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1. Introduction

Applications of generalized convexity cover a broad area in mathematical programming, in

which optimality criteria and duality relations make a dominant place. Hanson [1] considered

sufficient conditions (Khun Tucker-conditions) for the existence of solution of programming prob-

lems with convexity. Then Hanson and Mond [2] obtained these conditions and duality results

for generalized convexity. Vial [3] studied weakly and strongly convex sets and defined ρ-convex

function. Preda [4] defined (F, ρ)-convex functions and obtained duality results under the as-

sumption of (F, ρ)-convexity. Liang et al. [5] generalized convexity to (F, α, ρ, d)-convexity and

founded optimality conditions and duality related results in nonlinear fractional programming.

Yuan et al. [6] expanded the concept of (F, α, ρ, d)-convexity to (C,α, ρ, d)-convexity. Gulati and

Saini [7] introduced higher order (F, α, β, ρ, d)-convexity and applied its concept in fractional

programming for obtaining duality results.

A well known class of generalized convexity, namely E-convexity performs a significant role

in mathematical programming. Youness [8] gave the concept of E-convexity and designed some

results of E-convex functions in programming problem. Then Youness [9,10] obtained necessary

and sufficient optimality conditions for E-convex programming and discussed E-Fritz John and

E-KT (E-Khun Tucker) conditions. Chen [11] considered semi E-convex functions and its re-

lated some properties. Syau and Lee [12] produced some properties of E-convex functions with

the concept of E-quasiconvex functions. Megahed et al. [13] designed a combined interactive
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approach for multi-objective E-convex programming. Later, Megahed et al. [14] also defined

E-differentiable function and used this definition with KT-conditions in producing optimal so-

lutions of programming problems with E-differentiable function. Then Iqbal et al. [15] defined

geodesic E-convex sets, geodesic E-convex functions and E-epigraphs.

2. Definitions and preliminaries

Some definitions and illustrative example, are given:

Definition 2.1 E-convex set. A set M ⊆ Rn, n is said to be an E-convex set with respect to

an operator E : Rn → Rn if

tE(x) + (1 − t)E(y) ∈ M,

for each x, y ∈ M and 0 ≤ t ≤ 1 (see [8]).

Definition 2.2 E-convex function. A real valued function ϕ : M ⊆ Rn → R, R is said to be

an E-convex function with respect to an operator E : Rn → Rn on M . If M is an E-convex set

and for each x, y ∈ M and 0 ≤ t ≤ 1

ϕ(tE(x) + (1− t)E(y)) ≤ tϕ(E(x)) + (1− t)ϕ(E(y)).

If ϕ(tE(x) + (1 − t)E(y)) ≥ tϕ(E(x)) + (1 − t)ϕ(E(y)) then ϕ is called E-concave function on

M .

Definition 2.3 A point x̄ is an optimal solution of the problem (P) if and only if ϕ(E(x̄)) ≤

ϕ(E(x))∀x ∈ M , M is an E-convex set.

Definition 2.4 Let E : Rn → Rn be an operator and ϕ is an E-convex and E-differentiable

function on an E-convex set M , then ϕ is said to be higher order (F, α, β, ρ, d, E)-convex function

at x̄ onM if for all x ∈ M , then there exists a vector p ∈ Rn, real valued functions α, β : M×M →

R+ − {0} and a real valued function d : M ×M → R and a real number ρ such that

ϕ(E(x)) − ϕ(E(x̄)) ≥F (E(x), E(x̄);α(x, x̄)[∇ϕ(E(x̄)) +∇pK(E(x̄), p)])+

β(x, x̄)(K(E(x̄), p)−
1

2
pT∇pK(E(x̄), p)) + ρd2(x, x̄).

We consider the following nonlinear programming problem:

(NPE) Minimize ϕ(E(x)),

Subject to M = {x ∈ Rn : h(E(x)) ≤ 0, x ∈ M},

where the function ϕ and a set M are E-convex with respect to the map E : Rn → Rn and the

functions ϕ : M → R and h = (h1, h2, h3, . . . , hm) : M → Rm are E-differentiable on X . Let

S = x ∈ M : h(E(x)) ≤ 0 denote the set of all feasible solutions for (NPE).

Definition 2.5 Let E : Rn → Rn be an operator and f be E-convex function on an E-convex
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set M . The functional F : M ×M ×Rn → R is said to be sublinear in the third variable, if for

all x, x̄ ∈ M .

(i) F (E(x), E(x̄); η1 + η2) ≤ F (E(x), E(x̄); η1) + F (E(x), E(x̄); η2) for all η1, η2 ∈ Rn.

(ii) F (E(x), E(x̄);αa) = αF (E(x), E(x̄); a) for all α ∈ R+ and a ∈ Rn.

From (ii) it is clear that F (E(x), E(x̄); 0) = 0.

Based on the concept of the sublinear functional, we now introduce the class of higher-order

(F, α, β, ρ, d, E)-convex functions as follows:

Let M be an convex open set and M ⊂ Rn. Let ϕ : M → R, K : X × Rn → R be E-

differentiable functions, F : M × M × Rn → R be a sublinear functional in the third variable

and d : M ×M → R. Further, let α, β : M ×M → R+\0 and ρ ∈ R.

Definition 2.6 Let E : Rn → Rn be an operator and f be E-convex function on an E-convex

set M . The function ϕ is said to be higher-order (F, α, β, ρ, d, E)-convex at x̄ with respect to K,

if for all x ∈ M and ρ ∈ Rn,

ϕ(E(x)) − ϕ(E(x̄)) ≥F (E(x), E(x̄;α(x, x̄){∇ϕ(E(x̄)) +∇pK(x̄, p})+

β(x, x̄){K(E(x̄), p)− pT∇pK(E(x̄), p)}+ ρd2(x, x̄).

Remark 2.7 Let E(x) = x. Then this gives results of [7].

Remark 2.8 Let K(x̄, p) = 0.

(i) Then the above definition becomes that of (F, α, β, ρ, d, E)-convex function.

(ii) If α(x, x̄) = 1, we obtain the definition of (F, ρ, E)-convex function.

(iii) If α(x, x̄) = 1, ρ = 0 and F (E(x), E(x̄);∇ϕ(E(x̄))) = ζT(E(x), E(x̄)∇ϕ(E(x̄))) for a

certain map ζ : M ×M → Rn, then (F, α, β, ρ, d, E)-convexity reduces to the E-convexity.

(iv) If F is E-convex with respect to the third argument, then we obtain the definition of

(F, α, β, ρ, d, E)-convex function.

Remark 2.9 Let β(x, x̄) = 1.

(i) If K(E(x̄), p) = 1
2p

T∇2ϕ(E(x̄)), then the above inequality reduces to the definition of

second order (F, α, ρ, d, E)-convex function. And if E(x̄) = x̄ then it shows result of [16].

(ii) α(x, x̄) = 1, ρ = 0,K(E(x̄), p) = 1
2p

T∇2ϕ(E(x̄)) and F (E(x), E(x̄); a) = ζT(E(x), E(x̄)a),

where ζ : M ×M → Rn, the above definition becomes that of ζ-E-convexity. And if E(x̄) = x̄,

then it shows result of [17].

Proposition 2.10 (Kuhn-Tucker Necessary Optimality Conditions [18]) Let x̄ ∈ M be an op-

timal solution of (NPE) and let h satisfy a constraint qualification. Then there exists v̄ ∈ Rm

such that

∇ϕ(E(x̄)) +∇h(E(x̄))v̄ = 0, (2.1)

v̄Th(E(x̄) = 0, (2.2)
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v̄ ≥ 0, h(E(x̄)) ≤ 0, (2.3)

where ∇h(E(x̄)) denotes the n×m matrix [∇h1(E(x̄)),∇h2(E(x̄)),∇h3(E(x̄)), . . . ,∇hm(E(x̄))].

The following example illustrates our results.

Example 2.11 We consider the function ϕ : M ⊆ R+ → R such that ϕ(x) = xn − 2x. If

F (x, x̄, α) = α(x − x̄2)− 3x, d(x, x̄) = x− x̄,

α(x, x̄) =
x+ x̄2 + 1

3
, β(x, x̄) =

x+ x̄2 + 1

3

and the operator E(x) = x2, then for ρ = 0, ϕ is higher-order (F, α, ρ, d, E)-convex function at

x̄ = 0 with respect to p,−∞ < p ≤ 1.

3. Sufficient optimality conditions

In this section, we establish Kuhn-Tucker sufficient optimality conditions for (NPE) under

(F, α, β, ρ, d, E)-convexity assumptions.

Theorem 3.1 Let x̄ ∈ M and v̄ ∈ Rm satisfy (2.1)–(2.3). If

(i) ϕ is higher-order (F, α, β, ρ1, d, E)-convex at x̄ with respect to K,

(ii) v̄Th is higher-order (F, α, β, ρ2, d, E)-convex at x̄ with respect to −K, and

(iii) ρ1 + ρ2 ≥ 0,

then x̄ is an optimal solution of the problem (NPE).

Proof Let x̄ ∈ M since ϕ is a higher-order (F, α, β, ρ1, d, E)-convex at x̄ with respect to K, for

all x ∈ M , we have

ϕ(E(x)) − ϕ(E(x̄)) ≥F (E(x), E(x̄);α(x, x̄)[∇ϕ(E(x̄)) +∇PK(E(x̄), p)])+

β(x, x̄)(K(E(x̄), p)−
1

2
pT∇pK(E(x̄), p)) + ρ1d

2(x, x̄). (3.1)

Using (2.1), we get

ϕ(E(x)) − ϕ(E(x̄)) ≥F (E(x), E(x̄);α(x, x̄)[∇h(E(x̄))v̄ +∇PK(E(x̄), p)])+

β(x, x̄)(K(E(x̄), p)−
1

2
pT∇pK(E(x̄), p)) + ρ1d

2(x, x̄). (3.2)

Also v̄Th is higher-order (F, α, β, ρ2, d, E)-convex at x̄ with respect to −K. Therefore,

v̄Th(E(x)) − v̄Th(E(x̄)) ≥F (E(x), E(x̄);α(x, x̄)[∇v̄Th(E(x̄))−∇PK(E(x̄), p)])−

β(x, x̄)(K(E(x̄), p)−
1

2
pT∇pK(E(x̄), p)) + ρ2d

2(x, x̄). (3.3)

Since v̄Th(E(x̄)) = 0, v̄ ≥ 0 and h(E(x)) < 0, we get

0 ≥F (E(x), E(x̄);α(x, x̄)[∇v̄Th(E(x̄))−∇PK(E(x̄), p)])−

β(x, x̄)(K(E(x̄), p)−
1

2
pT∇pK(E(x̄), p)) + ρ2d

2(x, x̄). (3.4)
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Adding the inequalities (3.2) and (3.4), we obtain

ϕ(E(x)) − ϕ(E(x̄)) ≥ (ρ1 + ρ2)d
2(x, x̄),

which by Hypothesis (iii) implies, ϕ(E(x)) ≥ ϕ(E(x̄)). Hence x̄ is an optimal solution of the

problem (NPE). 2

4. Mond Weir duality

In this section, we establish weak and strong duality theorems for the following Mond Weir

dual (MDE) for (NPE):

(MD) Maximize ϕ(E(u)),

Subject to ∇ϕ(E(u)) +∇h(E(u))v = 0, (4.1)

vTh(E(u)) ≥ 0, (4.2)

u ∈ X, v ≥ 0, v ∈ Rm. (4.3)

Theorem 4.1 (Weak Duality) Let x and (u, v) be feasible solutions of (NPE) and (MDE),

respectively. Let

(i) ϕ be higher-order (F, α, β, ρ1, d, E)-convex at x̄ with respect to K.

(ii) vTh be higher-order (F, α, β, ρ2, d, E)-convex at u with respect to −K, and

(iii) ρ1 + ρ2 ≥ 0.

Then ϕ(E(x)) ≥ ϕ(E(u)) is an optimal solution of the problem (NPE).

Proof By Hypothesis (i), we have

ϕ(E(x)) − ϕ(E(u)) ≥F (E(x), E(u);α(x, ū)[∇ϕ(E(u)) +∇PK(E(u), p)])+

β(x, u)(K(E(u), p)− pT∇pK(E(u), p)) + ρ1d
2(E(x), E(u)). (4.4)

Also Hypothesis (ii) yields

vTh(E(x)) − vTh(E(u)) ≥F (E(x), E(u);α(x, ū)[∇vTh(E(u))−∇PK(E(u), p)])−

β(x, u)(K(E(u), p)− pT∇pK(E(u), p)) + ρ2d
2(x, u).

By (4.2), (4.3) and h(E(x)) ≤ 0 it follows that

0 ≥F (E(x), E(u);α(x, ū)[∇vTh(E(u))−∇PK(E(u), p)])−

β(x, u)(K(E(u), p)− pT∇pK(E(u), p)) + ρ2d
2(x, u). (4.5)

Adding the inequalities (4.4), (4.5) and applying the properties of sublinear functional, we

obtain

ϕ(E(x)) − ϕ(E(u)) ≥F (E(x), E(u);α(x, ū)[∇ϕ(E(u)) +∇vTh(E(u))])+

ρ1d
2(x, u) + ρ2d

2(x, u)
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which in view of (4.1) implies

ϕ(E(x)) − ϕ(E(u)) ≥ (ρ1 + ρ2)d
2(x, u).

Using Hypothesis (iii) in the above inequality, we get

ϕ(E(x)) ≥ ϕ(E(u)). 2

Theorem 4.2 (Strong Duality) Let x̄ be an optimal solution of the problem (NPE) and let

h satisfy a constraint qualification. Further, let Theorem 4.1 hold for the feasible solution x̄ of

(NPE) and all feasible solutions (u, v) of (MDE). Then there exists a v̄ ∈ R+
m such that (x̄, v̄)

is an optimal solution of (MDE).

Proof Since x̄ is an optimal solution for the problem (NPE) and h satisfies a constraint qual-

ification, by Proposition 2.10 there exists a v̄ ∈ R+
m such that the Kuhn-Tucker conditions,

(2.1)–(2.3) hold. Hence (x̄, v̄) is feasible for (MDE).

Now let (u, v) be any feasible solution of (MDE). Then by weak duality (Theorem 4.1), we

have

ϕ(x̄) ≥ ϕ(u).

Therefore, (x̄, v̄) is an optimal solution of (MDE). 2

5. Higher-order (F, α, β, ρ, d, E)-convexity in fractional programming

Let Y be an E-convex set with respect to the map E : R → R and function ϕ : Y → R be

defined as

ϕ =
f(E(x))

g(E(x))
,

where f, g : Y → R is defined on Y with f(E(x)) ≥ 0 and g(E(x)) > 0. Then we consider

the following fractional programming problem (FPE) from the nonlinear programming problem

(NPE)

Min
f(E(x))

g(E(x))
,

sub to h(E(x)) ≤ 0, x ∈ X.

Then we obtain some following results under the assumptions of higher-order (F, α, β, ρ, d, E)-

convexity of the ratio f(E(x))
g(E(x)) .

Theorem 5.1 Let f(x) and −g(x) be two higher-order (F, α, β, ρ, d, E)-convex functions at

x̄ with respect to the same function K. Then the ratio function f(x)
g(x) is also a higher-order

(F, α, β, ρ, d, E)-convex function at x̄ with respect K̄, where

ᾱ(x, x̄) = α(x, x̄)
g(E(x̄))

g(E(x))
,
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β̄(x, x̄) = β(x, x̄)
g(E(x̄))

g(E(x))
,

K̄(E(x̄), p) = [
1

g(E(x̄))
+

f(E(x̄))

g2(E(x̄))
]K(E(x̄), p),

d̄(x, x̄) = [
1

g(E(x))
+

f(E(x̄))

g(E(x̄))g(E(x))
]1/2d(x, x̄).

Proof Since f(x) and −g(x) are higher-order (F, α, β, ρ, d, E)-convex functions at x̄ with respect

to the function K, we have

f(E(x)− f(E(x̄)) ≥F (x, x̄;α(x, x̄){∇f(E(x̄)) +∇pK(E(x̄), p)})+

β(x, x̄){K(E(x̄), p)− pT∇pK(E(x̄), p)}+ ρd2(x, x̄)

and

−g(E(x)) + g(E(x̄)) ≥F (x, x̄;α(x, x̄){∇g(E(x̄)) +∇pK(E(x̄), p)})+

β(x, x̄){K(E(x̄), p)− pT∇pK(E(x̄), p)}+ ρd2(x, x̄),

also

f(E(x))

g(E(x))
−

f(E(x̄))

g(E(x̄))
=

1

g(E(x))
[f(E(x)) − f(E(x̄))]+

f(E(x̄))

g(E(x))g(E(x̄))
[−g(E(x)) + g(E(x̄))].

By sub-linearity of function F and above inequalities, we have

f(E(x))

g(E(x))
−

f(E(x̄))

g(E(x̄))
≥

1

g(E(x))
F (x, x̄;α(x, x̄){∇f(E(x̄)) +∇pK(E(x̄), p)})+

1

g(E(x))
(β(x, x̄){K(E(x̄), p)− pT∇pK(E(x̄), p)}+ ρd2(x, x̄))+

f(E(x̄))

g(E(x̄))g(E(x))
F (x, x̄;α(x, x̄){−∇g(E(x̄)) +∇pK(E(x̄), p)})+

f(E(x̄))

g(E(x̄))g(E(x))
(β(x, x̄){K(E(x̄), p)− pT∇pK(E(x̄), p)}+ ρd2(x, x̄))

= F (x, x̄;
α(x, x̄)

g(E(x))
{∇f(E(x̄)) +∇pK(E(x̄), p)})+

F (x, x̄;α(x, x̄)
f(E(x̄))

g(E(x̄))g(E(x))
{−∇g(E(x̄)) +∇pK(E(x̄), p)})+

β(x, x̄)[
1

g(E(x))
+

f(E(x̄))

g(E(x̄))g(E(x))
]{K(E(x̄), p)− pT∇pK(E(x̄), p)}+

ρ[
1

g(E(x))
+

f(E(x̄))

g(E(x̄))g(E(x))
]d2(x, x̄)

= F (x, x̄;α(x, x̄)
g(E(x̄))

g(E(x))
{∇

f(E(x̄))

g(E(x̄))
+ [

1

g(E(x))
+

f(E(x̄))

g2(E(x̄))
]∇pK(E(x̄), p)})+

β(x, x̄)
g(E(x̄))

g(E(x))
[

1

g(E(x̄))
+

f(E(x̄))

g2(E(x̄))
]{K(E(x̄), p)− pT∇pK(E(x̄), p)}+
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ρ[
1

g(E(x))
+

f(E(x̄))

g(E(x̄))g(E(x))
]d2(x, x̄).

Therefore,

f(E(x))

g(E(x))
−

f(E(x̄))

g(E(x̄))
≥F (x, x̄;α(x, x̄)[

f(E(x̄))

g(E(x̄))
+∇pK(E(x̄), p)])+

β̄(x, x̄){K(E(x̄), p)− pT∇pK(E(x̄), p)} + ρd2(x, x̄).

This shows that the ratio function f(x)
g(x) is a higher-order (F, α, β, ρ, d, E)-convex function at x̄

with respect to K̄. It follows from the relation between (FPE) and its Mond-Weir dual (MFDE)

Max
f(E(x))

g(E(x))
,

subject to ∇(
f(E(x))

g(E(x))
) +∇h(E(x))v = 0,

vTh(E(u)) ≥ 0,

u ∈ M, v ≥ 0, v ∈ Rn. 2

Theorem 5.2 (Weak Duality) Let E(x) and (E(u), E(v)) be feasible solutions of (FPE) and

(MFDE), respectively, and

(i) f(x) and −g(x) be two higher-order (F, α, β, ρ1, d, E)-convex functions at u with respect

to K.

(ii) f(x) and vTh be higher-order (F, α, β, ρ2, d, E)-convex functions at u with respect to

−K̄, where ᾱ, β̄, K̄ and d̄ are as given in Theorem 5.1, and

(iii) ρ1 + ρ2 ≥ 0. Then

f(E(x))

g(E(x))
≥

f(E(u))

g(E(u))
.

Theorem 5.3 (Strong Duality) Let E(x̄) be an optimal solution of (FPE) and let h satisfy a

constraint qualification. Further, if Theorem 5.2 holds for the feasible solution E(x̄) of (FPE)

and all feasible solutions (E(u), E(v)) of (MFDE), then there is a v̄ ∈ Rn
+ such that (E(x̄), E(v̄))

is an optimal solution of (MFDE).

6. Wolfe duality

The Wolfe dual (NPE) and (FPE) are, respectively,

Max ϕ(E(u)) + vth(E(u)),

subject to ∇ϕ(E(u))) +∇h(E(u))v = 0,

u ∈ X, v ≥ 0, v ∈ Rn

and

Max
f(E(u))

g(E(u))
,
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subject to ∇(
f(E(u))

g(E(u))
) +∇h(E(u))v = 0,

u ∈ X, v ≥ 0, v ∈ Rn.

Now we consider duality relations for the primal problem (NPE), (WDE) and their Wolfe,

respectively, in higher-order (F, α, β, ρ, d, E)-convexity sense.

Theorem 6.1 (Weak Duality) Let E(x) and (E(u), E(v)) be feasible solutions of (NPE) and

(WDE), respectively, and

(i) ϕ be higher-order (F, α, β, ρ1, d, E)-convex functions at u with respect to K.

(ii) vth be higher-order (F, α, β, ρ2, d, E)-convex functions at u with respect to −K.

(iii) ρ1 + ρ2 ≥ 0.

Then ϕ(E(x)) ≥ ϕ(E(u)) + vTh(E(u)).

Theorem 6.2 (Strong Duality) Let E(x̄) be an optimal solution of (NPE) and let h satisfy a

constraint qualification. Further, if Theorem 6.1 holds for the feasible solution E(x̄) of (NPE)

and all feasible solutions (E(u), E(v)) of (WDE), then there is a v̄ ∈ Rn
+ such that (E(x̄), E(v̄))

is an optimal solution of (WDE) and values of optimal objective functions of (NPE) and (WDE)

are equal.

Theorem 6.3 (Weak Duality) Let E(x) and (E(u), E(v)) be feasible solutions of (FPE) and

(WFDE), respectively, and

(i) f(x) and −g(x) be two higher-order (F, α, β, ρ1, d, E)-convex functions at u with respect

to K,

(ii) vth be higher-order (F, α, β, ρ2, d, E)-convex at u with respect to −K̄, where ᾱ, β̄, K̄ and

d̄ are as given in Theorem 5.1, and

(iii) ρ1 + ρ2 ≥ 0.

Then
f(E(x))

g(E(x))
≥

f(E(u))

g(E(u))
+ vTh(E(u)).

Theorem 6.4 (Strong Duality) Let E(x̄) be an optimal solution of (FPE) and let h satisfy a

constraint qualification. Further, if Theorem 6.3 holds for the feasible solution E(x̄) of (FPE) and

all feasible solutions (E(u), E(v)) of (WFDE), then there is a v̄ ∈ Rn
+ such that (E(x̄), E(v̄)) is an

optimal solution of (WFDE) and values of optimal objective functions of (FPE) and (WFDE)

are equal.

7. Conclusions

This work generates a new form of E-convexity from the concept of higher-order (F, α, β, ρ2, d)-

convexity. If E is an identity map, then this work makes a correspondence to [7] and generalises

the result related to the optimality criteria and duality of [7] for E-convexity in fractional pro-

gramming.
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