Nonlinear Mixed Bi-Skew Jordan Triple Derivations on Prime *-Algebras

Fangfang ZHAO, Dongfang ZHANG, Changjing LI*

School of Mathematics and Statistics, Shandong Normal University, Shandong 250014, P. R. China

Abstract

Let \mathcal{A} be a unital prime $*$-algebra with a nontrivial projection. In this paper, it is proved that a map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies $$
\Phi\left([A, B]_{\diamond} \circ C\right)=[\Phi(A), B]_{\diamond} \circ C+[A, \Phi(B)]_{\diamond} \circ C+[A, B]_{\diamond} \circ \Phi(C)
$$ for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive $*$-derivation, where $A \circ B=A^{*} B+B^{*} A$ and $[A, B]_{\diamond}=A^{*} B-B^{*} A$.

Keywords mixed bi-skew Jordan triple derivations; *-derivations; prime *-algebras
MR(2020) Subject Classification 16W25; 16N60

1. Introduction

Let \mathcal{A} be a $*$-algebra over the complex field \mathbb{C}. For $A, B \in \mathcal{A}$, we call the product $A \circ B=$ $A^{*} B+B^{*} A$ the bi-skew Jordan product and $[A, B]_{\diamond}=A^{*} B-B^{*} A$ the bi-skew Lie product. These two new products have attracted many scholars to study [1-9]. Particular attention has been paid to understanding maps which preserve the bi-skew Jordan product and the bi-skew Lie product on C^{*}-algebras. Wang and Ji [1] proved that every bijective map preserving biskew Lie product between factor von Neumann algebras is a linear $*$-isomorphism or a conjugate linear $*$-isomorphism. Li et al. [9] proved that every bijective map preserving bi-skew Jordan product between von Neumann algebras with no central abelian projections is just the sum of a linear $*$-isomorphism and a conjugate linear $*$-isomorphism. Taghavi and Gholampoor [5] studied surjective maps preserving bi-skew Jordan product between C^{*}-algebras.

Recall that an additive map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be an additive derivation if $\Phi(A B)=$ $\Phi(A) B+A \Phi(B)$ for all $A, B \in \mathcal{A}$. Furthermore, Φ is said to be an additive $*$-derivation if it an additive derivation and satisfies $\Phi\left(A^{*}\right)=\Phi(A)^{*}$ for all $A \in \mathcal{A}$. We say that $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear bi-skew Lie derivation or bi-skew Jordan derivation if

$$
\Phi\left([A, B]_{\diamond}\right)=[\Phi(A), B]_{\diamond}+[A, \Phi(B)]_{\diamond}
$$

or

$$
\Phi(A \circ B)=\Phi(A) \circ B+A \circ \Phi(B)
$$

[^0]for all $A, B \in \mathcal{A}$. Recently, many authors have studied nonlinear bi-skew Lie derivations and bi-skew Jordan derivations. For example, Kong and Zhang [4] proved that any nonlinear bi-skew Lie derivation on a factor von Neumann algebra \mathcal{A} with $\operatorname{dim} \mathcal{A} \geq 2$ is an additive $*$-derivation. Taghavi and Razeghi [8] investigated nonlinear bi-skew Lie derivations on prime $*$-algebras. Let Φ be a nonlinear bi-skew Lie derivation on a unital prime $*$-algebra with a nontrivial projection. They proved that if $\Phi(I)$ and $\Phi(i I)$ are self-adjoint, then Φ is an additive $*$-derivation. Darvish et al. [2] proved any nonlinear bi-skew Jordan derivation on prime $*$-algebras is an additive $*$ derivation. Khan [3] proved that any nonlinear bi-skew Lie triple derivation on a factor von Neumann algebra \mathcal{A} with $\operatorname{dim} \mathcal{A} \geq 2$ is an additive $*$-derivation.

Recently, many authors have studied derivations corresponding to some mixed products. Zhou, Yang and Zhang [10] proved any map Φ from a unital $*$-algebra \mathcal{A} containing a nontrivial projection to itself satisfying

$$
\Phi\left(\left[[A, B]_{*}, C\right]\right)=\left[[\Phi(A), B]_{*}, C\right]+\left[[A, \Phi(B)]_{*}, C\right]+\left[[A, B]_{*}, \Phi(C)\right]
$$

for all $A, B, C \in \mathcal{A}$, is an additive $*$-derivation, where $[A, B]=A B-B A$ is the usual Lie product of A and B and $[A, B]_{*}=A B-B A^{*}$ is the skew Lie product of A and B. Zhou and Zhang [11] proved that any map Φ on a factor von Neumann algebra \mathcal{A} satisfying

$$
\Phi\left([[A, B], C]_{*}\right)=[[\Phi(A), B], C]_{*}+[[A, \Phi(B)], C]_{*}+[[A, B], \Phi(C)]_{*}
$$

for all $A, B, C \in \mathcal{A}$, is also an additive $*$-derivation. Zhao and Fang [7] gave a similar result on finite von Neumann algebras with no central summands of type I_{1}. Pang, Zhang and Ma [12] proved that if Φ is a second nonlinear mixed Jordan triple derivable mapping on a factor von Neumann algebra \mathcal{A}, that is,

$$
\Phi(A \circ B \bullet C)=\Phi(A) \circ B \bullet C+A \circ \Phi(B) \bullet C+A \circ B \bullet \Phi(C)
$$

for all $A, B, C \in \mathcal{A}$, then Φ is an additive $*$-derivation, where $A \circ B=A B+B A$ is the usual Jordan product of A and B and $A \bullet B=A B+B A^{*}$ is the Jordan $*$-product of A and B.

Motivated by the above mentioned works, in this paper, we will consider derivations corresponding to the new product of the mixture of the bi-skew Lie product and the bi-skew Jordan product. A map $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a nonlinear mixed bi-skew Jordan triple derivation if

$$
\Phi\left([A, B]_{\diamond} \circ C\right)=[\Phi(A), B]_{\diamond} \circ C+[A, \Phi(B)]_{\diamond} \circ C+[A, B]_{\diamond} \circ \Phi(C)
$$

for all $A, B, C \in \mathcal{A}$. Recall that an algebra \mathcal{A} is prime if $A \mathcal{A} B=\{0\}$ for $A, B \in \mathcal{A}$ implies either $A=0$ or $B=0$. Let \mathcal{A} be a unital prime $*$-algebra with a nontrivial projection. In this paper, we prove that Φ is a nonlinear mixed bi-skew Jordan triple derivation on \mathcal{A} if and only if Φ is an additive $*$-derivation.

2. The main result and its proof

The main result in this paper reads as follows.
Theorem 2.1 Let \mathcal{A} be a unital prime $*$-algebra with a nontrivial projection P. Then a map
$\Phi: \mathcal{A} \rightarrow \mathcal{A}$ satisfies

$$
\Phi\left([A, B]_{\diamond} \circ C\right)=[\Phi(A), B]_{\diamond} \circ C+[A, \Phi(B)]_{\diamond} \circ C+[A, B]_{\diamond} \circ \Phi(C)
$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive $*$-derivation.
Let $P_{1}=P$ and $P_{2}=I-P$. Denote

$$
\mathcal{A}_{i j}=P_{i} \mathcal{A} P_{j}, \quad i, j=1,2
$$

Let

$$
\begin{gathered}
\mathcal{M}=\left\{A \in \mathcal{A}: A^{*}=A\right\}, \\
\mathcal{N}=\left\{A \in \mathcal{A}: A^{*}=-A\right\}, \\
\mathcal{M}_{12}=\left\{P_{1} M P_{2}+P_{2} M P_{1}: M \in \mathcal{M}\right\}
\end{gathered}
$$

and

$$
\mathcal{M}_{i i}=P_{i} \mathcal{M} P_{i}, \quad i=1,2 .
$$

Thus, for any $M \in \mathcal{M}, M=M_{11}+M_{12}+M_{22}$, where $M_{11} \in \mathcal{M}_{11}, M_{12} \in \mathcal{M}_{12}, M_{22} \in \mathcal{M}_{22}$. Clearly, we only need to prove the necessity. We will complete the proof by several lemmas.

Lemma 2.2 Let Φ be a nonlinear mixed bi-skew Jordan triple derivation on \mathcal{A}. Then $\Phi(0)=0$.
Proof Indeed, we have

$$
\Phi(0)=\Phi\left([0,0]_{\diamond} \circ 0\right)=[\Phi(0), 0]_{\diamond} \circ 0+[0, \Phi(0)]_{\diamond} \circ 0+[0,0]_{\diamond} \circ \Phi(0)=0
$$

Lemma 2.3 For any $M \in \mathcal{M}$, we have $\Phi(M) \in \mathcal{M}$.
Proof For any $M \in \mathcal{M}, M=\left[M, \frac{i}{2} I\right]_{\diamond} \circ\left(\frac{i}{2} I\right)$. Since $[A, B]_{\diamond} \circ C \in \mathcal{M}$ for all $A, B, C \in \mathcal{A}$, we obtain

$$
\begin{aligned}
\Phi(M) & =\Phi\left(\left[M, \frac{i}{2} I\right]_{\diamond} \circ\left(\frac{i}{2} I\right)\right) \\
& =\left[\Phi(M), \frac{i}{2} I\right]_{\diamond} \circ\left(\frac{i}{2} I\right)+\left[M, \Phi\left(\frac{i}{2} I\right)\right]_{\diamond} \circ\left(\frac{i}{2} I\right)+\left[M, \frac{i}{2} I\right]_{\diamond} \circ \Phi\left(\frac{i}{2} I\right) \in \mathcal{M}
\end{aligned}
$$

Lemma 2.4 For any $A_{11} \in \mathcal{M}_{11}, M_{12} \in \mathcal{M}_{12}$ and $A_{22} \in \mathcal{M}_{22}$, we have

$$
\Phi\left(A_{11}+M_{12}\right)=\Phi\left(A_{11}\right)+\Phi\left(M_{12}\right)
$$

and

$$
\Phi\left(M_{12}+A_{22}\right)=\Phi\left(M_{12}\right)+\Phi\left(A_{22}\right) .
$$

Proof Let $T=\Phi\left(A_{11}+M_{12}\right)-\Phi\left(A_{11}\right)-\Phi\left(M_{12}\right)$. By Lemma 2.3, we have $T^{*}=T$. We only need to prove

$$
T=T_{11}+T_{12}+T_{22}=0 .
$$

Since $\left[i P_{2}, A_{11}\right]_{\diamond}=0$, we obtain

$$
\begin{aligned}
& {\left[\Phi\left(i P_{2}\right), A_{11}+M_{12}\right]_{\diamond} \circ(i I)+\left[i P_{2}, \Phi\left(A_{11}+M_{12}\right)\right]_{\diamond} \circ(i I)+\left[i P_{2}, A_{11}+M_{12}\right]_{\diamond} \circ \Phi(i I)} \\
& \quad=\Phi\left(\left[i P_{2}, A_{11}+M_{12}\right]_{\diamond} \circ(i I)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \Phi\left(\left[i P_{2}, A_{11}\right]_{\diamond} \circ(i I)\right)+\Phi\left(\left[i P_{2}, M_{12}\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(i P_{2}\right), A_{11}+M_{12}\right]_{\diamond} \circ(i I)+\left[i P_{2}, \Phi\left(A_{11}\right)+\Phi\left(M_{12}\right)\right]_{\diamond} \circ(i I)+} \\
& {\left[i P_{2}, A_{11}+M_{12}\right]_{\diamond} \circ \Phi(i I) . }
\end{aligned}
$$

From this, we get $\left[i P_{2}, T\right]_{\diamond} \circ(i I)=0$, and hence $T_{12}=T_{22}=0$.
It follows from $\left[i\left(P_{1}-P_{2}\right), M_{12}\right]_{\diamond}=0$ that

$$
\begin{aligned}
{[\Phi(} & \left.\left.i\left(P_{1}-P_{2}\right)\right), A_{11}+M_{12}\right]_{\diamond} \circ(i I)+\left[i\left(P_{1}-P_{2}\right), \Phi\left(A_{11}+M_{12}\right)\right]_{\diamond} \circ(i I)+ \\
& {\left[i\left(P_{1}-P_{2}\right), A_{11}+M_{12}\right]_{\diamond} \circ \Phi(i I) } \\
= & \Phi\left(\left[i\left(P_{1}-P_{2}\right), A_{11}+M_{12}\right]_{\diamond} \circ(i I)\right) \\
= & \Phi\left(\left[i\left(P_{1}-P_{2}\right), A_{11}\right]_{\diamond} \circ(i I)\right)+\Phi\left(\left[i\left(P_{1}-P_{2}\right), M_{12}\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(i\left(P_{1}-P_{2}\right)\right), A_{11}+M_{12}\right]_{\diamond} \circ(i I)+\left[i\left(P_{1}-P_{2}\right), \Phi\left(A_{11}\right)+\Phi\left(M_{12}\right)\right]_{\diamond} \circ(i I)+} \\
& {\left[i\left(P_{1}-P_{2}\right), A_{11}+M_{12}\right]_{\diamond} \circ \Phi(i I), }
\end{aligned}
$$

which implies that $\left[i\left(P_{1}-P_{2}\right), T\right]_{\diamond} \circ(i I)=0$. So $T_{11}=0$, and then $T=0$.
Similarly, we can show that $\Phi\left(M_{12}+A_{22}\right)=\Phi\left(M_{12}\right)+\Phi\left(A_{22}\right)$.
Lemma 2.5 For any $A_{11} \in \mathcal{M}_{11}, M_{12} \in \mathcal{M}_{12}$ and $C_{22} \in \mathcal{M}_{22}$, we have

$$
\Phi\left(A_{11}+M_{12}+C_{22}\right)=\Phi\left(A_{11}\right)+\Phi\left(M_{12}\right)+\Phi\left(C_{22}\right) .
$$

Proof Let $T=\Phi\left(A_{11}+M_{12}+C_{22}\right)-\Phi\left(A_{11}\right)-\Phi\left(M_{12}\right)-\Phi\left(C_{22}\right)$. By Lemma 2.3, we have $T^{*}=T$. Since $\left[i P_{1}, C_{22}\right]_{\diamond}=0$, it follows from Lemma 2.4 that

$$
\begin{aligned}
{[\Phi} & \left.\left(i P_{1}\right), A_{11}+M_{12}+C_{22}\right]_{\diamond} \circ(i I)+\left[i P_{1}, \Phi\left(A_{11}+M_{12}+C_{22}\right)\right]_{\diamond} \circ(i I)+ \\
& {\left[i P_{1}, A_{11}+M_{12}+C_{22}\right]_{\diamond} \circ \Phi(i I) } \\
= & \Phi\left(\left[i P_{1}, A_{11}+M_{12}+C_{22}\right]_{\diamond} \circ(i I)\right) \\
= & \Phi\left(\left[i P_{1}, A_{11}+M_{12}\right]_{\diamond} \circ(i I)\right)+\Phi\left(\left[i P_{1}, C_{22}\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(i P_{1}\right), A_{11}+M_{12}+C_{22}\right]_{\diamond} \circ(i I)+\left[i P_{1}, \Phi\left(A_{11}\right)+\Phi\left(M_{12}\right)+\Phi\left(C_{22}\right)\right]_{\diamond} \circ(i I)+} \\
& {\left[i P_{1}, A_{11}+M_{12}+C_{22}\right]_{\diamond} \circ \Phi(i I), }
\end{aligned}
$$

which yields that $\left[i P_{1}, T\right]_{\diamond} \circ(i I)=0$. So $T_{11}=T_{12}=0$. In the similar manner, we can get that $T_{22}=0$. Hence $T=0$.

Lemma 2.6 For any $M_{12}, B_{12} \in \mathcal{M}_{12}$, we have

$$
\Phi\left(M_{12}+B_{12}\right)=\Phi\left(M_{12}\right)+\Phi\left(B_{12}\right) .
$$

Proof Let $M_{12}, B_{12} \in \mathcal{M}_{12}$. Then $M_{12}=i U_{12}-i U_{12}^{*}, B_{12}=i V_{12}-i V_{12}^{*}$, where $U_{12}, V_{12} \in \mathcal{A}_{12}$. Since

$$
\left[P_{1}+U_{12}+U_{12}^{*}, P_{2}+V_{12}+V_{12}^{*}\right]_{\diamond} \circ\left(-\frac{i}{2} I\right)=M_{12}+B_{12}+i M_{12} B_{12}-i B_{12} M_{12}
$$

where

$$
M_{12}+B_{12} \in \mathcal{M}_{12}
$$

and

$$
i M_{12} B_{12}-i B_{12} M_{12}=P_{1}\left(i U_{12} V_{12}^{*}-i V_{12} U_{12}^{*}\right) P_{1}+P_{2}\left(i U_{12}^{*} V_{12}-i V_{12}^{*} U_{12}\right) P_{2} \in \mathcal{M}_{11}+\mathcal{M}_{22}
$$

by Lemma 2.5, we have

$$
\begin{aligned}
\Phi(& \left.M_{12}+B_{12}\right)+\Phi\left(i M_{12} B_{12}-i B_{12} M_{12}\right) \\
= & \Phi\left(M_{12}+B_{12}+i M_{12} B_{12}-i B_{12} M_{12}\right) \\
= & \Phi\left(\left[P_{1}+U_{12}+U_{12}^{*}, P_{2}+V_{12}+V_{12}^{*}\right]_{\diamond} \circ\left(-\frac{i}{2} I\right)\right) \\
= & {\left[\Phi\left(P_{1}\right)+\Phi\left(U_{12}+U_{12}^{*}\right), P_{2}+V_{12}+V_{12}^{*}\right]_{\diamond} \circ\left(-\frac{i}{2} I\right)+} \\
& {\left[P_{1}+U_{12}+U_{12}^{*}, \Phi\left(P_{2}\right)+\Phi\left(V_{12}+V_{12}^{*}\right)\right]_{\diamond \circ} \circ\left(-\frac{i}{2} I\right)+} \\
& {\left[P_{1}+U_{12}+U_{12}^{*}, P_{2}+V_{12}+V_{12}^{*}\right]_{\diamond} \circ \Phi\left(-\frac{i}{2} I\right) } \\
= & \Phi\left(\left[P_{1}, P_{2}\right]_{\diamond} \circ\left(-\frac{i}{2} I\right)\right)+\Phi\left(\left[P_{1}, V_{12}+V_{12}^{*}\right]_{\diamond} \circ\left(-\frac{i}{2} I\right)\right)+ \\
& \Phi\left(\left[U_{12}+U_{12}^{*}, P_{2}\right]_{\diamond} \circ\left(-\frac{i}{2} I\right)\right)+\Phi\left(\left[U_{12}+U_{12}^{*}, V_{12}+V_{12}^{*}\right]_{\diamond \circ} \circ\left(-\frac{i}{2} I\right)\right) \\
= & \Phi\left(B_{12}\right)+\Phi\left(M_{12}\right)+\Phi\left(i M_{12} B_{12}-i B_{12} M_{12}\right),
\end{aligned}
$$

which implies that $\Phi\left(M_{12}+B_{12}\right)=\Phi\left(M_{12}\right)+\Phi\left(B_{12}\right)$.
Lemma 2.7 For any $A_{i i}, B_{i i} \in \mathcal{M}_{i i}, i=1,2$, we have

$$
\Phi\left(A_{i i}+B_{i i}\right)=\Phi\left(A_{i i}\right)+\Phi\left(B_{i i}\right)
$$

Proof Let $T=\Phi\left(A_{11}+B_{11}\right)-\Phi\left(A_{11}\right)-\Phi\left(B_{11}\right)$. By Lemma 2.3, we have $T^{*}=T$. Since $\left[i P_{2}, A_{11}\right]_{\diamond}=\left[i P_{2}, B_{11}\right]_{\diamond}=0$, we obtain

$$
\begin{aligned}
{[} & \left.\left(i P_{2}\right), A_{11}+B_{11}\right]_{\diamond} \circ(i I)+\left[i P_{2}, \Phi\left(A_{11}+B_{11}\right)\right]_{\diamond} \circ(i I)+ \\
& {\left[i P_{2}, A_{11}+B_{11}\right]_{\diamond} \circ \Phi(i I) } \\
= & \Phi\left(\left[i P_{2}, A_{11}+B_{11}\right]_{\diamond} \circ(i I)\right) \\
= & \Phi\left(\left[i P_{2}, A_{11}\right]_{\diamond} \circ(i I)\right)+\Phi\left(\left[i P_{2}, B_{11}\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(i P_{2}\right), A_{11}+B_{11}\right]_{\diamond} \circ(i I)+\left[i P_{2}, \Phi\left(A_{11}\right)+\Phi\left(B_{11}\right)\right]_{\diamond} \circ(i I)+} \\
& {\left[i P_{2}, A_{11}+B_{11}\right]_{\diamond} \circ \Phi(i I) . }
\end{aligned}
$$

So $\left[i P_{2}, T\right]_{\diamond} \circ(i I)=0$, and hence $T_{12}=T_{22}=0$. Now we have $T=T_{11}$.
For any $D_{12} \in \mathcal{A}_{12}$, let $M=D_{12}+D_{12}^{*}$. Then

$$
\left[A_{11}, i M\right]_{\diamond} \circ(i I),\left[B_{11}, i M\right]_{\diamond} \circ(i I) \in \mathcal{M}_{12}
$$

It follows from Lemma 2.6 that

$$
\begin{aligned}
{[\Phi(} & \left.\left.A_{11}+B_{11}\right), i M\right]_{\diamond} \circ(i I)+\left[A_{11}+B_{11}, \Phi(i M)\right]_{\diamond} \circ(i I)+ \\
& {\left[A_{11}+B_{11}, i M\right]_{\diamond} \circ \Phi(i I) } \\
= & \Phi\left(\left[A_{11}+B_{11}, i M\right]_{\diamond} \circ(i I)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \Phi\left(\left[A_{11}, i M\right]_{\diamond} \circ(i I)\right)+\Phi\left(\left[B_{11}, i M\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(A_{11}\right)+\Phi\left(B_{11}\right), i M\right]_{\diamond} \circ(i I)+\left[A_{11}+B_{11}, \Phi(i M)\right]_{\diamond} \circ(i I)+} \\
& {\left[A_{11}+B_{11}, i M\right]_{\diamond} \circ \Phi(i I), }
\end{aligned}
$$

which implies that $[T, i M]_{\diamond} \circ(i I)=0$, that is, $T_{11} D_{12}+D_{12}^{*} T_{11}=0$. Multiplying the above equation by P_{2} from the right, we have $T_{11} D_{12}=0$ for all $D_{12} \in \mathcal{A}_{12}$. It follows from the primeness of \mathcal{A} that $T_{11}=0$, and so $T=0$.

Similarly, we can prove that $\Phi\left(A_{22}+B_{22}\right)=\Phi\left(A_{22}\right)+\Phi\left(B_{22}\right)$.
Remark 2.8 From Lemmas 2.5-2.7, we can show that Φ is additive on \mathcal{M}.
Lemma 2.9 Let Φ be a nonlinear mixed bi-skew Jordan triple derivation on \mathcal{A}. Then $\Phi(i I)=0$.
Proof For any $M \in \mathcal{M}$, it follows from Lemma 2.3 and Remark 2.8 that

$$
\begin{aligned}
4 \Phi(M) & =\Phi(4 M)=\Phi\left([M, i I]_{\diamond} \circ(i I)\right) \\
& =[\Phi(M), i I]_{\diamond} \circ(i I)+[M, \Phi(i I)]_{\diamond} \circ(i I)+[M, i I]_{\diamond} \circ \Phi(i I) \\
& =4 \Phi(M)+2 i\left(\Phi(i I)^{*} M-M \Phi(i I)\right)+2 i\left(\Phi(i I)^{*} M-M \Phi(i I)\right) \\
& =4 \Phi(M)+4 i\left(\Phi(i I)^{*} M-M \Phi(i I)\right) .
\end{aligned}
$$

So $\Phi(i I)^{*} M-M \Phi(i I)=0$ for all $M \in \mathcal{M}$. Let $M=I$. Then $\Phi(i I)=\Phi(i I)^{*} \in \mathcal{M}$. Now we have $\Phi(i I) M=M \Phi(i I)$ for all $M \in \mathcal{M}$. Since for any $B \in \mathcal{A}, B=M_{1}+i M_{2}$ with $M_{1}=\frac{B+B^{*}}{2} \in \mathcal{M}$ and $M_{2}=\frac{B-B^{*}}{2 i} \in \mathcal{M}$, it follows that $\Phi(i I) B=B \Phi(i I)$ for all $B \in \mathcal{A}$. Hence

$$
\begin{equation*}
\Phi(i I) \in \mathcal{Z}(\mathcal{A}) \cap \mathcal{M} \tag{2.1}
\end{equation*}
$$

For any $M \in \mathcal{M}$, from Lemma 2.3, we see that

$$
0=\Phi\left([M, i I]_{\diamond} \circ I\right)=[M, i I]_{\diamond} \circ \Phi(I)=2 i\left(\Phi(I)^{*} M-M \Phi(I)\right) .
$$

In the same manner, we obtain

$$
\begin{equation*}
\Phi(I) \in \mathcal{Z}(\mathcal{A}) \cap \mathcal{M} \tag{2.2}
\end{equation*}
$$

Let $\Phi\left(i P_{1}\right)=W_{1}+i W_{2}$, where $W_{1}, W_{2} \in \mathcal{N}$. It follows from Eq. (2.1) that

$$
\begin{aligned}
0 & =\Phi\left(\left[i I, i P_{1}\right]_{\diamond} \circ\left(\frac{i}{2} I\right)\right) \\
& =\left[\Phi(i I), i P_{1}\right]_{\diamond} \circ\left(\frac{i}{2} I\right)+\left[i I, \Phi\left(i P_{1}\right)\right]_{\diamond} \circ\left(\frac{i}{2} I\right) \\
& =2 \Phi(i I) P_{1}-2 i W_{2}
\end{aligned}
$$

which impies that $i W_{2}=\Phi(i I) P_{1}$, and so

$$
\begin{equation*}
\Phi\left(i P_{1}\right)=W_{1}+\Phi(i I) P_{1} . \tag{2.3}
\end{equation*}
$$

In view of Eqs. (2.2) and (2.3), we find that

$$
\begin{align*}
4 \Phi\left(P_{1}\right) & =\Phi\left(\left[I, i P_{1}\right]_{\diamond} \circ(i I)\right)=\left[\Phi(I), i P_{1}\right]_{\diamond} \circ(i I)+\left[I, \Phi\left(i P_{1}\right)\right]_{\diamond} \circ(i I) \\
& =4 \Phi(I) P_{1}-4 i W_{1}, \tag{2.4}
\end{align*}
$$

which yields that

$$
\begin{equation*}
\Phi\left(P_{1}\right)=\Phi(I) P_{1}-i W_{1} \tag{2.5}
\end{equation*}
$$

On the other hand, by Eqs. (2.3) and (2.5), we obtain

$$
\begin{align*}
4 \Phi\left(P_{1}\right) & =\Phi\left(\left[P_{1}, i P_{1}\right]_{\diamond} \circ(i I)\right) \\
& =\left[\Phi\left(P_{1}\right), i P_{1}\right]_{\diamond} \circ(i I)+\left[P_{1}, \Phi\left(i P_{1}\right)\right]_{\diamond} \circ(i I) \\
& =4 \Phi(I) P_{1}-4 i\left(P_{1} W_{1}+W_{1} P_{1}\right) . \tag{2.6}
\end{align*}
$$

Comparing Eqs. (2.4) and (2.6), we have $P_{1} W_{1}+W_{1} P_{1}=W_{1}$, and so

$$
\begin{equation*}
P_{1} W_{1} P_{1}=P_{2} W_{1} P_{2}=0 \tag{2.7}
\end{equation*}
$$

From Eqs. (2.3) and (2.7), we get that

$$
\begin{equation*}
\Phi\left(i P_{1}\right)=W_{1}+\Phi(i I) P_{1}=\Phi(i I) P_{1}+P_{1} W_{1} P_{2}+P_{2} W_{1} P_{1} \tag{2.8}
\end{equation*}
$$

For any $A_{12} \in \mathcal{A}_{12}$, putting $M=A_{12}+A_{12}^{*}$, then $M \in \mathcal{M}$. It follows from Lemma 2.3 and Remark 2.8 that

$$
\begin{align*}
-2 \Phi(M) & =\Phi\left(\left[i P_{1}, M\right]_{\diamond} \circ(i I)\right) \\
& =\left[\Phi\left(i P_{1}\right), M\right]_{\diamond} \circ(i I)+\left[i P_{1}, \Phi(M)\right]_{\diamond} \circ(i I) \\
& =-2\left(i \Phi\left(i P_{1}\right)^{*} M-i M \Phi\left(i P_{1}\right)+\Phi(M) P_{1}+P_{1} \Phi(M)\right) \tag{2.9}
\end{align*}
$$

Multiplying Eq. (2.9) by P_{1} from the left and by P_{2} from the right, then by Eq. (2.8), we have $\Phi(i I) A_{12}=0$. It follows from the primeness of \mathcal{A} that $\Phi(i I) P_{1}=0$. On the other hand, by Eq. (2.1), we also get $\Phi(i I) A_{12}^{*}=0$. By the primeness of $\mathcal{A}, \Phi(i I) P_{2}=0$. Now we obtain $\Phi(i I)=\Phi(i I) P_{1}+\Phi(i I) P_{2}=0$.

Lemma 2.10 (1) For any $N \in \mathcal{N}$, we have $\Phi(N)^{*}=-\Phi(N)$ and $\Phi(i N)=i \Phi(N)+i \Phi(I) N$;
(2) Φ is additive on \mathcal{N};
(3) For any $H, K \in \mathcal{N}$, we have $\Phi(H+i K)=\Phi(H)+i \Phi(K)+i \Phi(I) K$.

Proof (1) For any $N \in \mathcal{N}$, it follows from Lemma 2.9 that

$$
0=\Phi\left([i I, N]_{\diamond} \circ(i I)\right)=[i I, \Phi(N)]_{\diamond} \circ(i I)=-2\left(\Phi(N)^{*}+\Phi(N)\right)
$$

So $\Phi(N)^{*}=-\Phi(N)$ for all $N \in \mathcal{N}$.
For any $N \in \mathcal{N}$, by Remark 2.8, Lemma 2.9 and Eq. (2.2), we get

$$
4 \Phi(i N)=\Phi\left([N, I]_{\diamond} \circ(i I)\right)=[\Phi(N), I]_{\diamond} \circ(i I)+[N, \Phi(I)]_{\diamond} \circ(i I)=4 i(\Phi(N)+\Phi(I) N)
$$

That is,

$$
\begin{equation*}
\Phi(i N)=i \Phi(N)+i \Phi(I) N \tag{2.10}
\end{equation*}
$$

for all $N \in \mathcal{N}$.
(2) For any $H, K \in \mathcal{N}$, we can get from Remark 2.8 and Eq. (2.10) that

$$
i \Phi(H+K)+i \Phi(I)(H+K)=\Phi(i(H+K))
$$

$$
=\Phi(i H)+\Phi(i K)=i(\Phi(H)+\Phi(K))+i \Phi(I)(H+K) .
$$

Hence $\Phi(H+K)=\Phi(H)+\Phi(K)$ for all $H, K \in \mathcal{N}$.
(3) For any $H, K \in \mathcal{N}$, by Remark 2.8, Lemma 2.9 and Eq. (2.10), we have

$$
\begin{align*}
& 4(i \Phi(K)+i \Phi(I) K)=\Phi(4 i K)=\Phi\left([H+i K, i I]_{\diamond} \circ(i I)\right) \\
& \quad=[\Phi(H+i K), i I]_{\diamond} \circ(i I)=2\left(\Phi(H+i K)+\Phi(H+i K)^{*}\right) \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
& 4(i \Phi(H)+i \Phi(I) H)=\Phi(4 i H)=\Phi\left([H+i K, I]_{\diamond} \circ(i I)\right) \\
& \quad=[\Phi(H+i K), I]_{\diamond} \circ(i I)+[H+i K, \Phi(I)]_{\diamond} \circ(i I) \\
& \quad=2 i\left(\Phi(H+i K)-\Phi(H+i K)^{*}\right)+4 i \Phi(I) H . \tag{2.12}
\end{align*}
$$

In view of Eqs. (2.11) and (2.12), we obtain

$$
\Phi(H+i K)=\Phi(H)+i \Phi(K)+i \Phi(I) K
$$

Lemma 2.11 (1) For any $A \in \mathcal{A}$, we have $\Phi(A)^{*}=\Phi(A)$;
(2) Φ is additive on \mathcal{A}.

Proof (1) For any $A \in \mathcal{A}, A=A_{1}+i A_{2}$, where $A_{1}, A_{2} \in \mathcal{N}$. Then we can get from Eq. (2.2) and Lemma 2.10 that

$$
\begin{aligned}
& \Phi(A)^{*}=\Phi\left(A_{1}+i A_{2}\right)^{*}=\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)+i \Phi(I) A_{2}\right)^{*} \\
& \quad=-\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)+i \Phi(I) A_{2}=\Phi\left(-A_{1}+i A_{2}\right)=\Phi\left(A^{*}\right)
\end{aligned}
$$

for all $A \in \mathcal{A}$.
(2) For any $A, B \in \mathcal{A}, A=A_{1}+i A_{2}, B=B_{1}+i B_{2}$, where $A_{i}, B_{i} \in \mathcal{N}(i=1,2)$. It follows from Lemma 2.10 that

$$
\begin{aligned}
& \Phi(A+B)=\Phi\left(\left(A_{1}+B_{1}\right)+i\left(A_{2}+B_{2}\right)\right) \\
& \quad=\Phi\left(A_{1}+B_{1}\right)+i \Phi\left(A_{2}+B_{2}\right)+i \Phi(I)\left(A_{2}+B_{2}\right) \\
& \quad=\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)+i \Phi(I) A_{2}\right)+\left(\Phi\left(B_{1}\right)+i \Phi\left(B_{2}\right)+i \Phi(I) B_{2}\right) \\
& \quad=\Phi(A)+\Phi(B) .
\end{aligned}
$$

Hence Φ is additive on \mathcal{A}.
Lemma 2.12 (1) $\Phi(I)=0$;
(2) For any $A \in \mathcal{A}$, we have $\Phi(i A)=i \Phi(A)$.

Proof (1) In view of Eqs. (2.5) and (2.7), we have

$$
\begin{equation*}
\Phi\left(P_{1}\right)=\Phi(I) P_{1}-i P_{1} W_{1} P_{2}-i P_{2} W_{1} P_{1} . \tag{2.13}
\end{equation*}
$$

For any $A_{12} \in \mathcal{A}_{12}$, it follows from Lemmas 2.9-2.11 that

$$
2\left(i\left(\Phi\left(A_{12}\right)^{*}-\Phi\left(A_{12}\right)\right)+i \Phi(I)\left(A_{12}^{*}-A_{12}\right)\right)
$$

$$
\begin{aligned}
= & 2 \Phi\left(i\left(A_{12}^{*}-A_{12}\right)\right)=\Phi\left(\left[P_{1}, A_{12}+A_{12}^{*}\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(P_{1}\right), A_{12}+A_{12}^{*}\right]_{\diamond} \circ(i I)+\left[P_{1}, \Phi\left(A_{12}+A_{12}^{*}\right)\right]_{\diamond \circ} \circ(i I) } \\
= & 2 i\left[\left(A_{12}+A_{12}^{*}\right)\left(\Phi(I) P_{1}-i P_{1} W_{1} P_{2}-i P_{2} W_{1} P_{1}\right)-\right. \\
& \left(\Phi(I) P_{1}-i P_{1} W_{1} P_{2}-i P_{2} W_{1} P_{1}\right)\left(A_{12}+A_{12}^{*}\right)+ \\
& \left.\left(\Phi\left(A_{12}\right)^{*}+\Phi\left(A_{12}\right)\right) P_{1}-P_{1}\left(\Phi\left(A_{12}\right)+\Phi\left(A_{12}\right)^{*}\right)\right] .
\end{aligned}
$$

Multiplying by P_{1} from the left and by P_{2} from the right, we obtain

$$
\begin{equation*}
P_{1} \Phi\left(A_{12}\right)^{*} P_{2}=0 \tag{2.14}
\end{equation*}
$$

On the other hand, we also have

$$
\begin{aligned}
2(& \left.\left(A_{12}\right)+\Phi\left(A_{12}\right)^{*}\right)=\Phi\left(\left[P_{1}, i\left(A_{12}-A_{12}^{*}\right)\right]_{\diamond} \circ(i I)\right) \\
= & {\left[\Phi\left(P_{1}\right), i\left(A_{12}-A_{12}^{*}\right)\right]_{\diamond} \circ(i I)+\left[P_{1}, \Phi\left(i\left(A_{12}-A_{12}^{*}\right)\right)\right]_{\diamond} \circ(i I) } \\
= & 2\left[\left(A_{12}^{*}-A_{12}\right)\left(\Phi(I) P_{1}-i P_{1} W_{1} P_{2}-i P_{2} W_{1} P_{1}\right)+\right. \\
& \left(\Phi(I) P_{1}-i P_{1} W_{1} P_{2}-i P_{2} W_{1} P_{1}\right)\left(A_{12}-A_{12}^{*}\right)+ \\
& \left(\Phi\left(A_{12}\right)^{*}-\Phi\left(A_{12}\right)+\left(A_{12}^{*}-A_{12}\right) \Phi(I)\right) P_{1}+ \\
& \left.P_{1}\left(\Phi\left(A_{12}\right)-\Phi\left(A_{12}\right)^{*}+\Phi(I)\left(A_{12}-A_{12}^{*}\right)\right)\right] .
\end{aligned}
$$

Multiplying by P_{1} from the left and by P_{2} from the right, we obtain $\Phi(I) A_{12}=0$ by the Eq. (2.14). It follows from the primeness of \mathcal{A} that $\Phi(I) P_{1}=0$. On the other hand, by Eq. (2.2), we also get $\Phi(I) A_{12}^{*}=0$. So $\Phi(I) P_{2}=0$. Now we obtain $\Phi(I)=\Phi(I) P_{1}+\Phi(I) P_{2}=0$.
(2) For any $N \in \mathcal{N}$, by Lemma $2.10(1)$ and $\Phi(I)=0$, we have

$$
\begin{equation*}
\Phi(i N)=i \Phi(N) \tag{2.15}
\end{equation*}
$$

For any $A \in \mathcal{A}, A=A_{1}+i A_{2}$, where $A_{1}, A_{2} \in \mathcal{N}$. From Lemma 2.11 (2) and Eq. (2.15), we have

$$
\Phi(i A)=\Phi\left(i\left(A_{1}+i A_{2}\right)\right)=\Phi\left(i A_{1}-A_{2}\right)=i\left(\Phi\left(A_{1}\right)+i \Phi\left(A_{2}\right)\right)=i \Phi(A)
$$

for all $A \in \mathcal{A}$.
Lemma $2.13 \quad \Phi$ is a derivation on \mathcal{A}.
Proof For any $A, B \in \mathcal{A}$, by Lemmas 2.11 (2) and 2.12 (2), we have

$$
\begin{aligned}
2 & \left(\Phi\left(A^{*} B+B^{*} A\right)\right)=\Phi\left([A, i B]_{\diamond} \circ(i I)\right) \\
& =[\Phi(A), i B]_{\diamond} \circ(i I)+[A, i \Phi(B)]_{\diamond} \circ(i I) \\
& =2\left(\Phi(A)^{*} B+B^{*} \Phi(A)+A^{*} \Phi(B)+\Phi(B)^{*} A\right)
\end{aligned}
$$

which impies that

$$
\begin{equation*}
\Phi\left(A^{*} B+B^{*} A\right)=\Phi(A)^{*} B+B^{*} \Phi(A)+A^{*} \Phi(B)+\Phi(B)^{*} A \tag{2.16}
\end{equation*}
$$

On the other hand, we also have

$$
-2 i\left(\Phi\left(A^{*} B-B^{*} A\right)\right)=\Phi\left([i A, i B]_{\diamond} \circ(i I)\right)
$$

$$
\begin{aligned}
& =[i \Phi(A), i B]_{\diamond} \circ(i I)+[i A, i \Phi(B)]_{\diamond} \circ(i I) \\
& =-2 i\left(\Phi(A)^{*} B-B^{*} \Phi(A)+A^{*} \Phi(B)-\Phi(B)^{*} A\right),
\end{aligned}
$$

which yields that

$$
\begin{equation*}
\Phi\left(A^{*} B-B^{*} A\right)=\Phi(A)^{*} B-B^{*} \Phi(A)+A^{*} \Phi(B)-\Phi(B)^{*} A . \tag{2.17}
\end{equation*}
$$

By summing Eqs. (2.16) and (2.17), we obtain

$$
\Phi\left(A^{*} B\right)=\Phi(A)^{*} B+A^{*} \Phi(B)
$$

Then we can get from Lemma 2.11 (1) that

$$
\Phi(A B)=\Phi(A) B+A \Phi(B)
$$

Now, from Lemmas 2.11 and 2.13, we obtain that Φ is an additive $*$-derivation on \mathcal{A}. This completes the proof of Theorem 2.1.

3. Corollaries

Let $B(\mathcal{H})$ be the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}, and $\mathcal{A} \subseteq B(\mathcal{H})$ be a von Neumann algebra. \mathcal{A} is a factor if its center is $\mathbb{C} I$. It is well known that a factor von Neumann algebra is prime. Now we can get the following corollary.

Corollary 3.1 Let \mathcal{A} be a factor von Neumann algebra with $\operatorname{dim}(\mathcal{A}) \geq 2$. Then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear mixed bi-skew Jordan triple derivation if and only if Φ is an additive $*$-derivation.

We denote the subalgebra of all bounded finite rank operators by $\mathcal{F}(\mathcal{H}) \subseteq B(\mathcal{H})$. We call a subalgebra \mathcal{A} of $B(\mathcal{H})$ a standard operator algebra if it contains $\mathcal{F}(\mathcal{H})$. Now we have the following corollary.

Corollary 3.2 Let \mathcal{H} be an infinite dimensional complex Hilbert space and \mathcal{A} be a standard operator algebra on \mathcal{H} containing the identity operator I. Suppose that \mathcal{A} is closed under the adjoint operation. Then $\Phi: \mathcal{A} \rightarrow \mathcal{A}$ is a nonlinear mixed bi-skew Jordan triple derivation if and only if Φ is a linear *-derivation. Moreover, there exists an operator $T \in B(\mathcal{H})$ satisfying $T+T^{*}=0$ such that $\Phi(A)=A T-T A$ for all $A \in \mathcal{A}$, i.e., Φ is inner.

Proof Since \mathcal{A} is prime, we know that Φ is an additive $*$-derivation. It follows from [13] that Φ is a linear inner derivation, i.e., there exists an operator $S \in B(\mathcal{H})$ such that $\Phi(A)=A S-S A$. Using the fact $\Phi\left(A^{*}\right)=\Phi(A)^{*}$, we have

$$
A^{*} S-S A^{*}=\Phi\left(A^{*}\right)=\Phi(A)^{*}=-A^{*} S^{*}+S^{*} A^{*}
$$

for all $A \in \mathcal{A}$. This leads to $A^{*}\left(S+S^{*}\right)=\left(S+S^{*}\right) A^{*}$. Hence, $S+S^{*}=\lambda I$ for some $\lambda \in \mathbb{R}$. Let us set $T=S-\frac{1}{2} \lambda I$. One can check that $T+T^{*}=0$ such that $\Phi(A)=A T-T A$.

Acknowledgements We thank the referees for their time and comments.

References

[1] Meili WANG, Guoxing JI. Maps preserving *-Lie product on factor von Neumann algebras. Linear Multilinear Algebra., 2016, 64(11): 2159-2168.
[2] V. DARVISH, M. NOURI, M. RAZEGHI. Nonlinear triple product $A^{*} B+B^{*} A$ for derivations on *-algebras. Math. Notes, 2020, 108(1-2): 179-187.
[3] A. KHAN. Multiplicative bi-skew Lie triple derivations on factor von Neumann algebras. Rocky Mountain J. Math., 2021, 51: 2103-2114.
[4] Liang KONG, Jianhua ZHANG. Nonlinear bi-skew Lie derivations on factor von Neumann algebras. Bull. Iranian Math. Soc., 2021, 47: 1097-1106.
[5] A. TAGHAVI, S. GHOLAMPOOR. Maps preserving product $A^{*} B+B^{*} A$ on C^{*}-algebras. Bull. Iranian Math. Soc., 2022, 48(2): 757-767.
[6] Changjing LI, Dongfang ZHANG. Nonlinear mixed Jordan triple *-derivations on *-algebras. Sib. Math. J., 2022, 63(4): 735-742.
[7] Xingpeng ZHAO, Xiaochun FANG. The second nonlinear mixed Lie triple derivations on finite von Neumann algebras. Bull. Iranian Math. Soc., 2021, 47(1): 237-254.
[8] A. TAGHAVI, M. RAZEGHI. Non-linear new product $A^{*} B-B^{*} A$ derivations on $*$-algebras. Proyecciones, 2020, 39(2): 467-479.
[9] Changjing LI, Fangfang ZHAO, Quanyuan CHEN. Nonlinear maps preserving product $X^{*} Y+Y^{*} X$ on von Neumann algebras. Bull. Iranian Math. Soc., 2018, 44(3): 729-738.
[10] You ZHOU, Zhujun YANG, Jianhua ZHANG. Nonlinear mixed Lie triple derivations on prime *-algebras. Comm. Algebra, 2019, 47(11): 4791-4796.
[11] You ZHOU, Jianhua ZHANG. The second mixed nonlinear Lie triple derivations on factor von Neumann algebras. Adv. Math. (China), 2019, 48(4): 441-449.
[12] Yongfeng PANG, Danli ZHANG, Dong MA. The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras. Bull. Iranian Math. Soc., 2022, 48(3): 951-962.
[13] P. ŠEMRL. Additive derivations of some operator algebras. Illinois J. Math., 1991, 35(2): 234-240.

[^0]: Received May 25, 2022; Accepted February 26, 2023

 * Corresponding author

 E-mail address: wanwanf2@163.com (Fangfang ZHAO); 1776767307@qq.com (Dongfang ZHANG); lcjbxh@163. com (Changjing LI)

