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Abstract The distance signless Laplacian matrix of a connected graph G is defined as Q(G) =

Tr(G) +D(G), where Tr(G) is the diagonal matrix of the vertex transmissions in G and D(G)

is the distance matrix of G. The largest eigenvalue of the distance signless Laplacian matrix

is called the distance signless Laplacian spectral radius of G. In this paper, we determine the

unique graph with the maximum distance signless Laplacian spectral radius among all the bicyclic

graphs with given order.

Keywords distance signless Laplacian matrix; spectral radius; bicyclic graph

MR(2020) Subject Classification 05C50

1. Introduction

We consider simple and undirected graphs. Undefined notations may be referred to [1]. Let

G be a connected graph of order n with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G).

If E1 is a nonempty subset of E(G), G− E1 denotes the graph obtained from G by deleting all

edges in E1. If E1 is a set of edges which are not in E(G), G + E1 denotes the graph obtained

from G by adding all the edges in E1. A spanning subgraph of a graph G is a subgraph whose

vertex set is the entire vertex set of G. For v ∈ V (G), dG(v) denotes the degree of v in G. We

denote ∆(G) = max{dG(v) : v ∈ V (G)}. We use Cn and Pn to represent a cycle and a path,

respectively, each on n vertices.

For vi, vj ∈ V (G), the distance between vi and vj in G, denoted by dG(vi, vj), is the length

of the shortest path from vi to vj in G. The distance matrix of G is D(G) = (di,j)n×n, where

di,j = dG(vi, vj). For vi ∈ V (G), the transmission of vi in G, denoted by trG(vi), is the sum of

distances from vi to all other vertices of G. Let trmax(G) be the maximum vertex transmission of

G. Let Tr(G) be the n× n diagonal matrix of the vertex transmissons in G. Then the distance

signless Laplacian matrix of G is Q(G) = Tr(G) +D(G). The eigenvalues of Q(G), denoted by

ρ1(G), ρ2(G), . . . , ρn(G), are called the distance signless Laplacian eigenvalues of G. Since Q(G)

is a real symmetric matrix, without loss of generality, suppose that ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G).

The largest distance signless Laplacian eigenvalue of G is called the distance signless Laplacian

spectral radius of G, and is denoted by ρ(G). Since Q(G) is an irreducible nonnegative matrix, by
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Perron-Frobenius Theorem, ρ(G) is simple and there is a unique unit positive eigenvector ofQ(G)

corresponding to ρ(G), which is called the (distance signless Laplacian) principal eigenvector of

G.

Aouchiche and Hansen [2] introduced the distance signless Laplacian matrix and studied the

distance signless Laplacian eigenvlues of a connected graph. For a connected graph G, the value

c(G) = |E(G)|− |V (G)|+1 is called the cyclomatic number of G. When c(G) = 0, 1, 2, the graph

is called a tree, a unicyclic graph and a bicyclic graph, respectively. Xing et al. [3] determined the

graphs with the minimum distance signless Laplacian spectral radius among the trees, unicyclic

graphs and bipartite graphs with fixed number of vertices, respectively, and also determined the

graphs with the minimum distance signless Laplacian spectral radius among the connected graphs

with fixed number of vertices and pendent vertices, and the connected graphs with fixed number

of vertices and connectivity, respectively. Lin and Zhou [4] studied the effect of three types

of graft transformations to decrease or increase the distance signless Laplacian spectral radius,

and determined the unique graphs with the maximum distance signless Laplacian spectral radius

among trees, and among trees with given maximum degree, respectively, and also determined the

unique graphs with the minimum and the maximum distance signless Laplacian spectral radius

among all non-starlike trees, among non-caterpillar trees, and among non-starlike non-caterpillar

trees, respectively. Bapat et al. [5] proved that the distance signless Laplacian spectral radius was

maximized at a dumbbell in the class of all trees with a given number of pendent vertices, and

also determined the unique graphs with the maximum distance signless Laplacian spectral radius

among unicyclic graphs. Xing and Zhou [6] determined the graphs with the minimum and the

second-minimum distance signless Laplacian spectral radius among bicyclic graphs with given

order. Lin and Lu [7] found a sharp lower bound as well as a sharp upper bound of the distance

signless Laplacian spectral radius in terms of the clique number. Furthermore, both extremal

graphs were uniquely determined. More results on the distance signless Laplacian spectral radius

can be found in [8–12].

In this paper, we determine the unique graph with the maximum distance signless Laplacian

spectral radius among all the bicyclic graphs with given order.
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Figure 1 Graph B∗
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Let n ≥ 4 be an integer, and Pn−1 = v1v2 · · · vn−1 be a path with order n− 1. We denote by

B∗
n the bicyclic graph of order n obtained from Pn−1 by adding one vertex vn and three edges

vnvn−3, vnvn−2 and vnvn−1. Graph B∗
n is depicted in Figure 1. Let Bn be the set of bicyclic

graphs of order n.
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Theorem 1.1 Let n ≥ 8 and G ∈ Bn. Then ρ(G) ≤ ρ(B∗
n) with equality if and only if G ∼= B∗

n.

The rest of this paper is organized as follows. In Section 2, we present some useful lemmas.

In Section 3, we compare the distance signless Laplacian spectral radius of some special graphs

with ρ(B∗
n), and then use these results to prove Theorem 1.1.

2. Some useful lemmas

In this section, we present some known results. Let G be a connected graph with vertex

set V (G) = {v1, v2, . . . , vn}. A column vector x = (xv1 , xv2 , . . . , xvn)
T can be considered as a

function defined on V (G) which maps vertex vi to xvi for 1 ≤ i ≤ n. For convenience, we write

x = (xv1 , xv2 , . . . , xvn)
T as x = (x1, x2, . . . , xn)

T. Then

xTQ(G)x =
∑

1≤i<j≤n

dG(vi, vj)(xi + xj)
2.

If x = (x1, x2, . . . , xn)
T is the eigenvector of ρ(G), then for 1 ≤ i ≤ n, we have the following

eigenequation of G at vi ∈ V (G),

ρ(G)xi = trG(vi)xi +
∑

vj∈V (G)\{vi}

dG(vi, vj)xj .

For a unit column vector x ∈ Rn with at least one nonnegative entry, by Rayleigh’s principle,

we have ρ(G) ≥ xTQ(G)x with equality if and only if x is the principal eigenvector of Q(G)

corresponding to ρ(G).

In [4], Lin and Zhou proved the following five lemmas.

Lemma 2.1 ([4]) Let G be a connected graph with η being an automorphism of G, and x a

principal eigenvector of G. Then for u, v ∈ V (G), η(u) = v implies xu = xv.

n
v

-1

( ; 2, 2, 5)S n n -

n
vn

v
-2

n
v

-3

n
v

-4n
v

-5v
2

v
1

4nB

n
v

-2

n
v

-1

n
v

n
v

-3v
2 n

v
-4v

1

Figure 2 Graphs S(n; 2, 2, n− 5) and Bn,4

Let G be a graph and v ∈ V (G). If dG(v) = 1, v is a pendent vertex of G. If v is adjacent to

a pendent vertex of G and dG(v) ≥ 2, v is called a support vertex. We denote by sup(G) the set

of all support vertices in G. A caterpillar is a tree such that the removal of all pendent vertices

yields a path. A tree that is not a caterpillar is said to be a non-caterpillar tree. Obviously,

if T is a tree, and T has a vertex v such that v 6∈ sup(T ) and dT (v) ≥ 3, then T is a non-

caterpillar tree. Let n, n1, n2, . . . , nr be r+1 positive integers with
∑r

i=1 ni +1 = n. We denote

by S(n;n1, n2, . . . , nr) the graph of order n obtained from vertex-disjoint paths Pn1
, Pn2

, . . . , Pnr

by adding an edge between a vertex u and a terminal vertex of Pni
for each i = 1, 2, . . . , r. For

example, S(n; 2, 2, n− 5) is the graph shown in Figure 2.
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Lemma 2.2 ([4]) Let T be a non-caterpillar tree of order n ≥ 7. Then ρ(T ) ≤ ρ(S(n; 2, 2, n−5))

with equality if and only if T ∼= S(n; 2, 2, n− 5).

For integer 2 ≤ ∆ ≤ n − 1, Bn,∆ denotes the tree of order n obtained from Pn−∆+1 by

attaching ∆−1 pendent vertices to a terminal vertex of Pn−∆+1. For example, Bn,4 is the graph

shown in Figure 2.

Lemma 2.3 ([4]) Let T be a tree of order n ≥ 5 with maximum degree ∆, where 2 ≤ ∆ ≤ n−1.

Then ρ(T ) ≤ ρ(Bn,∆) with equality if and only if T ∼= Bn,∆.

Let r ≥ 2 be an integer, and Pr = v1v2 · · · vr be a path in G. If dG(v1) ≥ 3, dG(vr) = 1,

and dG(vi) = 2 for 2 ≤ i ≤ r − 1, Pr is called a pendent path of length r − 1 in G. For a

nontrivial connected graph G with u ∈ V (G) and positive integers k and l, let Gu(k, l) be the

graph obtained from G by attaching two pendent paths of lengths k and l respectively at u, and

Gu(k, 0) be the graph obtained from G by attaching a pendent path of length k at u.

Lemma 2.4 ( [4]) Let G be a nontrivial connected graph with u ∈ V (G). For k ≥ l ≥ 1,

ρ(Gu(k, l)) < ρ(Gu(k + 1, l− 1)).
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Figure 3 Graphs G, G′ and G′′ in Lemma 2.5

Lemma 2.5 ([4]) Let G be a graph with three induced subgraphs G1, G2 and G3 such that

V (G1) ∩ V (G2) = {u}, V (G2) ∩ V (G3) = {v}, ∪3
i=1V (Gi) = V (G), |V (G1) \ {u}| ≥ 1, |V (G2) \

{u, v}| ≥ 1 and |V (G3)\ {v}| ≥ 1. Suppose that uv ∈ E(G2), NG2
(u)\ {v} = NG2

(v)\ {u} = V0,

u′ ∈ NG1
(u) and v′ ∈ NG3

(v). Let G′ = G−{uw : w ∈ V0}+{v′w : w ∈ V0} and G′′ = G−{vw :

w ∈ V0} + {u′w : w ∈ V0}. Graphs G, G′ and G′′ are depicted in Figure 3. Then ρ(G) < ρ(G′)

or ρ(G) < ρ(G′′).

5n-

( ,2,3)D n

5n-

( ,1, 4)D n

Figure 4 Graphs D(n, 1, 4) and D(n, 2, 3)

Let a, b and n be three positive integers with n ≥ a+ b + 2. Let Pn−a−b be a path of order

n−a−b with pendent vertices u and v. The dumbbell D(n, a, b) is the graph of order n obtained

from Pn−a−b by attaching a pendent vertices at u and attaching b pendent vertices at v. Let Tn,k

be the class of all trees with n vertices and k pendent vertices. If a + b = k, D(n, a, b) ∈ Tn,k.

For example, D(n, 1, 4) and D(n, 2, 3) are the trees with 5 pendent vertices. Trees D(n, 1, 4) and

D(n, 2, 3) are depicted in Figure 4.
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Lemma 2.6 ([5]) If T is a tree with the maximum distance signless Laplacian spectral radius

in Tn,k, then T ∼= D(n, a, b) for some positive integer a and b, where a+ b = k.

Lemma 2.7 ([2]) Let G be a connected graph on n vertices with m (m ≥ n) edges. If G̃ is the

connected graph obtained from G by deleting an edge, then ρ(G) ≤ ρ(G̃).

The Wiener index of a connected graph G, denoted by W (G), is the sum of distances between

all unordered pairs of vertices of G. A graph G is said to be transmission regular if trG(v) is a

constant for each v ∈ V (G).

Lemma 2.8 ([6]) Let G be a connected graph on n vertices. Then

ρ(G) ≥
4W (G)

n
=

2
∑

v∈V (G) trG(v)

n

with equality if and only if G is transmission regular.

Lemma 2.9 ([13]) Let G be a connected graph with the maximum transmission trmax(G). Then

ρ(G) ≤ 2trmax(G).

3. Distance signless Laplacian spectral radius of bicyclic graphs

In this section, we compare the distance signless Laplacian spectral radius of some special

graphs with ρ(B∗
n), and then use these results to determine the graph with the maximum distance

signless Laplacian spectral radius among all the bicyclic graphs with given order.

n 8 9 10 11 12 13 14

ρ(B∗

n) 39.3676 51.2270 64.5786 79.4165 95.7361 113.5338 132.8065

ρ(S(n; 2, 2, n− 5)) 38.9173 50.2532 62.9956 77.3149 93.1762 110.4357 129.3655

ρ(Bn,4) 38.1249 49.6770 62.7647 77.3678 93.4743 111.0759 130.1666

n 15 16 17 18 19

ρ(B∗

n) 153.5517 175.7673 199.4514 224.6025 251.2191

ρ(S(n; 2, 2, n− 5)) 149.6137 171.4942 194.8626 219.7151 246.0485

Table 1 Some values of ρ(B∗

n), ρ(S(n; 2, 2, n− 5)) and ρ(Bn,4)

Lemma 3.1 Let n ≥ 8. Then each of the following holds:

(i) ρ(S(n; 2, 2, n− 5)) < ρ(B∗
n);

(ii) ρ(Bn,4) < ρ(B∗
n).

Proof The vertices of B∗
n, S(n; 2, 2, n−5) and Bn,4 are labeled as in Figures 1 and 2, respectively.

(i) For 8 ≤ n ≤ 19, we can use computer to get ρ(S(n; 2, 2, n− 5)) and ρ(B∗
n) (see Table 1).

From Table 1, it is easy to see that ρ(S(n; 2, 2, n − 5)) < ρ(B∗
n). In the following, we suppose
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that n ≥ 20. Let x = (x1, x2, . . . , xn)
T be the principal eigenvector of Q(S(n; 2, 2, n − 5))

corresponding to ρ(S(n; 2, 2, n− 5)). It is easy to see that

dB∗

n
(u, v)− dS(n;2,2,n−5)(u, v) =



















































1, if u = vn−2 and v ∈ {v1, v2, . . . , vn−4},

−1, if u = vn−2 and v = vn−3,

1, if u = vn−1 and v ∈ {v1, v2, . . . , vn−3},

−2, ifu = vn−1 and v = vn−2,

−2, if u = vn and v = vn−3,

−3, if u = vn and v = vn−1,

0, otherwise.

Hence

ρ(B∗
n)− ρ(S(n; 2, 2, n− 5)) ≥ xT(Q(B∗

n)−Q(S(n; 2, 2, n− 5)))x

=
∑

1≤i<j≤n

(dB∗

n
(vi, vj)− dS(n;2,2,n−5)(vi, vj))(xi + xj)

2

=

n−4
∑

i=1

(xn−2 + xi)
2 − (xn−2 + xn−3)

2 +

n−3
∑

i=1

(xn−1 + xi)
2 − 2(xn−1 + xn−2)

2−

2(xn + xn−3)
2 − 3(xn + xn−1)

2. (3.1)

By Lemma 2.1, xn−3 = xn−2 and xn−1 = xn. By Perron-Frobenius Theorem, xi > 0 for

1 ≤ i ≤ n. Combining these results with n ≥ 20 and (3.1), we have

ρ(B∗
n)− ρ(S(n; 2, 2, n− 5))

≥
n−4
∑

i=1

(xn−3 + xi)
2 +

n−4
∑

i=1

(xn−1 + xi)
2 − 7x2

n−3 − 15x2
n−1 − 6xn−3xn−1

> 16x2
n−3 + 16x2

n−1 − 7x2
n−3 − 15x2

n−1 − 6xn−3xn−1

= (3xn−3 − xn−1)
2 ≥ 0.

Thus ρ(S(n; 2, 2, n− 5)) < ρ(B∗
n).

(ii) For 8 ≤ n ≤ 14, we can use computer to get ρ(Bn,4) and ρ(B∗
n) (see Table 1). From

Table 1, it is easy to see that ρ(Bn,4) < ρ(B∗
n). In the following, we suppose that n ≥ 15. Let

x = (x1, x2, . . . , xn)
T be the principal eigenvector of Q(Bn,4) corresponding to ρ(Bn,4). It is easy

to see that

dB∗

n
(u, v)− dBn,4

(u, v) =































1, if u = vn−1 and v ∈ {v1, v2, . . . , vn−3},

−1, if u = vn−1 and v = vn−2,

−1, if u = vn and v = vn−2,

−1, if u = vn and v = vn−1,

0, otherwise.

Hence

ρ(B∗
n)− ρ(Bn,4) ≥ xT(Q(B∗

n)−Q(Bn,4))x



On the distance signless Laplacian spectral radius of bicyclic graphs 295

=
∑

1≤i<j≤n

(dB∗

n
(vi, vj)− dBn,4

(vi, vj))(xi + xj)
2

=

n−3
∑

i=1

(xn−1 + xi)
2 − (xn−1 + xn−2)

2 − (xn + xn−2)
2 − (xn + xn−1)

2. (3.2)

By Lemma 2.1, we have xn−2 = xn−1 = xn. By Perron-Frobenius Theorem, xi > 0 for

1 ≤ i ≤ n. Combining these results with n ≥ 15 and (3.2),

ρ(B∗
n)− ρ(Bn,4) ≥

n−3
∑

i=1

(xn−1 + xi)
2 − 12x2

n−1 > 12x2
n−1 − 12x2

n−1 = 0.

Thus ρ(Bn,4) < ρ(B∗
n). 2

For a connected graph G, we denote by p(G) the number of the pendent vertices in G.

Lemma 3.2 Let T be a tree of order n ≥ 8.

(i) If T is a non-caterpillar tree, then ρ(T ) < ρ(B∗
n).

(ii) If T is a tree with maximum degree ∆(T ) ≥ 4, then ρ(T ) < ρ(B∗
n).

(iii) If p(T ) ≥ 5, then ρ(T ) < ρ(B∗
n).

(iv) Let G be a bicyclic graph of order n ≥ 8 and let T be a spanning tree of G. If T is a

non-caterpillar tree, or ∆(T ) ≥ 4, or p(T ) ≥ 5, then ρ(G) < ρ(B∗
n).

Proof (i) If T is a non-caterpillar tree with order n ≥ 8, by Lemma 2.2, we have ρ(T ) ≤

ρ(S(n; 2, 2, n−5)) with equality if and only if T ∼= S(n; 2, 2, n−5). By Lemma 3.1 (i), ρ(S(n; 2, 2, n−

5)) < ρ(B∗
n). Hence we have ρ(T ) < ρ(B∗

n).

(ii) Let ∆(T ) ≥ 4. If ∆(T ) = 4, by Lemma 2.3, ρ(T ) ≤ ρ(Bn,4). If ∆(T ) ≥ 5, by Lemmas

2.3 and 2.4, we have ρ(T ) ≤ ρ(Bn,∆) < ρ(Bn,4). Hence for any case, ρ(T ) ≤ ρ(Bn,4). By Lemma

3.1 (ii), ρ(Bn,4) < ρ(B∗
n). Thus ρ(T ) < ρ(B∗

n).

(iii) Let p(T ) ≥ 5. By Lemma 2.6, we have ρ(T ) ≤ ρ(D(n, a, b)) for some positive integers

a and b, where a + b = p(T ) ≥ 5. Without loss of generality, suppose that a ≤ b. Then b ≥ 3,

and D(n, a, b) is a tree with maximum degree ∆ ≥ 4. By Lemma 3.2 (ii), ρ(D(n, a, b)) < ρ(B∗
n).

Thus we have ρ(T ) < ρ(B∗
n).

(iv) Let G be a bicyclic graph of order n ≥ 8 and let T be a spanning tree of G. By Lemma

2.7, ρ(G) ≤ ρ(T ). If T is a non-caterpillar tree, or ∆(T ) ≥ 4, or p(T ) ≥ 5, by (i)–(iii) of Lemma

3.2, we have ρ(T ) < ρ(B∗
n). Thus ρ(G) < ρ(B∗

n). 2

Let n and i be two integers with 2 ≤ i ≤ n − 2. Let Pn−1 = v1v2 · · · vn−1 be a path with

order n− 1. We denote by Bi the bicyclic graph with n vertices obtained from Pn−1 by adding

one vertex vn and three edges vnvi−1, vnvi and vnvi+1. Let B1
n = {Bi : 2 ≤ i ≤ n− 2}.

Lemma 3.3 For any Bi ∈ B1
n, we have ρ(Bi) ≤ ρ(B∗

n) with equality if and only if i = 2 or

i = n− 2.

Proof Since B2
∼= B∗

n and Bn−2
∼= B∗

n, it is sufficient to prove that for 3 ≤ i ≤ n− 3, Bi is not

the graph with the maximum distance signless Laplacian spectral radius in B1
n. In the following,

we suppose that 3 ≤ i ≤ n− 3. Let x = (x1, x2, . . . , xn)
T be the principal eigenvector of Q(Bi)



296 Nannan XU and Aimei YU

corresponding to ρ(Bi). By Perron-Frobenius Theorem, xi > 0 for 1 ≤ i ≤ n. It is easy to see

that

dBi−1
(u, v)− dBi

(u, v) =











−1, if u = vn and v ∈ {v1, v2, . . . , vi−2},

1, if u = vn and v ∈ {vi+1, vi+2, . . . , vn−1},

0, otherwise.

Then we have

ρ(Bi−1)− ρ(Bi) ≥ xT(Q(Bi−1)−Q(Bi))x

=
∑

1≤i<j≤n

(dBi−1
(vi, vj)− dBi

(vi, vj))(xi + xj)
2

= −
i−2
∑

j=1

(xn + xj)
2 + (xn + xi+1)

2 +

n−1
∑

j=i+2

(xn + xj)
2. (3.3)

If
i−2
∑

j=1

(xn + xj)
2 ≤

n−1
∑

j=i+2

(xn + xj)
2,

by (3.3), we have ρ(Bi−1)− ρ(Bi) ≥ (xn + xi+1)
2 > 0, i.e., ρ(Bi−1) > ρ(Bi).

If
i−2
∑

j=1

(xn + xj)
2 >

n−1
∑

j=i+2

(xn + xj)
2,

from

dBi+1
(u, v)− dBi

(u, v) =











1, if u = vn and v ∈ {v1, v2, . . . , vi−1},

−1, if u = vn and v ∈ {vi+2, vi+3, . . . , vn−1},

0, otherwise,

we have

ρ(Bi+1)− ρ(Bi) ≥ xT(Q(Bi+1)−Q(Bi))x

=
∑

1≤i<j≤n

(dBi+1
(vi, vj)− dBi

(vi, vj))(xi + xj)
2

=
i−2
∑

j=1

(xn + xj)
2 + (xn + xi−1)

2 −
n−1
∑

j=i+2

(xn + xj)
2

> (xn + xi−1)
2 > 0,

i.e., ρ(Bi+1) > ρ(Bi).

Hence when 3 ≤ i ≤ n−3, Bi is not the graph with the maximum distance signless Laplacian

spectral radius in B1
n, which implies ρ(Bi) ≤ ρ(B∗

n) with equality if and only if i = 2 or i = n−2. 2

Let n, i and j be three integers with 2 ≤ i < j ≤ n − 2, and let Pn−2 = v2v3 · · · vn−1 be a

path with order n− 2. We denote by Bi,j the bicyclic graph with n vertices obtained from Pn−2

by adding two vertices v1, vn and four edges v1vi, v1vi+1, vnvj and vnvj+1. For example, B2,n−2

is the graph depicted in Figure 5. Let B2
n = {Bi,j : 2 ≤ i < j ≤ n− 2}.

Lemma 3.4 For any Bi,j ∈ B2
n, we have ρ(Bi,j) < ρ(B∗

n).
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Proof Suppose that G∗ maximizes the distance signless Laplacian spectral radius in B2
n. Let

S = {B2,3, B2,n−2} ∪ {Bi,i+1 : 3 ≤ i ≤ n− 3}. We claim

G∗ ∈ S. (3.4)

Let G∗ ∼= Bi,j . If i = 2 and 4 ≤ j ≤ n − 3, by Lemma 2.5, we have ρ(G∗) < ρ(Bi,j−1) or

ρ(G∗) < ρ(Bi,j+1), which is a contradiction. So when i = 2, we have j = 3 or j = n − 2, i.e.,

G∗ ∈ {B2,3, B2,n−2}. If 3 ≤ i ≤ n− 3 and i+ 2 ≤ j ≤ n− 2, by Lemma 2.5, ρ(G∗) < ρ(Bi−1,j)

or ρ(G∗) < ρ(Bi+1,j), which is a contradiction. So when 3 ≤ i ≤ n− 3, we must have j = i + 1,

i.e., G∗ ∈ {Bi,i+1 : 3 ≤ i ≤ n− 3}. From above, we have G∗ ∈ S.

Now we prove that for any graph G ∈ S, we have ρ(G) < ρ(B∗
n). If G ∼= B2,3, let G0 =

G− {v1v2, vnv4}; if G ∼= Bi,i+1 where 3 ≤ i ≤ n− 3, let G0 = G− {v1vi, vnvi+2}. Then G0 is a

spanning tree of G with maximum degree ∆(G0) ≥ 4. By Lemma 3.2 (iv), we have ρ(G) < ρ(B∗
n).

Suppose that G ∼= B2,n−2. The vertices of B∗
n and B2,n−2 are labeled as in Figures 1 and 5,

respectively. Let x = (x1, x2, . . . , xn)
T be the principal eigenvector of Q(B2,n−2) corresponding

to ρ(B2,n−2). It is easy to see that

dB∗

n
(u, v)− dB2,n−2

(u, v) =











1, if u = v1 and v ∈ {v3, v4, . . . , vn−1},

−1, if u = vn and v ∈ {v2, v3, . . . , vn−3},

0, otherwise.

Hence

ρ(B∗
n)− ρ(B2,n−2) ≥ xT(Q(B∗

n)−Q(B2,n−2))x

=
∑

1≤i<j≤n

(dB∗

n
(vi, vj)− dB2,n−2

(vi, vj))(xi + xj)
2

=

n−1
∑

i=3

(x1 + xi)
2 −

n−3
∑

i=2

(xn + xi)
2

=

n−3
∑

i=3

(x1 + xi)
2 + (x1 + xn−2)

2 + (x1 + xn−1)
2 − (xn + x2)

2 −
n−3
∑

i=3

(xn + xi)
2. (3.5)

By Lemma 2.1, we have x1 = x2 = xn−1 = xn. By Perron-Frobenius Theorem, xi > 0 for

1 ≤ i ≤ n. Combining these results with (3.5), we have

ρ(B∗
n)− ρ(B2,n−2) ≥ (x1 + xn−2)

2 > 0.

Thus ρ(B∗
n) > ρ(B2,n−2). Hence for any graph G ∈ S, we have ρ(G) < ρ(B∗

n). From (3.4), we

have ρ(Bi,j) < ρ(B∗
n) for any Bi,j ∈ B2

n. 2

Let Cn be a cycle with n vertices. Let C1
n be the unicyclic graph of order n obtained from

Cn−1 = v1v2 · · · vn−1v1 by adding one vertex vn and one edge vnv1 to Cn−1. Suppose that n, i, j

are three integers with 1 ≤ i < j ≤ n− 2. We denote by Ci,j the unicyclic graph with n vertices

obtained from Cn−2 = v1v2 · · · vn−2v1 by adding two vertices vn−1, vn and two edges vn−1vi, vnvj

to Cn−2. Let C2
n = {Ci,j : 1 ≤ i < j ≤ n− 2} and U∗

n = {Cn, C
1
n} ∪ C2

n.



298 Nannan XU and Aimei YU

,nB
-2 2

v
1

v
2

v
3 v

4 n
v

-3 n
v

-2 n
v

-1

n
v

Figure 5 Graph B2,n−2

Lemma 3.5 Let G be a bicyclic graph of order n ≥ 8 and let G′ be a spanning unicyclic

subgraph of G. If G′ ∈ U∗
n, we have ρ(G) < ρ(B∗

n).

Proof It is known that the Wiener index of path Pn is W (Pn) = n(n−1)(n+1)
6 (see [14]). So

W (B∗
n) = W (Pn−1) + trB∗

n
(vn) =

n(n−2)(n−1)
6 + 2 + (n−3)(n−2)

2 . By Lemma 2.8, we have

ρ(B∗
n) ≥

4W (B∗
n)

n
=

2

3
n2 +

20

n
−

26

3
. (3.6)

Let n ≥ 8, G ∈ Bn and G′ be a spanning unicyclic subgraph of G such that G′ ∈ U∗
n. By

Lemma 2.7, ρ(G) ≤ ρ(G′). Hence it suffices to prove that ρ(G′) < ρ(B∗
n). In the following, we

distinguish three cases:

Case 1. G′ ∼= Cn.

Since Cn is a transmission regular graph, by Lemma 2.8, we have ρ(Cn) = 2trCn
(v) for any

v ∈ V (Cn), i.e.,

ρ(Cn) =

{

n2

2 , if n is even,
n2−1

2 , if n is odd.

Then by (3.6), we have ρ(B∗
n) ≥

2
3n

2 + 20
n
− 26

3 > n2

2 ≥ ρ(Cn) when n ≥ 6.

Case 2. G′ ∼= C1
n.

Since

trmax(C
1
n) = trC1

n
(vn) =

{

n2+2n−4
4 , if n is even,

n2+2n−3
4 , if n is odd,

by Lemma 2.9, we have

ρ(C1
n) ≤ 2trmax(C

1
n) ≤

n2 + 2n− 3

2
. (3.7)

When n ≥ 10, by (3.6), ρ(B∗
n) ≥

2
3n

2 + 20
n
− 26

3 > n2+2n−3
2 ≥ ρ(C1

n). When n = 8, 9, from Table

1 and (3.7), we have ρ(B∗
8 ) ≈ 39.3676 > 38.5 ≥ ρ(C1

8 ) and ρ(B∗
9 ) ≈ 51.2270 > 48 ≥ ρ(C1

9 ). Thus

ρ(B∗
n) > ρ(C1

n) for n ≥ 8.

Case 3. G′ ∈ C2
n.

It is routine to verify that

trmax(G
′) = trG′(vn) ≤







trC1, n
2

(vn) =
n2+2n

4 , if n is even,

trC
1,

n−1
2

(vn) =
n2+2n−3

4 , if n is odd.

Then by Lemma 2.9,

ρ(G′) ≤ 2trmax(G
′) ≤

n2 + 2n

2
. (3.8)
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When n ≥ 11, by (3.6) and (3.8),

ρ(B∗
n) ≥

2

3
n2 +

20

n
−

26

3
>

n2 + 2n

2
≥ ρ(G′).

When n = 8, we have C2
8 = {C1,2, C1,3, C1,4}. By direct calculation, ρ(C1,2) ≤ 2trmax(C1,2) =

trC1,2
(v8) = 36, ρ(C1,3) ≤ 2trmax(C1,3) = 2trC1,3

(v8) = 38 and ρ(C1,4) ≈ 32.7178. Then from

Table 1, ρ(B∗
8) ≈ 39.3676 > ρ(G′) for G′ ∈ C2

8 . From Table 1 and (3.8), when G′ ∈ C2
9 , we have

ρ(B∗
9 ) ≈ 51.2270 > 49.5 ≥ ρ(G′), and when G′ ∈ C2

10, we have ρ(B∗
10) ≈ 64.5786 > 60 ≥ ρ(G′).

Hence ρ(B∗
n) > ρ(G′) for G′ ∈ C2

n and n ≥ 8. This completes the proof of Lemma 3.5. 2
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Figure 6 Graphs ∞m(p, q) and θm(s, p, q)

Let m, p and q be integers with 3 ≤ p ≤ q ≤ m − 2. Let Cp = u1u2 · · ·upu1 and Cq =

w1w2 · · ·wqw1 be two cycles, and P = v0v1 · · · vm−p−qvm−p−q+1 be a path of length m−p−q+1.

We denote by ∞m(p, q) the bicyclic graph with m vertices obtained from Cp, Cq and P by

identifying u1 with v0 and identifying w1 with vm−p−q+1, wherem−p−q+1 ≥ 0 andm−p−q+1 =

0 means identifying u1 and w1. Graph ∞m(p, q) is depicted in Figure 6.

Let m, s, p and q be integers with 0 ≤ s ≤ p ≤ q ≤ m − 3 and s + p + q = m − 2. Let

P ′ = u0u1 · · ·usus+1, P
′′ = v0v1 · · · vpvp+1 and P ′′′ = w0w1 · · ·wqwq+1 be three paths of length

s+ 1, p+ 1 and q + 1, respectively. We denote by θm(s, p, q) the bicyclic graph with m vertices

obtained from P ′, P ′′ and P ′′′ by identifying u0, v0 and w0 to a new vertex x and identifying

us+1, vp+1 and wq+1 to a new vertex y. Graph θm(s, p, q) is depicted in Figure 6.
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Figure 7 Graphs θ4(0, 1, 1), θ5(0, 1, 2), θ6(0, 2, 2) and θ5(1, 1, 1)

For a bicyclic graph G of order n, the base of G, denoted by Ĝ, is the unique minimal bicyclic

subgraph of G. It is easy to see that there are no pendent vertices in Ĝ and G can be obtained

from Ĝ by attaching trees to some vertices of Ĝ. We denote by T (v) the tree attaching to

v ∈ V (Ĝ). It is easy to see that
∑

v∈V (Ĝ)(|V (T (v))| − 1) + |V (Ĝ)| = n.



300 Nannan XU and Aimei YU

Lemma 3.6 Let G be a bicyclic graph of order n ≥ 8 and Ĝ be the base of G. Denote

M = {θ4(0, 1, 1), θ5(0, 1, 2), θ6(0, 2, 2), θ5(1, 1, 1)}. If G ≇ B∗
n and Ĝ ∈ M, then ρ(G) < ρ(B∗

n).

Proof Let G and Ĝ satisfy the assumptions. Let U = {v ∈ V (Ĝ) : |V (T (v))| ≥ 2}. Assume

that the vertices of graphs in M are labeled as in Figure 7. If y ∈ U , let G0 = G− {xv1, xw1},

then G0 is a spanning tree of G with maximum degree ∆(G0) ≥ 4. By Lemma 3.2 (iv), we have

ρ(G) < ρ(B∗
n). Hence in the following, we assume that x /∈ U and y /∈ U . Let G′ be the bicyclic

graph obtained from G by changing every tree T (v) into a pendent path of length |V (T (v))| − 1

at v ∈ V (Ĝ). By Lemma 2.4, ρ(G) ≤ ρ(G′). In the following, it suffices to prove ρ(G′) < ρ(B∗
n).

Since n ≥ 8, |U | ≥ 1. If Ĝ ∼= θ4(0, 1, 1), by symmetry, we only need to consider U = {v1} or

U = {v1, w1}. If U = {v1}, by G 6∼= B∗
n and Lemma 2.4, ρ(G) < ρ(B∗

n). If U = {v1, w1}, by

Lemma 3.3, ρ(G′) < ρ(B∗
n).

Now we assume that Ĝ ∈ {θ5(0, 1, 2), θ6(0, 2, 2), θ5(1, 1, 1)}. By Lemma 3.2 (iv), in the fol-

lowing, it suffices to prove that G′ has a spanning tree G0 such that G0 is a non-caterpillar

tree.

Case 1. Ĝ ∼= θ5(0, 1, 2).

If there is a vertex v ∈ V (Ĝ) such that |V (T (v))| ≥ 3, we assume that v = v1 and let

G0 = G′ − {xy, w1w2}. Since dG0
(v1) = 3 and v1 6∈ sup(G0), G0 is a spanning non-caterpillar

tree of G′. For other cases, the argument is similar. If |V (T (v))| = 2 for every v ∈ U , by n ≥ 8,

we have U = {v1, w1, w2}. Let G0 = G′ − {xv1, w1w2}. Since dG0
(y) = 3 and y 6∈ sup(G0), G0

is a spanning non-caterpillar tree of G′.

Case 2. Ĝ ∼= θ6(0, 2, 2).

By symmetry, we assume v1 ∈ U , and let G0 = G′ − {v1v2, yw2}. Since dG0
(x) = 3 and

x 6∈ sup(G0), G0 is a spanning non-caterpillar tree of G′.

Case 3. Ĝ ∼= θ5(1, 1, 1).

By symmetry, we assume that {v1, w1} ⊆ U or U = {v1}. If {v1, w1} ⊆ U , let G0 =

G′ −{xv1, xw1}. Since dG0
(y) = 3 and y 6∈ sup(G0), G0 is a spanning non-caterpillar tree of G′.

If U = {v1}, by n ≥ 8, we have |V (T (v1))| ≥ 4, and then we let G0 = G′ − {xu1, yw1}. Since

dG0
(v1) = 3 and v1 6∈ sup(G0), G0 is a spanning non-caterpillar tree of G′. This completes the

proof. 2

Proof of Theorem 1.1 Suppose that G and Ĝ satisfy the assumptions. Let U = {v ∈ V (Ĝ) :

|V (T (v))| ≥ 2}. Denote by G′ the graph obtained from G by changing each tree T (v) into

a pendent path of length |V (T (v))| − 1 at v ∈ Ĝ. By Lemma 2.4, ρ(G) ≤ ρ(G′). To prove

ρ(G) < ρ(B∗
n), it suffices to prove that ρ(G′) < ρ(B∗

n). Note that by Lemmas 3.2 (iv), 3.4 and

3.5, we have ρ(G′) < ρ(B∗
n), if G

′ satisfies one of the following conditions:

(C1) G′ has a spanning tree G0 such that G0 is a non-caterpillar tree or p(G0) ≥ 5 or

∆(G0) ≥ 4;

(C2) G′ ∈ B2
n;

(C3) G′ has a spanning unicyclic subgraph G0 ∈ U∗
n.

So to prove ρ(G′) < ρ(B∗
n), it suffices to prove that G′ satisfies one of the above three conditions.
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We distinguish two cases:

Case 1. Ĝ ∼= ∞m(p, q) (p ≤ q).

The vertices of ∞m(p, q) are labeled as in Figure 6. If q ≥ 5, let G0 = G′ − {u1u2, w3w4}.

Since w1 6∈ sup(G0) and dG0
(w1) ≥ 3, G0 is a spanning non-caterpillar tree of G′, i.e., G′ satisfies

(C1). If there is a vertex vi ∈ U for 0 ≤ i ≤ m− p − q + 1, let G0 = G′ − {u2u3, w2w3}. Then

G0 is a spanning tree of G′ with p(G0) ≥ 5, i.e., G′ satisfies (C1). If m − p − q + 1 = 0, let

G0 = G′ − {u2u3, w2w3}. Then G0 is a spanning tree of G′ with ∆(G0) ≥ 4, i.e., G′ satisfies

(C1). Thus in the following we assume that 3 ≤ p ≤ q ≤ 4, vi /∈ U for 0 ≤ i ≤ m− p− q+1 and

m− p− q + 1 ≥ 1.

Subcase 1.1. (p, q) = (3, 3), i.e., Ĝ ∼= ∞(3, 3).

If {u2, u3} ⊆ U , let G0 = G′ − {u2u3, w1w2}. Since u1 6∈ sup(G0) and dG0
(u1) = 3, then G0

is a spanning non-caterpillar tree of G′, i.e., G′ satisfies (C1). For {w2, w3} ⊆ U , the argument

is similar. Thus by symmetry we can assume that U = {u2} or U = {u2, w2}. Then G′ ∈ B2
n,

i.e., G′ satisfies (C2).

Subcase 1.2. (p, q) = (3, 4) or (p, q) = (4, 4).

If w2 ∈ U , let G0 = G′ − {w2w3, u1u2}. Since w1 6∈ sup(G0) and dG0
(w1) = 3, then G0 is a

spanning non-caterpillar tree of G′, i.e., G′ satisfies (C1). For w4 ∈ U , the argument is similar.

Assume that {w2, w4} ∩ U = ∅. Since m− p − q + 1 ≥ 1, |V (G′) \ ({w2, w4} ∪ V (T (w3)))| ≥ 4.

Let x be the principal eigenvector of Q(G′) corresponding to ρ(G′). By Lemma 2.1, xw2
= xw4

.

By Perron-Frobenius Theorem, xv > 0 for v ∈ V (G′). Let G0 = G′ − {w1w2}+ {w2w4}. Since

dG0
(u, v)− dG′(u, v) =











1, if u = w2 and v ∈ {V (G′) \ ({w2, w4} ∪ V (T (w3)))},

−1, if u = w2 and v = w4,

0, otherwise,

we have

ρ(G0)− ρ(G′) ≥ xT(Q(G0)−Q(G′))x

=
∑

v∈V (G′)\({w2,w4}∪V (T (w3)))

(xw2
+ xv)

2 − (xw2
+ xw4

)2

> 4x2
w2

− 4x2
w2

= 0,

i.e., ρ(G′) < ρ(G0).

If p = 3, then Ĝ0
∼= ∞m(3, 3). By the argument similar to Subcase 1.1, we have ρ(G0) <

ρ(B∗
n). Hence ρ(G′) < ρ(B∗

n) when Ĝ ∼= ∞m(3, 4).

If p = 4, then Ĝ0
∼= ∞m(4, 3). By the argument similar to the above, we can get ρ(G0) <

ρ(B∗
n). Thus ρ(G

′) < ρ(B∗
n) when Ĝ ∼= ∞m(4, 4).

Case 2. Ĝ ∼= θm(s, p, q).

Assume that the vertices of θm(s, p, q) are labeled as in Figure 6. If Ĝ ∈ {θ4(0, 1, 1), θ5(0, 1, 2),

θ6(0, 2, 2), θ5(1, 1, 1)} and G ≇ B∗
n, from Lemma 3.6, we can get ρ(G) < ρ(B∗

n).

If s = 0, p ≥ 2, and q ≥ 3, let G0 = G′ − {xv1, w1w2}; if s ≥ 1, p ≥ 2, and q ≥ 2, let

G0 = G′ −{xv1, xw1}. For any case, G0 is a spanning non-caterpillar tree of G′, i.e., G′ satisfies
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(C1).

Now we assume that s = 0, p = 1, q ≥ 3 or s = 1, p = 1, q ≥ 2. If y ∈ U , let G0 =

G′ − {xv1, xw1}. Then G0 is a spanning tree of G′ with ∆(G0) ≥ 4, i.e., G′ satisfies (C1). For

x ∈ U , the argument is similar. Hence in the following, we assume that {x, y} ∩ U = ∅.

If v1 ∈ U , when s = 0, p = 1, q ≥ 3, let G0 = G′ −{xv1, w1w2}; when s = 1, p = 1, q ≥ 2, let

G0 = G′ − {xv1, xw1}. Then G0 is a spanning non-caterpillar tree of G′, i.e., G′ satisfies (C1).

When s = 1, p = 1, q ≥ 2, the argument is similar for u1 ∈ U . So in the following we suppose

that {x, y, u1, v1} ∩ U = ∅.

If there is vertex wi (1 ≤ i ≤ q) such that |V (T (wi))| ≥ 3, i.e., G′ has a pendent path of

length no less than 2 at vertex wi (1 ≤ i ≤ q), let G1 = G′−{xu1}. Then the length of the unique

cycle in G1 is at least 5. So we can find one edge uv on the cycle of G1 such that dG1
(wi, u) ≥ 2

and dG1
(wi, v) ≥ 2. Let G0 = G1−{uv}. Then G0 is a spanning non-caterpillar tree of G′. Now

we assume tht |V (T (wi))| = 2 for each wi ∈ U .

If s = 0, p = 1, q ≥ 3, when p(G) ≥ 3, let G0 = G − {xv1, xw1}, and when p(G) ≤ 2, let

G2 = G − {xy}. If s = 1, p = 1, q ≥ 2, when p(G) ≥ 2, let G0 = G − {xu1, xv1}, and when

p(G) ≤ 1, let G2 = G − {xu1}. Then G0 is a spanning tree of G′ with p(G0) ≥ 5 (G′ satisfies

(C1)), and G2 ∈ U∗
n (G′ satisfies (C3)). This completes the proof of Theorem 1.1. 2
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