Journal of Mathematical Research with Applications May, 2023, Vol. 43, No. 3, pp. 313–323 DOI:10.3770/j.issn:2095-2651.2023.03.006 Http://jmre.dlut.edu.cn

Nonlinear Mixed Bi-Skew Jordan Triple Derivations on Prime *-Algebras

Fangfang ZHAO, Dongfang ZHANG, Changjing LI*

School of Mathematics and Statistics, Shandong Normal University, Shandong 250014, P. R. China

Abstract Let \mathcal{A} be a unital prime *-algebra with a nontrivial projection. In this paper, it is proved that a map $\Phi: \mathcal{A} \to \mathcal{A}$ satisfies

$$\Phi([A,B]_{\diamond} \circ C) = [\Phi(A),B]_{\diamond} \circ C + [A,\Phi(B)]_{\diamond} \circ C + [A,B]_{\diamond} \circ \Phi(C)$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive *-derivation, where $A \circ B = A^*B + B^*A$ and $[A, B]_{\diamond} = A^*B - B^*A$.

Keywords mixed bi-skew Jordan triple derivations; *-derivations; prime *-algebras

MR(2020) Subject Classification 16W25; 16N60

1. Introduction

Let \mathcal{A} be a *-algebra over the complex field \mathbb{C} . For $A, B \in \mathcal{A}$, we call the product $A \circ B = A^*B + B^*A$ the bi-skew Jordan product and $[A, B]_{\diamond} = A^*B - B^*A$ the bi-skew Lie product. These two new products have attracted many scholars to study [1–9]. Particular attention has been paid to understanding maps which preserve the bi-skew Jordan product and the bi-skew Lie product on C^* -algebras. Wang and Ji [1] proved that every bijective map preserving bi-skew Lie product between factor von Neumann algebras is a linear *-isomorphism or a conjugate linear *-isomorphism. Li et al. [9] proved that every bijective map preserving bi-skew Jordan product between von Neumann algebras with no central abelian projections is just the sum of a linear *-isomorphism and a conjugate linear *-isomorphism. Taghavi and Gholampoor [5] studied surjective maps preserving bi-skew Jordan product between C^* -algebras.

Recall that an additive map $\Phi: \mathcal{A} \to \mathcal{A}$ is said to be an additive derivation if $\Phi(AB) = \Phi(A)B + A\Phi(B)$ for all $A, B \in \mathcal{A}$. Furthermore, Φ is said to be an additive *-derivation if it is an additive derivation and satisfies $\Phi(A^*) = \Phi(A)^*$ for all $A \in \mathcal{A}$. We say that $\Phi: \mathcal{A} \to \mathcal{A}$ is a nonlinear bi-skew Lie derivation or bi-skew Jordan derivation if

$$\Phi([A, B]_{\diamond}) = [\Phi(A), B]_{\diamond} + [A, \Phi(B)]_{\diamond}$$

or

$$\Phi(A \circ B) = \Phi(A) \circ B + A \circ \Phi(B)$$

Received May 25, 2022; Accepted February 26, 2023

E-mail address: wanwanf2@163.com (Fangfang ZHAO); 1776767307@qq.com (Dongfang ZHANG); lcjbxh@163.com (Changjing LI)

^{*} Corresponding author

for all $A, B \in \mathcal{A}$. Recently, many authors have studied nonlinear bi-skew Lie derivations and bi-skew Jordan derivations. For example, Kong and Zhang [4] proved that any nonlinear bi-skew Lie derivation on a factor von Neumann algebra \mathcal{A} with $\dim \mathcal{A} \geq 2$ is an additive *-derivation. Taghavi and Razeghi [8] investigated nonlinear bi-skew Lie derivations on prime *-algebras. Let Φ be a nonlinear bi-skew Lie derivation on a unital prime *-algebra with a nontrivial projection. They proved that if $\Phi(I)$ and $\Phi(iI)$ are self-adjoint, then Φ is an additive *-derivation. Darvish et al. [2] proved any nonlinear bi-skew Jordan derivation on prime *-algebras is an additive *-derivation. Khan [3] proved that any nonlinear bi-skew Lie triple derivation on a factor von Neumann algebra \mathcal{A} with $\dim \mathcal{A} \geq 2$ is an additive *-derivation.

Recently, many authors have studied derivations corresponding to some mixed products. Zhou, Yang and Zhang [10] proved any map Φ from a unital *-algebra \mathcal{A} containing a nontrivial projection to itself satisfying

$$\Phi([[A,B]_*,C]) = [[\Phi(A),B]_*,C] + [[A,\Phi(B)]_*,C] + [[A,B]_*,\Phi(C)]$$

for all $A, B, C \in \mathcal{A}$, is an additive *-derivation, where [A, B] = AB - BA is the usual Lie product of A and B and $[A, B]_* = AB - BA^*$ is the skew Lie product of A and B. Zhou and Zhang [11] proved that any map Φ on a factor von Neumann algebra \mathcal{A} satisfying

$$\Phi([[A, B], C]_*) = [[\Phi(A), B], C]_* + [[A, \Phi(B)], C]_* + [[A, B], \Phi(C)]_*$$

for all $A, B, C \in \mathcal{A}$, is also an additive *-derivation. Zhao and Fang [7] gave a similar result on finite von Neumann algebras with no central summands of type I_1 . Pang, Zhang and Ma [12] proved that if Φ is a second nonlinear mixed Jordan triple derivable mapping on a factor von Neumann algebra \mathcal{A} , that is,

$$\Phi(A \circ B \bullet C) = \Phi(A) \circ B \bullet C + A \circ \Phi(B) \bullet C + A \circ B \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{A}$, then Φ is an additive *-derivation, where $A \circ B = AB + BA$ is the usual Jordan product of A and B and $A \bullet B = AB + BA^*$ is the Jordan *-product of A and B.

Motivated by the above mentioned works, in this paper, we will consider derivations corresponding to the new product of the mixture of the bi-skew Lie product and the bi-skew Jordan product. A map $\Phi: \mathcal{A} \to \mathcal{A}$ is said to be a nonlinear mixed bi-skew Jordan triple derivation if

$$\Phi([A,B]_{\diamond} \circ C) = [\Phi(A),B]_{\diamond} \circ C + [A,\Phi(B)]_{\diamond} \circ C + [A,B]_{\diamond} \circ \Phi(C)$$

for all $A, B, C \in \mathcal{A}$. Recall that an algebra \mathcal{A} is prime if $A\mathcal{A}B = \{0\}$ for $A, B \in \mathcal{A}$ implies either A = 0 or B = 0. Let \mathcal{A} be a unital prime *-algebra with a nontrivial projection. In this paper, we prove that Φ is a nonlinear mixed bi-skew Jordan triple derivation on \mathcal{A} if and only if Φ is an additive *-derivation.

2. The main result and its proof

The main result in this paper reads as follows.

Theorem 2.1 Let A be a unital prime *-algebra with a nontrivial projection P. Then a map

 $\Phi: \mathcal{A} \to \mathcal{A} \text{ satisfies}$

$$\Phi([A,B]_\diamond \circ C) = [\Phi(A),B]_\diamond \circ C + [A,\Phi(B)]_\diamond \circ C + [A,B]_\diamond \circ \Phi(C)$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive *-derivation.

Let $P_1 = P$ and $P_2 = I - P$. Denote

$$\mathcal{A}_{ij} = P_i \mathcal{A} P_j, \quad i, j = 1, 2.$$

Let

$$\mathcal{M} = \{ A \in \mathcal{A} : A^* = A \},$$

$$\mathcal{N} = \{ A \in \mathcal{A} : A^* = -A \},$$

$$\mathcal{M}_{12} = \{ P_1 M P_2 + P_2 M P_1 : M \in \mathcal{M} \}$$

and

$$\mathcal{M}_{ii} = P_i \mathcal{M} P_i, \quad i = 1, 2.$$

Thus, for any $M \in \mathcal{M}$, $M = M_{11} + M_{12} + M_{22}$, where $M_{11} \in \mathcal{M}_{11}$, $M_{12} \in \mathcal{M}_{12}$, $M_{22} \in \mathcal{M}_{22}$. Clearly, we only need to prove the necessity. We will complete the proof by several lemmas.

Lemma 2.2 Let Φ be a nonlinear mixed bi-skew Jordan triple derivation on \mathcal{A} . Then $\Phi(0) = 0$.

Proof Indeed, we have

$$\Phi(0) = \Phi([0,0]_{\diamond} \circ 0) = [\Phi(0),0]_{\diamond} \circ 0 + [0,\Phi(0)]_{\diamond} \circ 0 + [0,0]_{\diamond} \circ \Phi(0) = 0. \quad \Box$$

Lemma 2.3 For any $M \in \mathcal{M}$, we have $\Phi(M) \in \mathcal{M}$.

Proof For any $M \in \mathcal{M}$, $M = [M, \frac{i}{2}I]_{\diamond} \circ (\frac{i}{2}I)$. Since $[A, B]_{\diamond} \circ C \in \mathcal{M}$ for all $A, B, C \in \mathcal{A}$, we obtain

$$\begin{split} \Phi(M) &= \Phi([M,\frac{i}{2}I]_{\diamond} \circ (\frac{i}{2}I)) \\ &= [\Phi(M),\frac{i}{2}I]_{\diamond} \circ (\frac{i}{2}I) + [M,\Phi(\frac{i}{2}I)]_{\diamond} \circ (\frac{i}{2}I) + [M,\frac{i}{2}I]_{\diamond} \circ \Phi(\frac{i}{2}I) \in \mathcal{M}. \quad \Box \end{split}$$

Lemma 2.4 For any $A_{11} \in \mathcal{M}_{11}$, $M_{12} \in \mathcal{M}_{12}$ and $A_{22} \in \mathcal{M}_{22}$, we have

$$\Phi(A_{11} + M_{12}) = \Phi(A_{11}) + \Phi(M_{12})$$

and

$$\Phi(M_{12} + A_{22}) = \Phi(M_{12}) + \Phi(A_{22}).$$

Proof Let $T = \Phi(A_{11} + M_{12}) - \Phi(A_{11}) - \Phi(M_{12})$. By Lemma 2.3, we have $T^* = T$. We only need to prove

$$T = T_{11} + T_{12} + T_{22} = 0.$$

Since $[iP_2, A_{11}]_{\diamond} = 0$, we obtain

$$[\Phi(iP_2), A_{11} + M_{12}]_{\diamond} \circ (iI) + [iP_2, \Phi(A_{11} + M_{12})]_{\diamond} \circ (iI) + [iP_2, A_{11} + M_{12}]_{\diamond} \circ \Phi(iI)$$

= $\Phi([iP_2, A_{11} + M_{12}]_{\diamond} \circ (iI))$

$$= \Phi([iP_2, A_{11}]_{\diamond} \circ (iI)) + \Phi([iP_2, M_{12}]_{\diamond} \circ (iI))$$

$$= [\Phi(iP_2), A_{11} + M_{12}]_{\diamond} \circ (iI) + [iP_2, \Phi(A_{11}) + \Phi(M_{12})]_{\diamond} \circ (iI) + [iP_2, A_{11} + M_{12}]_{\diamond} \circ \Phi(iI).$$

From this, we get $[iP_2, T]_{\diamond} \circ (iI) = 0$, and hence $T_{12} = T_{22} = 0$.

It follows from $[i(P_1 - P_2), M_{12}]_{\diamond} = 0$ that

$$\begin{split} [\Phi(i(P_1-P_2)),A_{11}+M_{12}]_\diamond \circ (iI) + [i(P_1-P_2),\Phi(A_{11}+M_{12})]_\diamond \circ (iI) + \\ [i(P_1-P_2),A_{11}+M_{12}]_\diamond \circ \Phi(iI) \\ &= \Phi([i(P_1-P_2),A_{11}+M_{12}]_\diamond \circ (iI)) \\ &= \Phi([i(P_1-P_2),A_{11}]_\diamond \circ (iI)) + \Phi([i(P_1-P_2),M_{12}]_\diamond \circ (iI)) \\ &= [\Phi(i(P_1-P_2)),A_{11}+M_{12}]_\diamond \circ (iI) + [i(P_1-P_2),\Phi(A_{11})+\Phi(M_{12})]_\diamond \circ (iI) + \\ [i(P_1-P_2),A_{11}+M_{12}]_\diamond \circ \Phi(iI), \end{split}$$

which implies that $[i(P_1 - P_2), T]_{\diamond} \circ (iI) = 0$. So $T_{11} = 0$, and then T = 0. Similarly, we can show that $\Phi(M_{12} + A_{22}) = \Phi(M_{12}) + \Phi(A_{22})$. \square

Lemma 2.5 For any $A_{11} \in \mathcal{M}_{11}, M_{12} \in \mathcal{M}_{12}$ and $C_{22} \in \mathcal{M}_{22}$, we have

$$\Phi(A_{11} + M_{12} + C_{22}) = \Phi(A_{11}) + \Phi(M_{12}) + \Phi(C_{22}).$$

Proof Let $T = \Phi(A_{11} + M_{12} + C_{22}) - \Phi(A_{11}) - \Phi(M_{12}) - \Phi(C_{22})$. By Lemma 2.3, we have $T^* = T$. Since $[iP_1, C_{22}]_{\diamond} = 0$, it follows from Lemma 2.4 that

$$\begin{split} [\Phi(iP_1),A_{11}+M_{12}+C_{22}]_{\diamond} \circ (iI) + [iP_1,\Phi(A_{11}+M_{12}+C_{22})]_{\diamond} \circ (iI) + \\ [iP_1,A_{11}+M_{12}+C_{22}]_{\diamond} \circ \Phi(iI) \\ &= \Phi([iP_1,A_{11}+M_{12}+C_{22}]_{\diamond} \circ (iI)) \\ &= \Phi([iP_1,A_{11}+M_{12}]_{\diamond} \circ (iI)) + \Phi([iP_1,C_{22}]_{\diamond} \circ (iI)) \\ &= [\Phi(iP_1),A_{11}+M_{12}+C_{22}]_{\diamond} \circ (iI) + [iP_1,\Phi(A_{11})+\Phi(M_{12})+\Phi(C_{22})]_{\diamond} \circ (iI) + \\ [iP_1,A_{11}+M_{12}+C_{22}]_{\diamond} \circ \Phi(iI), \end{split}$$

which yields that $[iP_1, T]_{\diamond} \circ (iI) = 0$. So $T_{11} = T_{12} = 0$. In the similar manner, we can get that $T_{22} = 0$. Hence T = 0. \square

Lemma 2.6 For any $M_{12}, B_{12} \in \mathcal{M}_{12}$, we have

$$\Phi(M_{12} + B_{12}) = \Phi(M_{12}) + \Phi(B_{12}).$$

Proof Let M_{12} , $B_{12} \in \mathcal{M}_{12}$. Then $M_{12} = iU_{12} - iU_{12}^*$, $B_{12} = iV_{12} - iV_{12}^*$, where U_{12} , $V_{12} \in \mathcal{A}_{12}$. Since

$$[P_1 + U_{12} + U_{12}^*, P_2 + V_{12} + V_{12}^*]_{\diamond} \circ (-\frac{i}{2}I) = M_{12} + B_{12} + iM_{12}B_{12} - iB_{12}M_{12},$$

where

$$M_{12} + B_{12} \in \mathcal{M}_{12}$$

and

$$iM_{12}B_{12} - iB_{12}M_{12} = P_1(iU_{12}V_{12}^* - iV_{12}U_{12}^*)P_1 + P_2(iU_{12}^*V_{12} - iV_{12}^*U_{12})P_2 \in \mathcal{M}_{11} + \mathcal{M}_{22},$$

by Lemma 2.5, we have

$$\begin{split} &\Phi(M_{12}+B_{12})+\Phi(iM_{12}B_{12}-iB_{12}M_{12})\\ &=\Phi(M_{12}+B_{12}+iM_{12}B_{12}-iB_{12}M_{12})\\ &=\Phi([P_1+U_{12}+U_{12}^*,P_2+V_{12}+V_{12}^*]_\diamond\circ(-\frac{i}{2}I))\\ &=[\Phi(P_1)+\Phi(U_{12}+U_{12}^*),P_2+V_{12}+V_{12}^*]_\diamond\circ(-\frac{i}{2}I)+\\ &[P_1+U_{12}+U_{12}^*,\Phi(P_2)+\Phi(V_{12}+V_{12}^*)]_\diamond\circ(-\frac{i}{2}I)+\\ &[P_1+U_{12}+U_{12}^*,P_2+V_{12}+V_{12}^*]_\diamond\circ\Phi(-\frac{i}{2}I)\\ &=\Phi([P_1,P_2]_\diamond\circ(-\frac{i}{2}I))+\Phi([P_1,V_{12}+V_{12}^*]_\diamond\circ(-\frac{i}{2}I))+\\ &\Phi([U_{12}+U_{12}^*,P_2]_\diamond\circ(-\frac{i}{2}I))+\Phi([U_{12}+U_{12}^*,V_{12}+V_{12}^*]_\diamond\circ(-\frac{i}{2}I))\\ &=\Phi(B_{12})+\Phi(M_{12})+\Phi(iM_{12}B_{12}-iB_{12}M_{12}), \end{split}$$

which implies that $\Phi(M_{12} + B_{12}) = \Phi(M_{12}) + \Phi(B_{12})$. \square

Lemma 2.7 For any $A_{ii}, B_{ii} \in \mathcal{M}_{ii}$, i = 1, 2, we have

$$\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii}).$$

Proof Let $T = \Phi(A_{11} + B_{11}) - \Phi(A_{11}) - \Phi(B_{11})$. By Lemma 2.3, we have $T^* = T$. Since $[iP_2, A_{11}]_{\diamond} = [iP_2, B_{11}]_{\diamond} = 0$, we obtain

$$\begin{split} [\Phi(iP_2), A_{11} + B_{11}]_{\diamond} \circ (iI) + [iP_2, \Phi(A_{11} + B_{11})]_{\diamond} \circ (iI) + \\ [iP_2, A_{11} + B_{11}]_{\diamond} \circ \Phi(iI) \\ &= \Phi([iP_2, A_{11} + B_{11}]_{\diamond} \circ (iI)) \\ &= \Phi([iP_2, A_{11}]_{\diamond} \circ (iI)) + \Phi([iP_2, B_{11}]_{\diamond} \circ (iI)) \\ &= [\Phi(iP_2), A_{11} + B_{11}]_{\diamond} \circ (iI) + [iP_2, \Phi(A_{11}) + \Phi(B_{11})]_{\diamond} \circ (iI) + \\ [iP_2, A_{11} + B_{11}]_{\diamond} \circ \Phi(iI). \end{split}$$

So $[iP_2, T]_{\diamond} \circ (iI) = 0$, and hence $T_{12} = T_{22} = 0$. Now we have $T = T_{11}$. For any $D_{12} \in \mathcal{A}_{12}$, let $M = D_{12} + D_{12}^*$. Then

$$[A_{11}, iM]_{\diamond} \circ (iI), [B_{11}, iM]_{\diamond} \circ (iI) \in \mathcal{M}_{12}.$$

It follows from Lemma 2.6 that

$$[\Phi(A_{11} + B_{11}), iM]_{\diamond} \circ (iI) + [A_{11} + B_{11}, \Phi(iM)]_{\diamond} \circ (iI) +$$

$$[A_{11} + B_{11}, iM]_{\diamond} \circ \Phi(iI)$$

$$= \Phi([A_{11} + B_{11}, iM]_{\diamond} \circ (iI))$$

$$= \Phi([A_{11}, iM]_{\diamond} \circ (iI)) + \Phi([B_{11}, iM]_{\diamond} \circ (iI))$$

$$= [\Phi(A_{11}) + \Phi(B_{11}), iM]_{\diamond} \circ (iI) + [A_{11} + B_{11}, \Phi(iM)]_{\diamond} \circ (iI) +$$

$$[A_{11} + B_{11}, iM]_{\diamond} \circ \Phi(iI),$$

which implies that $[T, iM]_{\diamond} \circ (iI) = 0$, that is, $T_{11}D_{12} + D_{12}^*T_{11} = 0$. Multiplying the above equation by P_2 from the right, we have $T_{11}D_{12} = 0$ for all $D_{12} \in \mathcal{A}_{12}$. It follows from the primeness of \mathcal{A} that $T_{11} = 0$, and so T = 0.

Similarly, we can prove that $\Phi(A_{22}+B_{22})=\Phi(A_{22})+\Phi(B_{22})$. \square

Remark 2.8 From Lemmas 2.5–2.7, we can show that Φ is additive on \mathcal{M} .

Lemma 2.9 Let Φ be a nonlinear mixed bi-skew Jordan triple derivation on \mathcal{A} . Then $\Phi(iI) = 0$.

Proof For any $M \in \mathcal{M}$, it follows from Lemma 2.3 and Remark 2.8 that

$$\begin{split} 4\Phi(M) &= \Phi(4M) = \Phi([M,iI]_{\diamond} \circ (iI)) \\ &= [\Phi(M),iI]_{\diamond} \circ (iI) + [M,\Phi(iI)]_{\diamond} \circ (iI) + [M,iI]_{\diamond} \circ \Phi(iI) \\ &= 4\Phi(M) + 2i(\Phi(iI)^*M - M\Phi(iI)) + 2i(\Phi(iI)^*M - M\Phi(iI)) \\ &= 4\Phi(M) + 4i(\Phi(iI)^*M - M\Phi(iI)). \end{split}$$

So $\Phi(iI)^*M - M\Phi(iI) = 0$ for all $M \in \mathcal{M}$. Let M = I. Then $\Phi(iI) = \Phi(iI)^* \in \mathcal{M}$. Now we have $\Phi(iI)M = M\Phi(iI)$ for all $M \in \mathcal{M}$. Since for any $B \in \mathcal{A}$, $B = M_1 + iM_2$ with $M_1 = \frac{B+B^*}{2} \in \mathcal{M}$ and $M_2 = \frac{B-B^*}{2i} \in \mathcal{M}$, it follows that $\Phi(iI)B = B\Phi(iI)$ for all $B \in \mathcal{A}$. Hence

$$\Phi(iI) \in \mathcal{Z}(\mathcal{A}) \cap \mathcal{M}. \tag{2.1}$$

For any $M \in \mathcal{M}$, from Lemma 2.3, we see that

$$0 = \Phi([M, iI]_{\diamond} \circ I) = [M, iI]_{\diamond} \circ \Phi(I) = 2i(\Phi(I)^*M - M\Phi(I)).$$

In the same manner, we obtain

$$\Phi(I) \in \mathcal{Z}(\mathcal{A}) \cap \mathcal{M}. \tag{2.2}$$

Let $\Phi(iP_1) = W_1 + iW_2$, where $W_1, W_2 \in \mathcal{N}$. It follows from Eq. (2.1) that

$$0 = \Phi([iI, iP_1]_{\diamond} \circ (\frac{i}{2}I))$$

$$= [\Phi(iI), iP_1]_{\diamond} \circ (\frac{i}{2}I) + [iI, \Phi(iP_1)]_{\diamond} \circ (\frac{i}{2}I)$$

$$= 2\Phi(iI)P_1 - 2iW_2,$$

which impies that $iW_2 = \Phi(iI)P_1$, and so

$$\Phi(iP_1) = W_1 + \Phi(iI)P_1. \tag{2.3}$$

In view of Eqs. (2.2) and (2.3), we find that

$$4\Phi(P_1) = \Phi([I, iP_1]_{\diamond} \circ (iI)) = [\Phi(I), iP_1]_{\diamond} \circ (iI) + [I, \Phi(iP_1)]_{\diamond} \circ (iI)$$

= $4\Phi(I)P_1 - 4iW_1$, (2.4)

which yields that

$$\Phi(P_1) = \Phi(I)P_1 - iW_1. \tag{2.5}$$

On the other hand, by Eqs. (2.3) and (2.5), we obtain

$$4\Phi(P_1) = \Phi([P_1, iP_1]_{\diamond} \circ (iI))$$

$$= [\Phi(P_1), iP_1]_{\diamond} \circ (iI) + [P_1, \Phi(iP_1)]_{\diamond} \circ (iI)$$

$$= 4\Phi(I)P_1 - 4i(P_1W_1 + W_1P_1). \tag{2.6}$$

Comparing Eqs. (2.4) and (2.6), we have $P_1W_1 + W_1P_1 = W_1$, and so

$$P_1 W_1 P_1 = P_2 W_1 P_2 = 0. (2.7)$$

From Eqs. (2.3) and (2.7), we get that

$$\Phi(iP_1) = W_1 + \Phi(iI)P_1 = \Phi(iI)P_1 + P_1W_1P_2 + P_2W_1P_1. \tag{2.8}$$

For any $A_{12} \in \mathcal{A}_{12}$, putting $M = A_{12} + A_{12}^*$, then $M \in \mathcal{M}$. It follows from Lemma 2.3 and Remark 2.8 that

$$-2\Phi(M) = \Phi([iP_1, M]_{\diamond} \circ (iI))$$

$$= [\Phi(iP_1), M]_{\diamond} \circ (iI) + [iP_1, \Phi(M)]_{\diamond} \circ (iI)$$

$$= -2(i\Phi(iP_1)^*M - iM\Phi(iP_1) + \Phi(M)P_1 + P_1\Phi(M)). \tag{2.9}$$

Multiplying Eq. (2.9) by P_1 from the left and by P_2 from the right, then by Eq. (2.8), we have $\Phi(iI)A_{12}=0$. It follows from the primeness of \mathcal{A} that $\Phi(iI)P_1=0$. On the other hand, by Eq. (2.1), we also get $\Phi(iI)A_{12}^*=0$. By the primeness of \mathcal{A} , $\Phi(iI)P_2=0$. Now we obtain $\Phi(iI)=\Phi(iI)P_1+\Phi(iI)P_2=0$. \square

Lemma 2.10 (1) For any $N \in \mathcal{N}$, we have $\Phi(N)^* = -\Phi(N)$ and $\Phi(iN) = i\Phi(N) + i\Phi(I)N$;

- (2) Φ is additive on \mathcal{N} ;
- (3) For any $H, K \in \mathcal{N}$, we have $\Phi(H + iK) = \Phi(H) + i\Phi(K) + i\Phi(I)K$.

Proof (1) For any $N \in \mathcal{N}$, it follows from Lemma 2.9 that

$$0 = \Phi([iI, N]_{\diamond} \circ (iI)) = [iI, \Phi(N)]_{\diamond} \circ (iI) = -2(\Phi(N)^* + \Phi(N)).$$

So $\Phi(N)^* = -\Phi(N)$ for all $N \in \mathcal{N}$.

For any $N \in \mathcal{N}$, by Remark 2.8, Lemma 2.9 and Eq. (2.2), we get

$$4\Phi(iN) = \Phi([N, I]_{\diamond} \circ (iI)) = [\Phi(N), I]_{\diamond} \circ (iI) + [N, \Phi(I)]_{\diamond} \circ (iI) = 4i(\Phi(N) + \Phi(I)N).$$

That is,

$$\Phi(iN) = i\Phi(N) + i\Phi(I)N \tag{2.10}$$

for all $N \in \mathcal{N}$.

(2) For any $H, K \in \mathcal{N}$, we can get from Remark 2.8 and Eq. (2.10) that

$$i\Phi(H+K) + i\Phi(I)(H+K) = \Phi(i(H+K))$$

$$= \Phi(iH) + \Phi(iK) = i(\Phi(H) + \Phi(K)) + i\Phi(I)(H + K).$$

Hence $\Phi(H+K) = \Phi(H) + \Phi(K)$ for all $H, K \in \mathcal{N}$.

(3) For any $H, K \in \mathcal{N}$, by Remark 2.8, Lemma 2.9 and Eq. (2.10), we have

$$4(i\Phi(K) + i\Phi(I)K) = \Phi(4iK) = \Phi([H + iK, iI]_{\diamond} \circ (iI))$$

= $[\Phi(H + iK), iI]_{\diamond} \circ (iI) = 2(\Phi(H + iK) + \Phi(H + iK)^*)$ (2.11)

and

$$4(i\Phi(H) + i\Phi(I)H) = \Phi(4iH) = \Phi([H + iK, I]_{\diamond} \circ (iI))$$

$$= [\Phi(H + iK), I]_{\diamond} \circ (iI) + [H + iK, \Phi(I)]_{\diamond} \circ (iI)$$

$$= 2i(\Phi(H + iK) - \Phi(H + iK)^{*}) + 4i\Phi(I)H. \tag{2.12}$$

In view of Eqs. (2.11) and (2.12), we obtain

$$\Phi(H+iK) = \Phi(H) + i\Phi(K) + i\Phi(I)K. \quad \Box$$

Lemma 2.11 (1) For any $A \in \mathcal{A}$, we have $\Phi(A)^* = \Phi(A)$;

(2) Φ is additive on A.

Proof (1) For any $A \in \mathcal{A}$, $A = A_1 + iA_2$, where $A_1, A_2 \in \mathcal{N}$. Then we can get from Eq. (2.2) and Lemma 2.10 that

$$\Phi(A)^* = \Phi(A_1 + iA_2)^* = (\Phi(A_1) + i\Phi(A_2) + i\Phi(I)A_2)^*$$

= $-\Phi(A_1) + i\Phi(A_2) + i\Phi(I)A_2 = \Phi(-A_1 + iA_2) = \Phi(A^*)$

for all $A \in \mathcal{A}$.

(2) For any $A, B \in \mathcal{A}$, $A = A_1 + iA_2$, $B = B_1 + iB_2$, where $A_i, B_i \in \mathcal{N}$ (i = 1, 2). It follows from Lemma 2.10 that

$$\begin{split} &\Phi(A+B) = \Phi((A_1+B_1) + i(A_2+B_2)) \\ &= \Phi(A_1+B_1) + i\Phi(A_2+B_2) + i\Phi(I)(A_2+B_2) \\ &= (\Phi(A_1) + i\Phi(A_2) + i\Phi(I)A_2) + (\Phi(B_1) + i\Phi(B_2) + i\Phi(I)B_2) \\ &= \Phi(A) + \Phi(B). \end{split}$$

Hence Φ is additive on \mathcal{A} . \square

Lemma 2.12 (1) $\Phi(I) = 0$;

(2) For any $A \in \mathcal{A}$, we have $\Phi(iA) = i\Phi(A)$.

Proof (1) In view of Eqs. (2.5) and (2.7), we have

$$\Phi(P_1) = \Phi(I)P_1 - iP_1W_1P_2 - iP_2W_1P_1. \tag{2.13}$$

For any $A_{12} \in \mathcal{A}_{12}$, it follows from Lemmas 2.9–2.11 that

$$2(i(\Phi(A_{12})^* - \Phi(A_{12})) + i\Phi(I)(A_{12}^* - A_{12}))$$

$$= 2\Phi(i(A_{12}^* - A_{12})) = \Phi([P_1, A_{12} + A_{12}^*]_{\diamond} \circ (iI))$$

$$= [\Phi(P_1), A_{12} + A_{12}^*]_{\diamond} \circ (iI) + [P_1, \Phi(A_{12} + A_{12}^*)]_{\diamond} \circ (iI)$$

$$= 2i[(A_{12} + A_{12}^*)(\Phi(I)P_1 - iP_1W_1P_2 - iP_2W_1P_1) - (\Phi(I)P_1 - iP_1W_1P_2 - iP_2W_1P_1)(A_{12} + A_{12}^*) + (\Phi(A_{12})^* + \Phi(A_{12}))P_1 - P_1(\Phi(A_{12}) + \Phi(A_{12})^*)].$$

Multiplying by P_1 from the left and by P_2 from the right, we obtain

$$P_1 \Phi(A_{12})^* P_2 = 0. \tag{2.14}$$

On the other hand, we also have

$$\begin{split} &2(\Phi(A_{12})+\Phi(A_{12})^*)=\Phi([P_1,i(A_{12}-A_{12}^*)]_\diamond\circ(iI))\\ &=[\Phi(P_1),i(A_{12}-A_{12}^*)]_\diamond\circ(iI)+[P_1,\Phi(i(A_{12}-A_{12}^*))]_\diamond\circ(iI)\\ &=2[(A_{12}^*-A_{12})(\Phi(I)P_1-iP_1W_1P_2-iP_2W_1P_1)+\\ &(\Phi(I)P_1-iP_1W_1P_2-iP_2W_1P_1)(A_{12}-A_{12}^*)+\\ &(\Phi(A_{12})^*-\Phi(A_{12})+(A_{12}^*-A_{12})\Phi(I))P_1+\\ &P_1(\Phi(A_{12})-\Phi(A_{12})^*+\Phi(I)(A_{12}-A_{12}^*))]. \end{split}$$

Multiplying by P_1 from the left and by P_2 from the right, we obtain $\Phi(I)A_{12}=0$ by the Eq. (2.14). It follows from the primeness of \mathcal{A} that $\Phi(I)P_1=0$. On the other hand, by Eq. (2.2), we also get $\Phi(I)A_{12}^*=0$. So $\Phi(I)P_2=0$. Now we obtain $\Phi(I)=\Phi(I)P_1+\Phi(I)P_2=0$.

(2) For any $N \in \mathcal{N}$, by Lemma 2.10(1) and $\Phi(I) = 0$, we have

$$\Phi(iN) = i\Phi(N). \tag{2.15}$$

For any $A \in \mathcal{A}$, $A = A_1 + iA_2$, where $A_1, A_2 \in \mathcal{N}$. From Lemma 2.11 (2) and Eq. (2.15), we have

$$\Phi(iA) = \Phi(i(A_1 + iA_2)) = \Phi(iA_1 - A_2) = i(\Phi(A_1) + i\Phi(A_2)) = i\Phi(A)$$

for all $A \in \mathcal{A}$. \square

Lemma 2.13 Φ is a derivation on A.

Proof For any $A, B \in \mathcal{A}$, by Lemmas 2.11 (2) and 2.12 (2), we have

$$2(\Phi(A^*B + B^*A)) = \Phi([A, iB]_{\diamond} \circ (iI))$$

= $[\Phi(A), iB]_{\diamond} \circ (iI) + [A, i\Phi(B)]_{\diamond} \circ (iI)$
= $2(\Phi(A)^*B + B^*\Phi(A) + A^*\Phi(B) + \Phi(B)^*A),$

which impies that

$$\Phi(A^*B + B^*A) = \Phi(A)^*B + B^*\Phi(A) + A^*\Phi(B) + \Phi(B)^*A. \tag{2.16}$$

On the other hand, we also have

$$-2i(\Phi(A^*B - B^*A)) = \Phi([iA, iB]_{\diamond} \circ (iI))$$

$$= [i\Phi(A), iB]_{\diamond} \circ (iI) + [iA, i\Phi(B)]_{\diamond} \circ (iI)$$

= $-2i(\Phi(A)^*B - B^*\Phi(A) + A^*\Phi(B) - \Phi(B)^*A),$

which yields that

$$\Phi(A^*B - B^*A) = \Phi(A)^*B - B^*\Phi(A) + A^*\Phi(B) - \Phi(B)^*A. \tag{2.17}$$

By summing Eqs. (2.16) and (2.17), we obtain

$$\Phi(A^*B) = \Phi(A)^*B + A^*\Phi(B).$$

Then we can get from Lemma 2.11(1) that

$$\Phi(AB) = \Phi(A)B + A\Phi(B)$$
. \square

Now, from Lemmas 2.11 and 2.13, we obtain that Φ is an additive *-derivation on \mathcal{A} . This completes the proof of Theorem 2.1.

3. Corollaries

Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} , and $\mathcal{A} \subseteq B(\mathcal{H})$ be a von Neumann algebra. \mathcal{A} is a factor if its center is $\mathbb{C}I$. It is well known that a factor von Neumann algebra is prime. Now we can get the following corollary.

Corollary 3.1 Let \mathcal{A} be a factor von Neumann algebra with $\dim(\mathcal{A}) \geq 2$. Then $\Phi : \mathcal{A} \to \mathcal{A}$ is a nonlinear mixed bi-skew Jordan triple derivation if and only if Φ is an additive *-derivation.

We denote the subalgebra of all bounded finite rank operators by $\mathcal{F}(\mathcal{H}) \subseteq B(\mathcal{H})$. We call a subalgebra \mathcal{A} of $B(\mathcal{H})$ a standard operator algebra if it contains $\mathcal{F}(\mathcal{H})$. Now we have the following corollary.

Corollary 3.2 Let \mathcal{H} be an infinite dimensional complex Hilbert space and \mathcal{A} be a standard operator algebra on \mathcal{H} containing the identity operator I. Suppose that \mathcal{A} is closed under the adjoint operation. Then $\Phi: \mathcal{A} \to \mathcal{A}$ is a nonlinear mixed bi-skew Jordan triple derivation if and only if Φ is a linear *-derivation. Moreover, there exists an operator $T \in \mathcal{B}(\mathcal{H})$ satisfying $T + T^* = 0$ such that $\Phi(A) = AT - TA$ for all $A \in \mathcal{A}$, i.e., Φ is inner.

Proof Since A is prime, we know that Φ is an additive *-derivation. It follows from [13] that Φ is a linear inner derivation, i.e., there exists an operator $S \in B(\mathcal{H})$ such that $\Phi(A) = AS - SA$. Using the fact $\Phi(A^*) = \Phi(A)^*$, we have

$$A^*S - SA^* = \Phi(A^*) = \Phi(A)^* = -A^*S^* + S^*A^*$$

for all $A \in \mathcal{A}$. This leads to $A^*(S+S^*)=(S+S^*)A^*$. Hence, $S+S^*=\lambda I$ for some $\lambda \in \mathbb{R}$. Let us set $T=S-\frac{1}{2}\lambda I$. One can check that $T+T^*=0$ such that $\Phi(A)=AT-TA$.

Acknowledgements We thank the referees for their time and comments.

References

- [1] Meili WANG, Guoxing JI. Maps preserving *-Lie product on factor von Neumann algebras. Linear Multilinear Algebra., 2016, 64(11): 2159–2168.
- V. DARVISH, M. NOURI, M. RAZEGHI. Nonlinear triple product A*B+B*A for derivations on *-algebras. Math. Notes, 2020, 108(1-2): 179–187.
- [3] A. KHAN. Multiplicative bi-skew Lie triple derivations on factor von Neumann algebras. Rocky Mountain J. Math., 2021, 51: 2103-2114.
- [4] Liang KONG, Jianhua ZHANG. Nonlinear bi-skew Lie derivations on factor von Neumann algebras. Bull. Iranian Math. Soc., 2021, 47: 1097–1106.
- [5] A. TAGHAVI, S. GHOLAMPOOR. Maps preserving product $A^*B + B^*A$ on C^* -algebras. Bull. Iranian Math. Soc., 2022, 48(2): 757–767.
- [6] Changjing LI, Dongfang ZHANG. Nonlinear mixed Jordan triple *-derivations on *-algebras. Sib. Math. J., 2022, 63(4): 735–742.
- [7] Xingpeng ZHAO, Xiaochun FANG. The second nonlinear mixed Lie triple derivations on finite von Neumann algebras. Bull. Iranian Math. Soc., 2021, 47(1): 237–254.
- [8] A. TAGHAVI, M. RAZEGHI. Non-linear new product A*B B*A derivations on *-algebras. Proyecciones, 2020, **39**(2): 467–479.
- [9] Changjing LI, Fangfang ZHAO, Quanyuan CHEN. Nonlinear maps preserving product X*Y + Y*X on von Neumann algebras. Bull. Iranian Math. Soc., 2018, 44(3): 729–738.
- [10] You ZHOU, Zhujun YANG, Jianhua ZHANG. Nonlinear mixed Lie triple derivations on prime *-algebras. Comm. Algebra, 2019, 47(11): 4791–4796.
- [11] You ZHOU, Jianhua ZHANG. The second mixed nonlinear Lie triple derivations on factor von Neumann algebras. Adv. Math. (China), 2019, 48(4): 441–449.
- [12] Yongfeng PANG, Danli ZHANG, Dong MA. The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras. Bull. Iranian Math. Soc., 2022, 48(3): 951–962.
- [13] P. ŠEMRL. Additive derivations of some operator algebras. Illinois J. Math., 1991, 35(2): 234-240.