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Abstract Sparse recovery (or sparse representation) is a widely studied issue in the fields of

signal processing, image processing, computer vision, machine learning and so on, since signals

such as videos and images, can be sparsely represented under some frames. Most of fast algo-

rithms at present are based on solving l0 or l1 minimization problems and they are efficient in

sparse recovery. However, the theoretically sufficient conditions on the sparsity of the signal for

l0 or l1 minimization problems and algorithms are too strict. In some applications, there are

signals with structures, i.e., the nonzero entries have some certain distribution. In this paper,

we consider the uniqueness and feasible conditions for piecewise sparse recovery. Piecewise spar-

sity means that the sparse signal x is a union of several sparse sub-signals xi (i = 1, 2, . . . , N),

i.e., x = (xT
1 ,x

T
2 , . . . ,x

T
N)T, corresponding to the measurement matrix A which is composed of

union of bases A = [A1, A2, . . . , AN ]. We introduce the mutual coherence for the sub-matrices

Ai (i = 1, 2, . . . , N) by considering the block structure of A corresponding to piecewise sparse

signal x, to study the new upper bounds of ‖x‖0 (number of nonzero entries of signal) recov-

ered by both l0 and l1 optimizations. The structured information of measurement matrix A is

exploited to improve the sufficient conditions for successfully piecewise sparse recovery and also

improve the reliability of l0 and l1 optimization models on recovering global sparse vectors.

Keywords piecewise sparse recovery; union of bases; mutual coherence; greedy algorithm; BP

method
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1. Introduction

In this paper, we consider recovering a sparse signal (vector) x∗ ∈ R
n from an underdeter-

mined system of linear equation

Ax∗ = b, (1.1)

where b ∈ R
m is a measurement vector, A ∈ R

m×n is a measurement matrix. If the vector x∗

has at most s ≤ m < n nonzero entries, then it is named as s-sparse vector, the corresponding

index set of nonzero entries is called support S = supp(x∗). There are many theories, algorithms

and applications on this problem of sparse recovery [1].
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One kind of approaches for solving Eq. (1.1) are the greedy algorithms (GA), which approx-

imate the following l0 minimizing solution, named as P0 problem:

min
x

‖x‖0, s.t. Ax = b. (1.2)

One of the most popular greedy methods is the orthogonal matching pursuit (OMP) as proposed

in [2–4]. It iteratively appends components to the support of the approximation xk whose cor-

relation to the current residual is maximal. There are many other greedy methods for sparse

recovery, for example, iterative hard thresholding (IHT) [5], stagewise OMP (StOMP) [6], reg-

ularized OMP (ROMP) [7, 8], compressive sampling matching pursuit (CoSaMP) [9], subspace

pursuit (SP) [10], iterative thresholding with inversion (ITI) [11], hard thresholding pursuit

(HTP) [12] and so on.

Another kind of approaches are convex relaxation algorithms which solve a convex program

whose minimizer is known to approximate the target signal. Among them, the basis pursuit gains

lots of attention which determines the sparsest representation of x∗ by solving the following l1

minimization problem, named as P1 problem or Basis Pursuit problem (BP method):

min
x

‖x‖1, s.t. Ax = b. (1.3)

Many algorithms have been proposed to complete the optimization, including interior-point meth-

ods [13], projected gradient methods [14], and iterative thresholding [15] etc.

There are three fundamental problems concerned on sparse recovery:

(1) Uniqueness of solution of the P0 problem.

(2) Feasibility of GA for solving the P0 problem.

(3) Equivalence between the P1 problem and the P0 problem, or feasibility of BP method.

There are several tools for dealing with the above three problems, such as mutual coherence

[16], the spark [17], the cumulative coherence [18], the exact recovery coefficient (ERC) [18],

the restricted isometry property (RIP) conditions and the restricted isometry constants (RICs)

[19–21]. It is well-known that the necessary and sufficient condition for the uniqueness of the

solution of the P0 problem (1.2) is [17]

‖x‖0 < spark(A)/2, (1.4)

or the RIC of the matrix A satisfies δ2s < 1 (see [19]). The equivalence between the P1 problem

and the P0 problem is guaranteed by δ2s <
√
2−1 (see [20,21]). For a given matrix or dictionary

A, however, it is difficult to compute the spark or verify the RIP conditions. By contrast, we can

easily compute the mutual coherence of matrix. The general case discussed in [16] showed that

one sufficient condition which ensures the uniqueness of the solution of the P0 problem (1.2) is

‖x‖0 <
1

2
(1 +

1

µ(A)
), (1.5)

where µ(A) is the mutual coherence of measurement matrix A. Furthermore, the condition

Eq. (1.5) is also a sufficient condition which ensures the OMP (greedy method) and BP method

for recovering the optimal s-sparse solution [18]. However, in applications, OMP or BP method
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can work well even when the condition (1.5) is not satisfied, i.e., when

1

2
(1 + 1/µ(A)) ≤ ‖x‖0 < spark(A)/2,

which means the sufficient condition (1.5) is strict for sparse recovery to some extent, or the

“gap” between the optimal upper bound 1
2 spark(A) and the upper bound 1

2 (1 + 1/µ(A)) is big.

Two improved conditions were obtained in the special case where A is in pairs of orthogonal

bases. The result in [22] shows that uniqueness of the l0 minimization (P0 problem) solution

can be achieved for improved condition ‖x‖0 < 1
µ , where µ = µ(A). They also showed that the

solutions of the P0 and P1 problems coincide for ‖x‖0 <
√
2−0.5
µ . Further, it was also shown

in [18,22,23] that if the matrix A is a union of N(≥ 2) orthogonal bases, the sufficient condition

for OMP to solve the P0 problem for N orthogonal bases was improved with

‖x‖0 < (
1

2
+

1

2(N − 1)
)
1

µ
(1.6)

and for BP to solve P1 problem was improved with

‖x‖0 < (
√
2− 1 +

1

2(N − 1)
)
1

µ
. (1.7)

Moreover, if we consider the vector x as (s1, . . . , sN)-piecewise sparse (see Definition 1.1),

‖x‖0 = s1+ · · ·+sN , s1 ≤ · · · ≤ sN) or vector b is a superposition of si atoms from the i-th basis,

with A in unions of N orthogonal bases, then the exact recovery condition (ERC) is guaranteed

by
N∑

j=2

µsj
1 + µsj

<
1

2(1 + µs1)
. (1.8)

Thus, both the OMP and BP can find the sparest solution under condition (1.8) (see [18]). When

n = 2, Eq. (1.8) is 2µ2s1s2 + µs2 < 1 (s1 ≤ s2).

Condition index Structure of A The upper bounds of ‖x‖0(= s1 + s2)

Condition 1 Eq. (1.5) General case ‖x‖0 < 1
2
(1 + 1

µ(A)
)

Condition 2 Eq. (1.6) Pais of orthogonal bases (uniqueness) ‖x‖0 < 1
µ(A)

Condition 3 Eq. (1.7) Pais of orthogonal bases (equivalence) ‖x‖0 <
√

2−0.5
µ(A)

Condition 4 Eq. (1.8) Pais of orthogonal bases (ERC) 2µ2s1s2 + µs2 < 1 (s1 ≤ s2)

2µ2s1s2 + µs1 < 1 (s1 > s2)

Table 1 A list of theoretical upper bounds for sparse recovery

The four Conditions (1.5), (1.6), (1.7) and (1.8) are concluded in Table 1 for the case of A

in pairs of orthogonal bases compared with the general case of A. It is observed from Figure 1

(presented in [22]) that the sufficient conditions based on the mutual coherence can be improved

by considering the structure of matrix A.

Note that, in many practical applications, the measurement matrix A cannot be always com-

posed of a union of orthogonal bases. Thus, it is necessary to study the sufficient conditions for

successful recovery when the measurement matrix A is a union of N general bases or submatrices,



366 Chongjun LI and Yijun ZHONG

i.e., A = [A1, A2, . . . , AN ], where Ai (i = 1, 2, . . . , N) are not necessary orthogonal bases, each

Ai may be a general base or dictionary. Correspondingly, the target signal (vector) x is also

partitioned into N sub-vectors or segments x = (xT
1 ,x

T
2 , . . . ,x

T
N )T according to the structure of

matrix A. With considering the piecewise sparsity of vector x and the structure of matrix A

make it possible to deeply study the sufficient conditions for successfully sparse recovery.

condition 1

condition 2

condition 3

condition 4

s1=s2

5 10 15 20

5

10

15

20

s1

s
2

Figure 1 A plot of the upper bound conditions of the sparse vector in Table 1 with µ(A) = 0.05

For a given vector x = (x1, . . . , xd1

︸ ︷︷ ︸

xT

1

, xd1+1, . . . , xd1+d2

︸ ︷︷ ︸

xT

2

, . . . , xn−dN+1, . . . , xn
︸ ︷︷ ︸

xT

N

)T, where n =

∑N
i=1 di and si = ‖xi‖0, i = 1, 2, . . . , N , there are three common types of sparsity of vector x:

(1) Global sparsity. x is assumed to have s = ‖x‖0 =
∑N

i=1 ‖xi‖0 nonzero entries.

(2) Block sparsity [24–27]. A block s-sparse vector x is assumed to have at most s blocks

with nonzero entries, i.e., the block l0 or l1 norm ‖x‖2,0 =
∑N

i=1 I(‖xi‖2) or ‖x‖2,1 =
∑N

i=1 ‖xi‖2
are minimized.

(3) Piecewise sparsity. As in the following definition.

Definition 1.1 A vector x = (xT
1 ,x

T
2 , . . . ,x

T
N )T ∈ R

n is partitioned into N segments and it is

assumed that each sub-vector xi ∈ R
ni is sparse, si = ‖xi‖0, i = 1, 2, . . . , N . We call the vector

x (s1, s2, . . . , sN )-piecewise sparse.

Piecewise sparse vector means that each part of the vector is sparse. The piecewise sparsity

is different from the block sparsity. Piecewise sparse recovery is common in applications, such

as the problem of the decomposition of texture part and cartoon part of image in [28], i.e.,

b = Anxn + Atxt where n and t represent the cartoon and texture. It is assumed that both

parts can be represented in some given dictionaries, thus xn and xt are two sparse vectors.

The coefficient vector x = (xT
n ,x

T
t )

T is a “piecewise” sparse vector. Another example is the

problem of reconstructing a surface from scattered data in approximation space H =
⋃N

i=1 Hj ,

where Hj ⊆ Hj+1 are principal shift invariant (PSI) spaces generated by a single compactly

supported function [29], the fitting surface is g =
∑N

i=1 gi, gi ∈ Hi with gi =
∑ni

j=1 c
i
jφ

i
j . The

coefficients vector c = (c1, c2, . . . , cN )T (with N pieces ci = (ci1, . . . , c
i
ni
)T, i = 1, 2, . . . , N) is
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to be determined. Due to the property of PSI spaces, the coefficients to be determined by l1

minimization in [29] are “piecewise” sparse structure, i.e., each ci ∈ R
ni is a sparse vector in Hi.

In [30], we first try to recover the piecewise sparse vector by the piecewise inverse scale space

algorithm with deletion rule.

We study the sparse vectors whose nonzero elements appear in a scattered way, i.e., piece-

wise sparsity, and the corresponding matrix can be structured in a union of some sub-matrices

(orthogonal bases is a special case). It is obvious that piecewise sparsity is more general in

applications. By considering the piecewise sparse vector and the structure of its corresponding

matrix A = [A1, A2, . . . , AN ] we may obtain improved conditions for sparse recovery.

In this paper, we use the mutual coherence and cumulative mutual coherence which can

be efficiently calculated for an arbitrary given matrix A to give the new sufficient conditions

of piecewise sparse recovery. Since our results are based on the mutual coherence of A and

Ai (i = 1, 2, . . . , N), thus the results are applicable to arbitrary structured dictionary A =

[A1, A2, . . . , AN ]. Inspired by the works in [18, 23], which provide improved sufficient conditions

for having unique sparse representation of signals in union of orthogonal bases, we study the

generalization of the sufficient conditions for having unique sparse representation of piecewise

sparse signals corresponding to the unions of general bases (or dictionaries).

2. Preliminaries

In this section, we introduce some necessary notations and definitions as follows.

Notations. We use x to represent a vector and x to represent a scalar. Define the inner

product by 〈x,y〉 = xTy. For a sparse vector x∗, let S = supp(x∗) and T be its complement,

i.e., T = {i : x∗
i = 0}. Denote by AS the submatrix of A formed by the columns of A in S, which

are assumed to be linearly independent. Similarly, define AT so that [AS AT ] = A. Denote the

number of entries in S by s = |S| = |supp(x∗)|, for a piecewise sparse vector x∗ with piecewise

support S = S1

⋃
S2

⋃ · · ·⋃SN , denote si = |Si|, i = 1, 2, . . . , N .

2.1. Tools used in sparse recovery

In this part, we introduce the widely used tool for sparse signal recovery: the mutual co-

herence of a matrix of dictionary A ∈ R
m×n. Denote aik by the k-th column in the submatrix

Ai, and the matrix A = [A1, A2, . . . , AN ] is assumed to have unit l2 norm for each column, i.e.,

‖aik‖2 = 1, k = 1, 2, . . . , ni, i = 1, 2, . . . , N .

Definition 2.1 ([16]) The mutual coherence of A is

µ = µ(A) := max
k 6=l

|〈ak, al〉|,

for any two differential columns ak, al ∈ A.

Roughly speaking, the coherence measures how much two vectors in the dictionary can look

alike. It is obvious that every orthogonal basis has coherence µ = 0. A union of two orthogonal

bases has coherence µ ≥ m−1/2 (see [16]).
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Definition 2.2 ([18]) The cumulative mutual coherence (Babel function) of A is

µ1(s) = max
|S|=s

max
l∈Sc

∑

k∈S

|〈ak, al〉|,

where ak, al ∈ A.

A close examination of the formula shows that µ1(1) = µ and that µ1 is a non-decreasing

function of s.

Proposition 2.3 ([18]) If a dictionary A has coherence µ, then µ1(m) ≤ mµ.

Theorem 2.4 ([18]) Exact Recovery Condition (ERC). A sufficient condition for both Orthogo-

nal Matching Pursuit and Basis Pursuit to recover the s-sparse x with S = supp(x) successfully

is that

max
j∈Sc

‖(AT
SAS)

−1AT
SAj‖1 < 1,

where the 1-norm is the sum of the absolute value of entries of the vector (AT
S
AS)

−1AT
S
Aj .

Definition 2.5 ([17]) The spark of A counts the least number of columns which form a linearly

dependent set.

spark(A) = min
x∈Ker(A), x 6=0

‖x‖0,

where the kernel of the dictionary is defined as Ker(A) = {x : Ax = 0}.

2.2. Tools used in piecewise sparse recovery

Assume that A = [A1, A2, . . . , AN ] is a union of N general bases, we generalize the concepts

of mutual coherence and cumulative mutual coherence to the piecewise sparse case.

Definition 2.6 The i-th sub-matrix coherence of Ai is defined as

µi,i = max
k 6=l

|〈aik, ail〉|,

where aik, ail ∈ Ai, i = 1, 2, . . . , N .

It is clear that the i-th sub-matrix coherence µi,i satisfies 0 ≤ µi,i = αiµ ≤ µ with a factor

αi ∈ [0, 1].

The parameter αi for i-th block Ai measures the ratio of coherence within Ai compared with

the coherence of the whole matrix A. Especially, when A is a union of N orthogonal bases, then

µi,i = 0 and αi = 0, i = 1, 2, . . . , N .

Definition 2.7 The cumulative coherence between two blocks Ai and Aj is defined as

µi,j
1 (m) = max

|Si|=m
max

l∈{1,...,nj}

∑

k∈Si

|〈aik, ajl 〉|,

where aik ∈ Ai, a
j
l ∈ Aj , Si is the index set of m columns in sub-matrix Ai and nj is the number

of columns in Aj .

Remark 2.8 Notice that the cumulative coherence between two blocks Ai and Aj is different
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from the definition of cumulative block coherence in [24]. The cumulative block coherence µ1B(m)

measures coherence between m blocks, the m represents the number of blocks. In the cumulative

coherence between two blocks Ai and Aj , the m represents the number of columns of Ai.

Remark 2.9 The cumulative coherence between two blocks Ai and Aj is bounded by

µi,j
1 (m) ≤ mµ.

Definition 2.10 The cumulative coherence within Ai is defined as

µi,i
1 (m) = max

|Si|=m
max
l/∈Si

∑

k∈Si

|〈aik, ail〉|,

where aik, ail ∈ Ai.

Remark 2.11 Notice that the cumulative coherence within Si is different from the definition

of cumulative mutual coherence in [18]. The cumulative mutual coherence µ1(m) measures the

maximum overall coherence between one fixed atom (column of A) and a collection of other

atoms [18]. The cumulative coherence within Ai can be seen as a cumulative form of the i-th

sub-matrix coherence µi,i, i.e., µi,i
1 measures how much the atoms in the same block Ai are

“speaking the same language”.

Remark 2.12 It is clear that

µi,i
1 (m) ≤ αimµ.

3. Piecewise sparse recovery in union of general bases

In the piecewise sparse setting, system (1.2) is equivalent to the following problem:

min
x

‖x1‖0 + ‖x2‖0 + · · ·+ ‖xN‖0
s.t. b = A1x1 +A2x2 + . . .+ANxN ,

(3.1)

where x = (xT
1 ,x

T
2 , . . . ,x

T
N )T. Denote (3.1) as Piecewise P0 problem. Notice that the problem

(1.2) is indeed equivalent to problem (3.1). We use the form (3.1) to show the piecewise sparse

structure of the signal.

3.1. Uniqueness of piecewise sparse recovery via piecewise P0 problem

By considering the piecewise P0 problem (3.1) and the sub-block coherence of the measure-

ment matrix, we can improve the uniqueness condition of piecewise sparse recovery as follows.

Theorem 3.1 Suppose that the measurement matrix A = [A1, A2, . . . , AN ] is a union of N

bases with an overall coherence µ and sub–block coherence parameters αi for i = 1, 2, . . . , N , if

x is a solution of piecewise P0 problem (3.1) and satisfies

‖x‖0 <
N(1 + αmaxµ)

2(N − 1 + αmax)µ
, (3.2)

where αmax = maxi=1,...,N αi, then x is the unique solution of problem (3.1).



370 Chongjun LI and Yijun ZHONG

Proof By the necessary and sufficient condition Eq. (1.4) for the P0 problem, we need find the

lower bound of the spark(A) in the piecewise case.

Let x ∈ Ker(A), x 6= 0. Denote the support of x by S = S1

⋃
S2

⋃ · · ·⋃SN and si = |Si|,
corresponding to the blocks of A = [A1, A2, . . . , AN ]. Then

spark(A) = min
x∈Ker(A), x 6=0

‖x‖0 = min
x∈Ker(A), x 6=0

(s1 + s2 + · · ·+ sN ).

Step 1. We start similarly to the proof in [23, Lemma 3]. Let ri = rank(Ai), i = 1, . . . , N .

Since AS = [AS1
, . . . , ASN

], and

xS =







xS1

...

xSN






∈ Ker(A).

In order to find the minimum of s1+ · · ·+sN , we can suppose that si ≤ ri and ASi
is full column

rank for i = 1, . . . , N . Because
∑N

i=1 ASi
xSi

= 0, for every i we have ASi
xSi

= −
∑

j 6=i ASj
xSj

,

hence xSi
= −∑

j 6=i(A
T
Si
ASi

)−1(AT
Si
ASj

)xSj
. Then we can deduce that

‖xSi
‖1 ≤ 1

1− µi,i
1 (si − 1)

∑

j 6=i

‖AT
Si
ASj

‖1‖xSj
‖1 ≤

∑

j 6=i

µi,j
1 (si)

1− µi,i
1 (si − 1)

‖xSj
‖1.

Since ‖xS‖1 = ‖xS1
‖1 + · · ·+ ‖xSN

‖1, then
(
1 +

maxj 6=i µ
i,j
1 (si)

1− µi,i
1 (si − 1)

)
‖xSi

‖1 ≤ maxj 6=i µ
i,j
1 (si)

1− µi,i
1 (si − 1)

‖xS‖1,

which results in

‖xS‖1 ≤
( N∑

i=1

vi1
vi2

)

‖xS‖1,

where vi1 = maxj 6=i µ
i,j
1 (si)/(1− µi,i

1 (si − 1)) and vi2 = 1 + vi1. Thus

N∑

i=1

vi1
vi2

≥ 1. (3.3)

Using the inequalities:

µi,i
1 (si − 1) = αiµ1(si − 1) ≤ (si − 1)αiµ

and

µi,j
1 (si) ≤ siµ,

the inequality (3.3) becomes

N∑

i=1

siµ

1− (si − 1)αmaxµ+ siµ
≥

N∑

i=1

siµ

1− (si − 1)αiµ+ siµ
≥ 1,

where αmax = maxi=1,...,N αi.

Step 2. In the following we evaluate the spark(A), i.e, when the s = s1 + · · · + sN reaches

the minimum.
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Denote

gi =
siµ

1− (si − 1)αmaxµ+ siµ
,

we consider the following minimization problem

min(s1 + · · ·+ sN ), s.t.

N∑

i=1

gi − 1 ≥ 0.

Using the Lagrange function and KKT conditions we obtain that s =
∑N

i=1 si reaches minimum

when s1 = · · · = sN . Then

N∑

i=1

gi =
Nsµ

N(1 + αmaxµ) + (1− αmax)sµ
≥ 1,

which results in

s ≥ N(1 + αmaxµ)

(N − 1 + αmax)µ
.

By the definition of spark, we have

spark(A) ≥ N(1 + αmaxµ)

(N − 1 + αmax)µ
.

Thus by Eq. (1.4), if

‖x‖0 <
N(1 + αmaxµ)

2(N − 1 + αmax)µ
,

then x is the unique solution of the piecewise P0 problem (3.1). 2

Remark 3.2 (1) In particular, if αmax = 0, i.e., A is a union of N orthogonal bases. The result

in Theorem 3.1 becomes ‖x‖0 < N
2(N−1)µ which corresponds to the upper bound of Eq. (1.6).

(2) When α1 = · · · = αN = 1, i.e., Ai has the same coherence as A. The result in Theorem

3.1 becomes ‖x‖0 < 1+µ
2µ which corresponds to the upper bound of Eq. (1.5).

Example 3.3 Consider the case when N = 2, i.e., A = [A1, A2]. In this example we set µ = 0.1

and αmax = 0.5, then the sufficient conditions which ensure the uniqueness for P0 problem and

piecewise P0 problem are listed as follows.

(1) Condition 1 Eq. (1.5): ‖x‖0 < 1+µ
2µ (general condition).

(2) Condition 2 Eq. (1.6): ‖x‖0 < 1
µ (A is union of orthogonal bases).

(3) Condition 5 Eq. (3.2): ‖x‖0 < 1+αmaxµ
(1+αmax)µ

(A is union of general bases).

From the observation of Figure 2, in the general case (Condition 1) one can only ensure to

recover 4-sparse vector. When it comes to the piecewise sparse recovery, one can recover at least

(5, 2)-piecewise sparse vector with global 7-sparsity by Condition 5. It means that the upper

bound in Theorem 3.1 (Condition 5) is more relaxed than the upper bound in Eq. (1.5) (Con-

dition 1). The improved condition also makes a relation between general case and the union of

orthogonal bases. Thus the results in Theorem 3.1 enlarge the scope the theoretical guarantees

for sparse recovery by considering piecewise sparsity.
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condition 1

condition 2

condition 5

s1=s2
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Figure 2 Comparison of the upper bounds for uniqueness in Example 3.3

3.2. Feasible conditions of algorithms for piecewise sparse recovery

Furthermore, combining with the piecewise sparsity of the signal x = (xT
1 ,x

T
2 , . . . ,x

T
N )T, we

can also improve the feasible conditions of OMP and BP algorithms for piecewise sparse recovery

as follows.

Theorem 3.4 Suppose that the measurement matrix A = [A1, A2, . . . , AN ] is a union of N

bases with an overall coherence µ and sub-block coherence parameters αi for i = 1, 2, . . . , N , and

x = (xT
1 ,x

T
2 , . . . ,x

T
N )T is (s1, s2, . . . , sN )-piecewise sparse. If

2

N∑

i=1

µsi
1 + αiµ+ (1− αi)µsi

≤ 1 + αZµ+ 2(1− αZ)µsZ
1 + αZµ+ (1− αZ)µsZ

, (3.4)

where Z = {Z : 1+αZµ
(1−αZ )sZ

= maxi=1,...,N
1+αiµ

(1−αi)si
}, the exact recovery condition (ERC) holds. In

which case both Orthogonal Matching Pursuit and Basis Pursuit recover the sparse representa-

tion.

Proof Following the proof in [18, Theorem 3.7] and the notations in the proof of Theorem 3.1,

the Grassmannian matrix

ΦS = AT
SAS =







AT
S1

...

AT
SN







(

AS1
· · · ASN

)

=










AT
S1
AS1

AT
S1
AS2

· · · AT
S1
ASN

AT
S2
AS1

AT
S2
AS2

· · · AT
S2
ASN

...
...

. . .
...

AT
SN

AS1
AT

SN
AS2

· · · AT
SN

ASN










= Is −G,
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where

G =










Is1 −AT
S1
AS1

−AT
S1
AS2

· · · −AT
S1
ASN

−AT
S2
AS1

Is2 −AT
S2
AS2

· · · −AT
S2
ASN

...
...

. . .
...

−AT
SN

AS1
−AT

SN
AS2

· · · IsN −AT
SN

ASN










with the diag-block matrix Isi −AT
Si
ASi

of the form






0 −AT

i1
Ai2

··· −AT

i1
Aisi

−AT

i2
Ai1

0 ··· −AT

i2
Aisi

...
...

. . .
...

−AT

isi
Ai1

−AT

isi
Ai2

··· 0







.

Denote by |G| the entrywise absolute value of the matrix G. Since all the entries in the

off-diag blocks of |G| can be bounded by µ, and the diag-block matrix

|Isi −AT
Si
ASi

| ≤










0 µi,i · · · µi,i

µi,i 0 · · · µi,i

...
...

. . .
...

µi,i µi,i · · · 0










,

i = 1, 2, . . . , N , we have |G| ≤ µ1s − µB, where 1s is the s× s matrix with unit entries, B is the

block matrix

B =










B1 0 · · · 0

0 B2 · · · 0

...
...

. . .
...

0 0 · · · BN










,

where Bi = αiIsi + (1 − αi)1si is the matrix with 1 on the diagonal, and all the off-diag entries

are 1− µi,i

µ = 1− αi, i = 1, 2, . . . , N . Hence, we have the entrywise inequality

|Φ−1
S

| = |(Is −G)−1| =
∣
∣
∣Is +

∞∑

k=1

Gk
∣
∣
∣

≤ Is +

∞∑

k=1

|G|k ≤ Is +

∞∑

k=1

(µ1s − µB)k

= ((Is + µB)− µ1s)
−1

= (Is − µ(Is + µB)−11s)
−1(Is + µB)−1.

Step 1. Compute

(Is + µB)−1 =







(Is + µB)−1
1 · · · 0

...
. . .

...

0 · · · (Is + µB)−1
N






,

where

(Is + µB)−1
i =

1

1 + αiµ
(Isi −

(1− αi)µ

1 + αiµ+ (1 − αi)µsi
1si).
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Step 2. Compute

(Is − µ(Is + µB)−11s)
−1 = Is +

∞∑

k=1

(µ(Is + µB)−11s)
k (3.5)

with

µ(Is + µB)−11s =







µ
1+α1µ+(1−α1)µs1

1s1

...
µ

1+αNµ+(1−αN )µsN
1sN







[

1T
s1 · · · 1T

sN

]
def
= v1T

s .

We use 1 to indicate the column vector with unit entries. Moreover, by the inner product

1T
s v =

N∑

i=1

µsi
1 + αiµ+ (1− αi)µsi

,

we have the series
∞∑

k=1

(v1T
s )

k = (v1T
s )

∞∑

k=1

(1T
s v)

k−1 = (v1T
s )

∞∑

k=0

(1T
s v)

k

=
1

1−∑N
i=1

µsi
1+αiµ+(1−αi)µsi

(v1T
s ). (3.6)

Combined with Eq. (3.5), we have

|Φ−1
S

| ≤
(

Is +
1

1−∑N
i=1

µsi
1+αiµ+(1−αi)µsi

(v1T
s )

)

(Is + µB)−1. (3.7)

Step 3. Assume vector Ai is drawn from basis index Z, then

|AT
SAj | ≤

[

|AT
S1
Aj | · · · |AT

SN
Aj |

]T

≤
[

µ1T
s1 · · · αZµ1

T
sZ · · · µ1T

sN

]T

and

(Is + µB)−1|AT
SAj | ≤













µ
1+α1µ+(1−α1)µs1

1T
s1

...
αZµ

1+αZµ+(1−αZ )µsZ
1T
sZ

...
µ

1+αNµ+(1−αN )µsN
1T
sN













. (3.8)

Step 4. Moreover, we calculate the inner product of ERC condition |(AT
S
AS)

−1AT
S
Aj | in

combination with Eqs. (3.7) and (3.8):

|(AT
S
AS)

−1AT
S
Aj | = |Φ−1

S
||AT

S
Aj | ≤













µ
1+α1µ+(1−α1)µs1

1s1

...
αZµ

1+αZµ+(1−αZ)µsZ
1sZ

...
µ

1+αNµ+(1−αN )µsN
1sN













+
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∑

i6=Z
µsi

1+αiµ+(1−αi)µsi
+ αZµsZ

1+αZµ+(1−αZ)µsZ

1−
∑N

i=1
µsi

1+αiµ+(1−αi)µsi







µ
1+α1µ+(1−α1)µs1

1s1

...
µ

1+αNµ+(1−αN )µsN
1sN






, (3.9)

then apply the l1 norm to inequality (3.9) to reach

‖(AT
S
AS)

−1AT
S
Aj‖1 ≤

∑

i6=Z
µsi

1+αiµ+(1−αi)µsi
+ αZµsZ

1+αZµ+(1−αZ)µsZ

1−
∑N

i=1
µsi

1+αiµ+(1−αi)µsi

. (3.10)

Step 5. Since

‖AT
TA

†
S
‖∞ = max

j∈T
‖(AT

S
AS)

−1AT
S
Aj‖1,

we consider the maximum of the right side of Eq. (3.10) and rewrite it as

‖(AT
S
AS)

−1AT
S
Aj‖1 ≤

∑N
i=1

µsi
1+αiµ+(1−αi)µsi

− (1−αZ )µsZ
1+αZµ+(1−αZ )µsZ

1−∑N
i=1

µsi
1+αiµ+(1−αi)µsi

. (3.11)

The right side of Eq. (3.11) reaches the maximum when

fZ
def
=

(1− αZ)µsZ
1 + αZµ+ (1 − αZ)µsZ

reaches the minimum,

fZ =
(1− αZ)sZµ

(1 − αZ)sZµ+ 1 + αZµ
=

µ

µ+ 1+αZµ
(1−αZ)sZ

.

Let

Z = {Z :
1 + αZµ

(1 − αZ)sZ
= max

i=1,...,N

1 + αiµ

(1 − αi)si
}

and

2
N∑

i=1

µsi
1 + αiµ+ (1− αi)µsi

≤ 1 + αZµ+ 2(1− αZ)µsZ
1 + αZµ+ (1− αZ)µsZ

.

Then the Exact Recovery Condition holds as ‖AT
TA

†
S
‖∞ < 1, thus we complete the proof. 2

In particular, when A is a union of orthogonal bases, i.e., α1 = · · · = αN = 0. Thus, Z

is chosen for the minimum si, i = 1, . . . , N , then the condition Eq. (3.4) corresponds to the

condition Eq. (1.8) in [18].

Example 3.5 Consider the case where N = 2, i.e., A = [A1, A2] and x is (s1, s2)-piecewise

sparse vector. In this example we set overall coherence µ = 0.1, α1 = 0.01, α2 = 0.3. The

following sufficient conditions which ensure the feasibility of OMP and BP algorithms are listed.

(1) Condition 1 Eq. (1.5): ‖x‖0 < 1
2 (1 +

1
µ ) (general condition).

(2) Condition 3 Eq. (1.7): ‖x‖0 <
√
2−0.5
µ (equivalence condition when A is in pairs of

orthogonal bases).

(3) Condition 4 Eq. (1.8): 2µ2s1s2+µs2−1 < 0 (s1 ≤ s2), or 2µ
2s1s2+µs1−1 < 0 (s1 > s2)

(ERC condition when A is in pairs of orthogonal bases).
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(4) Condition 6 Eq. (3.4):

2

2∑

i=1

µsi
1 + µsi − (si − 1)αiµ

≤ 1 + αZµ+ 2(1− αZ)µsZ
1 + αZµ+ (1 − αZ)µsZ

(ERC condition when A is in pairs of general bases).

condition 1

condition 3

condition 4

condition 6

s1=s2

2 4 6 8 10

2

4

6

8

10

s1

s
2

Figure 3 Comparison of upper bounds for feasible conditions of sparse recovery for Example 3.5

The above four conditions are shown in Figure 3, where the curve of Condition 6 lies between

the curve of Condition 1 for general case and the curve of Condition 4 for pairs of orthogonal

bases (correspongding to α1 = α2 = 0). It shows that the new sparsity Condition 6 is improved

by considering the piecewise sparsity (s1, s2) and the sub-block coherence parameters α1 = 0.01,

α2 = 0.3.

Example 3.6 In this example we show the cases where x is (s1, s2)-piecewise sparse vector with

different piecewise sparsities, corresponding to different parameter pairs (α1, α2). The upper

bounds by the condition 6 Eq. (3.4) are plotted in Figure 4 for the following three cases.

Case 1. µ = 0.1, (α1, α2) = (0.7, 0.01), i.e., the sub-matrix coherence of A1 differs greatly

from that of A2, α1 is close to 1.

Case 2. µ = 0.1, (α1, α2) = (0.2, 0.15), i.e., the sub-matrix coherence of A1 differs slightly

from that of A2, both α1 and α2 are small.

Case 3. µ = 0.1, (α1, α2) = (0.05, 0.02), i.e., the sub-matrix coherence of A1 differs very

slightly from that of A2, both α1 and α2 are very small.

Remark 3.7 It is observed from Figure 4 that different (α1, α2), i.e., different piecewise sparsities

may result in different global sparsity conditions. Especially, when the sub-matrix coherences of

A1 and A2 are small, some relaxed conditions of the sparsity can be obtained. This phenomenon

provides us a guidance on the setting of piecewise structure for a given matrix in order to obtain

an optimal piecewise sparsity condition, which is another interesting problem in our future work.
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condition 1

condition 3

condition 4

condition 6(c����)

c��������	(c���
)

condition6(case3)

s1=s2

2 4 6 8 1�

2

4

6

8
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s1

s
2

Figure 4 Comparison of upper bounds for feasible conditions of

piecewise sparse recovery for Example 3.6

4. Conclusion

In this paper, we introduce the piecewise sparsity of signals and use the mutual coherence

for matrix in union of general bases to study the conditions for piecewise sparse recovery. We

generalize the results in orthogonal cases to the cases of general bases. We provide the new

upper bounds of global sparsity and piecewise sparsity of the signal recovered by both l0 and

l1 optimizations when the measurement matrix A is a union of general bases. The structured

information of the matrix A is exploited to improve the sufficient conditions for successfully

piecewise sparse recovery and the reliability of the greedy algorithms and the BP method.
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