sigma(M)=\sigma^{z-1}(F-Q) \bigcup \sigma\left(M^{\prime}\right)$.
In the following, we consider the Sombor spectrum of the graphs star plus an edge S_{n}^{+}, double star $S_{n_{1}, n_{2}}\left(n_{1}+n_{2}+2=n\right)$ and $K_{n_{1}, n_{2}} \backslash\{e\}$.

Theorem 5.2 The Sombor spectrum of S_{n}^{+}consists of $0^{[n-4]}$ and the zeros of polynomial $x^{4}-\left(n^{3}-3 n^{2}+4 n+12\right) x^{2}-4 \sqrt{2}\left(n^{2}-2 n+5\right) x+8(n-3)\left(n^{2}-2 n+2\right)$.

Proof The Sombor matrix of S_{n}^{+}is

$$
\left[\begin{array}{ccccccc}
0 & 2 \sqrt{2} & \sqrt{(n-1)^{2}+4} & 0 & 0 & \cdots & 0 \\
2 \sqrt{2} & 0 & \sqrt{(n-1)^{2}+4} & 0 & 0 & \cdots & 0 \\
\sqrt{(n-1)^{2}+4} \sqrt{(n-1)^{2}+4} & 0 & \sqrt{(n-1)^{2}+1} & \sqrt{(n-1)^{2}+1} & \cdots & \sqrt{(n-1)^{2}+1} \\
0 & 0 & \sqrt{(n-1)^{2}+1} & 0 & 0 & \cdots & 0 \\
0 & 0 & \sqrt{(n-1)^{2}+1} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \sqrt{(n-1)^{2}+1} & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Let

$$
\begin{gathered}
E=\left[\begin{array}{ccc}
0 & 2 \sqrt{2} & \sqrt{(n-1)^{2}+4} \\
\frac{2 \sqrt{2}}{\sqrt{(n-1)^{2}+4}} \sqrt{(n-1)^{2}+4} & 0
\end{array}\right] \\
\gamma=\left[\begin{array}{c}
0 \\
0 \\
\sqrt{(n-1)^{2}+1}
\end{array}\right]
\end{gathered}
$$

$F=\mathbf{0}$ and $Q=\mathbf{0}$. By Lemma 5.1, 0 is the Sombor eigenvalues of S_{n}^{+}with multiplicity $n-4$. For the remaining Sombor eigenvalues, we need to consider the following matrix

$$
\left[\begin{array}{cccc}
0 & 2 \sqrt{2} & \sqrt{(n-1)^{2}+4} & 0 \tag{5.2}\\
2 \sqrt{2} & 0 & \sqrt{(n-1)^{2}+4} & 0 \\
\sqrt{(n-1)^{2}+4} & \sqrt{(n-1)^{2}+4} & 0 & \sqrt{n-3} \sqrt{(n-1)^{2}+1} \\
0 & 0 & \sqrt{n-3} \sqrt{(n-1)^{2}+1} & 0
\end{array}\right] .
$$

It is easy to calculate the characteristic polynomial of (5.2). The remaining four Sombor eigenvalues are zeros of $x^{4}-\left(n^{3}-3 n^{2}+4 n+12\right) x^{2}-4 \sqrt{2}\left(n^{2}-2 n+5\right) x+8(n-3)\left(n^{2}-2 n+2\right)$.
Theorem 5.3 The Sombor spectrum of $S_{n_{1}, n_{2}}$ consists of $0^{\left[n_{1}+n_{2}-2\right]}$ and the zeros of polynomial $x^{4}-\left(\left(n_{1}+1\right)^{3}+\left(n_{2}+1\right)^{3}+n_{1}+n_{2}\right) x^{2}+n_{1} n_{2}\left(\left(n_{1}+1\right)^{2}+1\right)\left(\left(n_{2}+1\right)^{2}+1\right)$.

Proof The Sombor matrix of $S_{n_{1}, n_{2}}$ is

$$
\left[\begin{array}{cccccccc}
0 & u & \sqrt{\left(n_{1}+1\right)^{2}+1} \cdots & \sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & \cdots & 0 \\
u & 0 & 0 & \cdots & 0 & \sqrt{\left(n_{2}+1\right)^{2}+1} \cdots & \sqrt{\left(n_{2}+1\right)^{2}+1} \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where $u=\sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}}$. Let

$$
E=\left[\begin{array}{ccccc}
0 & \sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & \sqrt{\left(n_{1}+1\right)^{2}+1} \cdots & \sqrt{\left(n_{1}+1\right)^{2}+1} \\
\sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & 0 & 0 & \cdots & 0 \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & \cdots & 0
\end{array}\right]
$$

and

$$
\gamma=\left[\begin{array}{c}
0 \\
\sqrt{\left(n_{2}+1\right)^{2}+1} \\
0 \\
\vdots \\
0
\end{array}\right],
$$

$F=\mathbf{0}$ and $Q=\mathbf{0}$. By Lemma 5.1, 0 is the Sombor eigenvalues of $S_{n_{1}, n_{2}}$ with multiplicity $n_{2}-1$. For the remaining Sombor eigenvalues, we need to consider the following matrix

$$
\left[\begin{array}{ccccc}
0 & \sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} \sqrt{\left(n_{1}+1\right)^{2}+1} \cdots \sqrt{\left(n_{1}+1\right)^{2}+1} & 0 \tag{5.3}\\
\sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & 0 & 0 & \cdots & 0 \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & \cdots & 0 \\
\sqrt{n_{2}} \sqrt{\left(n_{2}+1\right)^{2}+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & \cdots & 0 \\
0 & \sqrt{n_{2}} \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 & \cdots & 0
\end{array}\right.
$$

We do a primary row transformation and column transformation for the matrix of (5.3), and obtain the following matrix (5.4)

$$
\left[\begin{array}{cccccc}
0 & \sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & 0 & \sqrt{\left(n_{1}+1\right)^{2}+1} \cdots \sqrt{\left(n_{1}+1\right)^{2}+1} \tag{5.4}\\
\sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & 0 & \sqrt{n_{2}} \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 & \cdots & 0 \\
0 & \sqrt{n_{2}} \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 & 0 & \cdots & 0 \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

By Lemma 5.1, 0 is the Sombor eigenvalues of $S_{n_{1}, n_{2}}$ with multiplicity $n_{1}-1$. For the remaining Sombor eigenvalues, we need to consider the following matrix

$$
\left[\begin{array}{cccc}
0 & \sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & 0 & \sqrt{n_{1}} \sqrt{\left(n_{1}+1\right)^{2}+1} \tag{5.5}\\
\sqrt{\left(n_{1}+1\right)^{2}+\left(n_{2}+1\right)^{2}} & 0 & \sqrt{n_{2}} \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 \\
0 & \sqrt{n_{2}} \sqrt{\left(n_{2}+1\right)^{2}+1} & 0 & 0 \\
\sqrt{n_{1}} \sqrt{\left(n_{1}+1\right)^{2}+1} & 0 & 0 & 0
\end{array}\right]
$$

It is easy to calculate the characteristic polynomial of (5.5). The remaining four Sombor eigenvalues are zeros of $x^{4}-\left(\left(n_{1}+1\right)^{3}+\left(n_{2}+1\right)^{3}+n_{1}+n_{2}\right) x^{2}+n_{1} n_{2}\left(\left(n_{2}+1\right)^{2}+1\right)\left(\left(n_{1}+1\right)^{2}+1\right)$.

Similar to the proof of Theorems 5.2 and 5.3 , we also have the following result.
Theorem 5.4 The Sombor spectrum of $K_{n_{1}, n_{2}} \backslash\{e\}$ consists of $0^{\left[n_{1}+n_{2}-4\right]}$ and the zeros of polynomial
$x^{4}-\left\{\left(n_{1}-1\right)\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{2}-1\right)+\left(n_{1}-1\right)\left(n_{2}^{2}+\left(n_{1}-1\right)^{2}\right)+\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)\right\} x^{2}+\left(n_{1}-1\right)\left(n_{1}^{2}+\right.$ $\left.\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)\left(\left(n_{1}-1\right)^{2}+n_{2}^{2}\right)$.

By Case (i) of Corollary 3.5, we have

$$
S_{2} E\left(K_{n_{1}, n_{2}}\right)=2 \sqrt{n_{1} n_{2}} \sqrt{n_{1}^{2}+n_{2}^{2}} .
$$

Suppose that $\pm x_{1}, \pm x_{2}$ are zeros of $x^{4}-\left\{\left(n_{1}-1\right)\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{2}-1\right)+\left(n_{1}-1\right)\left(n_{2}^{2}+\left(n_{1}-1\right)^{2}\right)+\right.$ $\left.\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)\right\} x^{2}+\left(n_{1}-1\right)\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)\left(\left(n_{1}-1\right)^{2}+n_{2}^{2}\right)$ of Theorem 5.4. Then

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{2}=\left(n_{1}-1\right)\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{2}-1\right)+\left(n_{1}-1\right)\left(n_{2}^{2}+\left(n_{1}-1\right)^{2}\right)+\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right) . \\
x_{1}^{2} \cdot x_{2}^{2}=\left(n_{1}-1\right)\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)\left(\left(n_{1}-1\right)^{2}+n_{2}^{2}\right) .
\end{gathered}
$$

Thus

$$
\begin{aligned}
& \left(S_{2} E\left(K_{n_{1}, n_{2}} \backslash\{e\}\right)\right)^{2}=4\left(\left|x_{1}\right|+\left|x_{2}\right|\right)^{2} \\
& \quad=4\left\{\left(n_{1}-1\right)\left(n_{1}^{2}+n_{2}^{2}\right)\left(n_{2}-1\right)+\left(\left(n_{1}-1\right)^{2}+n_{2}^{2}\right)\left(n_{1}-1\right)+\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)+\right. \\
& \left.\quad 2 \sqrt{\left(n_{1}-1\right)\left(n_{1}^{2}+\left(n_{2}-1\right)^{2}\right)\left(n_{2}-1\right)\left(\left(n_{1}-1\right)^{2}+n_{2}^{2}\right)}\right\} .
\end{aligned}
$$

It is difficult to compare the $S_{2} E\left(K_{n_{1}, n_{2}}\right)$ and $S_{2} E\left(K_{n_{1}, n_{2}} \backslash\{e\}\right)$ for any n_{1} and n_{2}. But for special n_{1} and n_{2}, we can compare them. For example, we let $G \cong K_{1,3}$. Then

$$
\begin{gathered}
S_{2} E\left(K_{1,3}\right)=2 \sqrt{3} \sqrt{10}=2 \sqrt{30}, \\
S_{2} E\left(K_{1,3} \backslash\{e\}\right)=2 \sqrt{10},
\end{gathered}
$$

thus

$$
S_{2} E\left(K_{1,3}\right)>S_{2} E\left(K_{1,3} \backslash\{e\}\right) .
$$

Problem 5.5 Whether it is true that $S_{2} E\left(K_{n_{1}, n_{2}}\right)>S_{2} E\left(K_{n_{1}, n_{2}} \backslash\{e\}\right)$ for any $K_{n_{1}, n_{2}}$.
Acknowledgements We thank the referees for their time and comments.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory. Springer, New York, 2008.
[2] I. GUTMAN. The energy of a graph. Ber. Math. Statist. Sekt. Forschungsz, Graz, 1978, 103: 1-22.
[3] I. GUTMAN. Geometric approach to degree-based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem., 2021, 86(1): 11-16.
[4] I. REDŽEPOVIĆ. Chemical applicability of Sombor indices. J. Serb. Chem. Soc., 2021, 86(5): 445-457.
[5] Hanyuan DENG, Zikai TANG, Renfang WU. Molecular trees with extremal values of Sombor indices. Int. J. Quantum Chem., 2021, 121(11): e26622.
[6] I. GUTMAN. Sombor index-one year later. Bull. CI. Sci. Math. Nat. Sci. Math., 2020, 153: 43-55.
[7] Hechao LIU, I. GUTMAN, Lihua YOU, et al. Sombor index: review of extremal results and bounds. J. Math. Chem., 2022, 60(5): 771-798.
[8] Hanlin CHEN, Wenhao LI, Jing WANG. Extremal values on the Sombor index of trees. MATCH Commun. Math. Comput. Chem., 2022, 87(1): 23-49.
[9] T. RÉTI, T. DOŠLIĆ, A. ALI. On the Sombor index of graphs. Contrib. Math., 2021, 3: 11-18.
[10] Hechao LIU, Lihua YOU, Yufei HUANG, et al. Spectral properties of p-Sombor matrices and beyond. MATCH Commun. Math. Comput. Chem., 2022, 87(1): 59-87.
[11] N. J. RAD, A. JAHANBANI, I. GUTMAN. Zagreb energy and Zagreb Estrada index of graphs. MATCH Commun. Math. Comput. Chem., 2018, 79(1): 371-386.
[12] K. J. GOWTHAM, I. GUTMAN. On characteristic polynomial and energy of Sombor matrix. Open J. Discret. Appl. Math., 2021, 4(3): 29-35.
[13] I. GUTMAN. Spectrum and energy of the Sombor matrix. Military Technical Courier, 2021, 69(3): 551-561.
[14] Fengwei LI, Xueliang LI, H. BROERSMA. Spectral properties of inverse sum indeg index of graphs. J. Math. Chem., 2020, 58(9): 2108-2139.
[15] Xueliang LI, Zhiqian WANG. Trees with extremal spectral radius of weighted adjacency matrices among trees weighted by degree-based indices. Linear Algebra Appl., 2021, 620: 61-75.
[16] Ning YANG, Bo DENG, Xueliang LI. Laplacian ABC-eigenvalues of graphs. MATCH Commun. Math. Comput. Chem., 2021, 85(1): 195-206.
[17] Hanyuan DENG, He HUANG, Jie ZHANG. On the eigenvalues of general sum-connectivity Laplacian matrix. J. Oper. Res. Soc. China, 2013, 1: 347-358.
[18] Zhao WANG, Yaping MAO, B. FURTULA, et al. Bounds for the spectral radius and energy of extended adjacency matrix of graphs. Linear Multilin. Algebra, 2021, 69(10): 1813-1824.
[19] Shengbiao HU. The largest eigenvalue of unicyclic graphs. Discrete Math., 2007, 307(2): 280-284.
[20] Yuan HONG. A bound on the spectral radius of graphs. Linear Algebra Appl., 1988, 108: 135-139.
[21] M. NATH. On the second largest spectral radius of unicyclic bipartite graphs. Discrete Math. Algorithms Appl., 2011, 3(2): 253-258.
[22] M. HADJI, M. CHAU. On unicyclic graphs spectra: new results. Comput. Sci. Eng., 2016, 586-593.
[23] Xueliang LI, Yongtang SHI, I. GUTMAN. Graph Energy. Springer, New York, 2012.
[24] N. GHANBARI. On the Sombor characteristic polynomial and Sombor energy of a graph. Comput. Appl. Math., 2022, 41(6): Paper No. 242, 14pp.
[25] E. FRITSCHER, V. TREVISAN. Exploring symmetries to compose matices and graphs preserving the spectrum. SIAM J. Matrix Anal. Appl., 2016, 37(1): 260-289.

[^0]: Received May 20, 2022; Accepted November 24, 2022
 Supported by the National Natural Science Foundation of China (Grant Nos. 11971180; 12271337) and the Characteristic Innovation Project of General Colleges and Universities in Guangdong Province (Grant No. 2022KTSC X225).

 * Corresponding author

 E-mail address: hechaoliu@m.scnu.edu.cn (Hechao LIU); ylhua@scnu.edu.cn (Lihua YOU)

