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Abstract Given a simple graph G, the oriented graph Gσ is obtained from G by orienting each

edge and G is called the underlying graph of Gσ. The skew-symmetric adjacency matrix S(Gσ)

of Gσ, where the (u, v)-entry is 1 if there is an arc from u to v, and −1 if there is an arc from v to

u (and 0 otherwise), has eigenvalues of 0 or pure imaginary. The k-th-skew spectral moment of

Gσ is the sum of power k of all eigenvalues of S(Gσ), where k is a non-negative integer. The skew

spectral moments can be used to produce graph catalogues. In this paper, we researched the

skew spectral moments of some oriented trees and oriented unicyclic graphs and produced their

catalogues in lexicographical order. We determined the last 2⌊ d

4
⌋ oriented trees with underlying

graph of diameter d and the last 2⌊ g

4
⌋ + 1 oriented unicyclic graphs with underlying graph of

girth g, respectively.
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1. Introduction

Eigenvalues of a graph are found to be widely used in mathematical chemistry, combinatorics,

combinatorial optimization and theoretical computer science. Researches about eigenvalues of

undirected graphs have a long history [1]. The spectral moments are the sum of power of

all eigenvalues. Numerous well-elaborated theories and applications were found in quantum

chemistry and solid state physical chemistry. Since the sequence of spectral moments of a graph

is an algebraic invariant, the spectral moments can be used to produce graph catalogues. In

1980’s, Cvetković et al. studied the mathematical properties of adjacent spectral moments [1–3].

Cvetković and Petrić used spectral moments to produce graph catalogues [4]. In recent years, the

adjacent spectral moments are extensively used to produce graph catalogues and more results

are obtained [5–12].
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Let Gσ be an oriented graph of G with the orientation σ, which allocates to any edge of G

a direction and G is called the underlying graph of Gσ. The skew-adjacency matrix of Gσ is

the n × n matrix S(Gσ) = [sij ], where sij = 1 and sji = −1 if vivj is an arc of Gσ, otherwise

sij = sji = 0. Since S(Gσ) is skew-symmetric, iS(Gσ) is Hermitian and so all of the eigenvalues

of iS(Gσ) are real. Thus the eigenvalues of S(Gσ) are 0 or pure imaginary and since characteristic

polynomial of S(Gσ) has real coefficients, the eigenvalues occur in complex conjugate pairs.

Recently skew-adjacency matrices of oriented graphs have attracted much attention. Cavers

et al. [13] systematically studied skew-adjacency matrices of oriented graphs. Hou and Lei [14]

studied the coefficients of the characteristic polynomial of skew-adjacency matrix of an oriented

graph. In [15], Shader et al. studied the relationship between the spectra of a graph G and

the skew-spectra of an oriented graph Gσ of G. Wong et al. [16] studied relation between the

skew-rank of an oriented graph and the rank of its underlying graph. Li et al. [17] studied the

skew-rank of an oriented graph and the independence number of its underlying graph. For more

results and comprehensive study of the skew-adjacency matrices of oriented graphs, we refer to

a survey paper by Cavers et al. [13].

All graphs considered here are finite. Undefined terminology and notation may refer to [18].

Let Gσ be an oriented graph of G with the orientation σ and let λ1(G
σ), λ2(G

σ), . . . , λn(G
σ) be

the eigenvalues of S(Gσ). Note that λi(G
σ) is 0 or pure imaginary, i = 1, . . . , n. The number

∑n

i=1
λk
i (G

σ) (k = 0, 1, . . . , n− 1), denoted by Tk(G
σ), is called the k-th skew spectral moment

of Gσ and T (Gσ) = (T0(G
σ), T1(G

σ), . . . , Tn−1(G
σ)) is the sequence of skew spectral moments

of Gσ. Suppose Gσ1

1 and Gσ2

2 are two digraphs. We shall write Gσ1

1 ≺T Gσ2

2 (G1 comes before

G2 in a T -order) if for some k (1 ≤ k ≤ n − 1), Ti(G
σ1

1 ) = Ti(G
σ2

2 ) (i = 0, 1, . . . , k − 1) and

Tk(G
σ1

1 ) < Tk(G
σ2

2 ) holds.

Up to now, few results ordering digraphs by the skew spectral moments are obtained. Tagh-

vaee and Fath-Taber [19] studied the T -order of oriented trees and unicyclic graphs and charac-

terized the first and the last digraphs, in a T -order, of all oriented trees and all oriented unicyclic

graphs, respectively. In this paper, we order oriented trees with underlying graph of diameter d

and oriented unicyclic graphs with underlying graph of girth g, respectively. By the T -order, we

get the last 2⌊d
4
⌋ oriented trees and the last 2⌊ g

4
⌋+ 1 oriented unicyclic graphs, respectively.

2. Preliminaries

In this section, we first give some definitions and lemmas that will be used in the proof of

our results.

Let S(Gσ) = [sij ] be the skew-adjacency matrix of an oriented graph Gσ and W = v1v2 · · · vk

be a walk from v1 to vk. The sign of W is defined as:

sgn(W ) =

k−1∏

i=1

si,i+1.

Let w+

ij(k) and w−
ij(k) denote the number of all positive walks and negative walks starting
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from vi and terminating at vj with length k, respectively, see [20] for more details. Gong and

Xu [20] obtained the result about the relationship between the entries of Sk and the number of

walks as follows.

Lemma 2.1 ([20]) Let S be the skew-adjacency matrix of an oriented graph Gσ and vi and vj

be two arbitrary vertices of Gσ. Then

(Sk)ij = w+

ij(k)− w−
ij(k).

Lemma 2.2 ([19]) The k-th skew spectral moment of Gσ is the number of closed walks with

positive sign of length k minus closed walks with negative sign of length k.

Remark 2.3 Lemma 2.2 is very similar to the following classical result which establishes the

relationship between the number of walks and the entries of the power of the adjacency matrix

A: the number of walks in G from u to v with length k is equal to (Ak)uv.

In an oriented graph Gσ, an even cycle is called evenly oriented if for some choice of direction

of traversing around C, the number of edges of C directed in the direction of traversal is even.

Otherwise C is called oddly oriented. Throughout this paper, we denote by C+
n (or resp., C−

n )

an evenly (or resp., oddly) oriented cycle of order n.

Let Un,g be a graph obtained from Cg by attaching n− g pendant vertices to one vertex of

Cg. Denote Un = Un,n−1 and Bn = Kn − e. We use U+

5 (or resp., U−
5 , B+

4 , B
−
4 ) to denote the

oriented graph whose underlying graph is U5 (or resp., U5, B4, B4) and the longest oriented cycle

is C+

4 (or resp., C−
4 , C+

4 , C−
4 ). The graphs U+

5 , U−
5 , B+

4 and B−
4 are shown in Figure 1.
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Figure 1 Some oriented graphs Uσ
5 and Bσ

4

Let F be a graph. An F -subgraph of G is a subgraph of G which is isomorphic to the graph

F . Let φG(F ) (or φ(F )) be the number of all F -subgraphs of G.

It is easy to see that T0(G
σ) = n, and if k is odd, then Tk(G

σ) = 0. Taghvaee and Fath-

Taber [19] gave the skew spectral moments Tk(G
σ) for k = 2, 4, 6, respectively.

Lemma 2.4 ([19]) Let Gσ be an oriented graph. Then we have

(i) T2(G
σ) = −2φ(P2);

(ii) T4(G
σ) = 2φ(P2) + 4φ(P3) + 8φ(C+

4 )− φ(C−
4 ));

(iii) T6(G
σ) = −2φ(P2)− 12φ(P3)− 6φ(P4)− 12φ(K1,3)+12(φ(U−

5 )−φ(U+

5 ))+12(φ(B−
4 )−

φ(B+
4 )) + 24φ(C3) + 48(φ(C−

4 )− φ(C+
4 )) + 12(φ(C+

6 )− φ(C−
6 )).

Remark 2.5 If G is a graph on n vertices, then we have ρ(G) ≤ ρ(Kn) = n− 1 and ρS(G) ≤

ρS(Kn) = cot π
2n

, where ρ(G) and ρS(G) are the spectral radius and the skew spectral radius
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of G, respectively. Since |E(G)| ≤ |E(Kn)| =
(
n

2

)
, by Lemma 2.4 (i), we have Kn

σ �T Gσ.

Fath-Taber [19] proved that Pn
σ �T T σ �T Kσ

1,n−1. So, in a T -order of oriented graphs of order

n which the underlying graphs are connected, the first graph is Kn
σ and the last graph is Sn

σ.

3. Lemmas

Let H1, H2 be two connected graphs with vi ∈ V (Hi). Let H1v1v2H2 be a graph obtained

from H1, H2 by identifying v1 and v2.

Lemma 3.1 Let H be a nontrivial connected graph with w ∈ V (H). Denote G = HwuK1,p+1

and G1 = HwvK1,p+1, where u is the pendant vertex of K1,p+1 and v is the center of K1,p+1,

where p ≥ 1. Then Gσ ≺T Gσ
1 .

Proof Since φG(P2) = φG1
(P2), by Lemma 2.4 (i), T2(G

σ) = T2(G
σ
1 ) holds. Note that Ti(G

σ) =

Ti(G
σ
1 ) for i = 0, 1, 2, 3. Thus we consider the 4-th skew spectral moment of Gσ and Gσ

1 ,

respectively. Note that φGσ(C+

4 ) = φGσ
1
(C+

4 ), φGσ(C−
4 ) = φGσ

1
(C−

4 ) and

φG(P3)− φG1
(P3) =

(
dH(w) + 1

2

)

+

(
p+ 1

2

)

−

(
dH(w) + p+ 1

2

)

= −pdH(w).

Then, by Lemma 2.4 (ii), we have

T4(G
σ)− T4(G

σ
1 ) = 2[φG(P3)− φG1

(P3)] = −2pdH(w) < 0

and Gσ ≺T Gσ
1 . Hence Lemma 3.1 is true. 2

Remark 3.2 By Lemma 3.1, for any oriented tree T σ which is not an oriented star, we can

get a tree T ′σ such that T σ ≺T T ′σ. So, in T -order, the last graph is the star Kσ
1,n−1 among all

oriented trees of order n.

Lemma 3.3 Let u and v be two vertices of a graph G. The underlying graph Gs,t of Gσ
s,t is

obtained by attaching s (s ≥ 1) pendant vertices u1, u2, . . . , us and t (t ≥ 1) pendant vertices

v1, v2, . . . , vt to u and v, respectively. Then either Gσ
s,t ≺T Gσ

s+i,t−i for 1 ≤ i ≤ t or Gσ
s,t ≺T

Gσ
s−i,t+i for 1 ≤ i ≤ s hold.

Proof Note that Ti(G
σ
s,t) = Ti(G

σ
s+i,t−i) = Ti(G

σ
s−i,t+i) for i = 0, 1, 2, 3. Then we will consider

the 4-th skew spectral moment of Gσ
s,t, Gσ

s+i,t−i, Gσ
s−i,t+i, respectively. By direct calculation,

we have

φGs,t
(P3)− φGs+i,t−i

(P3) =

(
dG(u) + s

2

)

+

(
dG(u) + t

2

)

−

(
dG(u) + s+ i

2

)

−

(
dG(v) + t− i

2

)

= (dG(v)− dG(u)− s+ t− i)i.

Since φGs,t
(C+

4 ) = φGs+i,t−i
(C+

4 ) and φGs,t
(C−

4 ) = φGs+i,t−i
(C−

4 ), from Lemma 2.4 (ii), we have

T4(G
σ
s,t)− T4(G

σ
s+i,t−i) = 2[φGs,t

(P3)− φGs+i,t−i
(P3)] = 2(dG(v)− dG(u)− s+ t− i)i. (3.1)

Similarly,

T4(G
σ
s,t)− T4(G

σ
s−i,t+i) = 2[φGs,t

(P3)− φGs−i,t+i
(P3)] = 2(dG(u)− dG(v) + s− t− i)i. (3.2)
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If T4(G
σ
s,t) > T4(G

σ
s+i,t−i), by (3.1), then we have dG(v) > dG(u) + s − t + i. Thus by (3.2),

we have T4(G
σ
s,t) − T4(G

σ
s−i,t+i) < 2(−2i)i = −4i2 < 0. Therefore, Gσ

s,t ≺T Gσ
s−i,t+i holds for

1 ≤ i ≤ s. This completes the proof. 2

We give the following notations, which will be used in Lemmas 4.1 and 5.1. A subgraph H

of G is called tree-subgraph (or resp., cycle-subgraph) if H is a tree (or resp., contains at least

one cycle).

Tm(G) = {T : T is a tree-subgraph but not a path of G with diam(T ) ≤ ⌊m−1

2
⌋+ 1};

Pm(G) = {P : P is a path-subgraph of G and |E(P )| ≤ ⌊m
2
⌋+ 1};

Cm(G) = {C : C is a cycle-subgraph of G and |E(C)| ≤ m}.

4. T -order of oriented trees

Denote Tn,d = {T : T is a tree of order n with diameter d}. In the following, we will study

the T -order of oriented trees with underlying graph in the set Tn,d for 2 ≤ d ≤ n − 1. Cavers

et al. [13] found that the skew-adjacency matrices of a graph G are all cospectral if and only

if G has no even cycles. Recall that Tn,2 = {K1,n−1} and Tn,n−1 = {Pn}. Therefore, in the

following, we assume that 3 ≤ d ≤ n− 2.

In order to formulate our results, we need to define some trees as follows.

Let Tn,d(p1, . . . , pd−1) be a tree of order n created from a path Pd+1 = v1v2 · · · vdvd+1 by

attaching pi pendant vertices to vi, respectively, where n = d+1+
∑d−1

i=1
pi, pi ≥ 0, i = 2, . . . , d.

Denote Tn,d,i = Tn,d(0, . . . , 0
︸ ︷︷ ︸

i−1

, n− d− 1, 0, . . . , 0). Then Tn,d,i
∼= Tn,d,d−i.

Lemma 4.1 Let H = v1v2 · · · vn−s be a path of length n− s− 1. Denote G = HvmuK1,s,

G1 = Hvm−1uK1,s and G2 = Hvm+1uK1,s, where u is the center of K1,s, 3 ≤ m ≤ ⌊n−s
2

⌋ − 1.

Then

(i) If m is even, then Gσ
1 ≺T Gσ and Gσ

1 ≺T Gσ
2 ;

(ii) If m is odd, then Gσ ≺T Gσ
1 and Gσ

2 ≺T Gσ
1 .

Proof Since odd-th skew spectral moments are 0, we only compute 2i-th skew spectral moments

of Gσ and Gσ
l (l = 1, 2), respectively. Note that φG(P2) = φGl

(P2), by Lemma 2.4 (i), we have

T2(G
σ) = T2(G

σ
l ) (l = 1, 2). In what follows we compare T2i(G

σ
l ) and T2i(G

σ) (l = 1, 2) for

i ≥ 2. Note that T2i(G
σ) (T2i(G

σ
l )) equals the number of positive closed walks of length 2i minus

negative closed walks of length 2i of Gσ(Gσ
l ). Subgraphs of G (Gl) which can generate closed

walks of length 2i must be included in Ti(G)
⋃
Pi(G)

⋃
Ci(G) (Ti(Gl)

⋃
Pi(Gl)

⋃
Ci(Gl) (l = 1, 2)

for i ≥ 2.

By the definition of G and Gl (l = 1, 2) for i ≥ 2, we have

Ci(Gl) = Ci(G) = ∅, Pi(Gl) = Pi(G) = {Pj+1, j ≤ ⌊
i

2
⌋+ 1},

Ti(Gl) = Ti(G) = {Ta,b,t for some a, b, t such that a ≤ ⌊
i− 1

2
⌋+ 1, a ≤ b+ 1 + s}.
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By direct calculation, we get

φG(Pj+1) = φGl
(Pj+1) =







n− 1, if j = 1,
(
s+2

2

)
+ n− s− 3, if j = 2,

n− j + s, if 3 ≤ j ≤ m− 1.

(4.1)

φG1
(Pm+1) = n−m, φG(Pm+1) = φG2

(Pm+1) = n−m+ s (4.2)

and for ∀ Ta,b,t ∈ Ti(G),

φG(Ta,b,t) = φGl
(Ta,b,t) = 2

(
s

a− b− 1

)

. (4.3)

By (4.1) and (4.3), we have T2i(G
σ
l ) = T2i(G

σ), i ≤ m− 1, l = 1, 2.

If m is even, then Pm+1 generates only positive closed walks of length 2m and if m is odd,

then Pm+1 only generates negative closed walks of length 2m. By Lemma 2.2, (4.1)–(4.3), we get

if m is even, then T2m(Gσ
1 ) < T2m(Gσ) = T2m(Gσ

2 ), hence Gσ
1 ≺T Gσ and Gσ

1 ≺T Gσ
2 . Thus (i)

is true. If m is odd, then T2m(Gσ
1 ) > T2m(Gσ) = T2m(Gσ

2 ), hence Gσ ≺T Gσ
1 and G2

σ ≺T Gσ
1 .

Thus (ii) is true. So Lemma 4.1 is true. 2

Theorem 4.2 In a T -order of oriented trees with the underlying graph in the set Tn,d, the last

2⌊d
4
⌋ oriented trees with 3 ≤ d ≤ n− 2 are as follows:

T σ
n,d,2, T

σ
n,d,4, . . . , T

σ
n,d,2⌊d

4
⌋
, T σ

n,d,2⌊d
4
⌋+1

, . . . , T σ
n,d,5, T

σ
n,d,3.

Proof Let T σ be an oriented tree with underlying graph T ∈ Tn,d. Let Pd+1 = v1v2 · · · vdvd+1

be one of its longest paths of T . By Lemma 3.1, we can get a tree T ′σ ∼= T σ
n,d(a1, . . . , ad−1),

where
∑d−1

i=1
ai = n − d − 1 and T σ ≺T T ′σ. By Lemma 3.3, we can get a tree T ′′σ ∼= T σ

n,d,i

(2 ≤ i ≤ d − 1) and T ′σ ≺T T ′′σ. Let H = v1v2 · · · vdvd+1, star K1,n−d−1 with center vertex v,

m = i+ 1, then by Lemma 4.1, for ∀ i ∈ [2, ⌊d+1

2
⌋ − 2].

(i) If i is even, then T σ
n,d,i+1

≺T T σ
n,d,i and T σ

n,d,i+2
≺T T σ

n,d,i;

(ii) If i is odd, then T σ
n,d,i ≺T T σ

n,d,i+1 and T σ
n,d,i ≺T T σ

n,d,i+2.

That is,

T σ
n,d,3 ≺T T σ

n,d,5 ≺T . . . ≺T T σ
n,d,2⌊d

4
⌋+1

≺T T σ
n,d,2⌊d

4
⌋
≺T . . . ≺T T σ

n,d,4 ≺T T σ
n,d,2. 2

5. T -order of oriented unicyclic graphs

Let Un,d = {G : G is a unicyclic graph of order n with girth g}. In the following, we will study

the T -order of oriented unicyclic graphs with underlying graph in the set Un,g for 3 ≤ g ≤ n.

Let Un,g(p1, p2, . . . , pg−1, pg) (pi ≥ 0) be a unicyclic graph of order n created from a cycle

Cg = v1v2 · · · vgv1 by attaching pi leaves to vi (i = 1, 2, . . . , g), respectively, where n = g +
∑g

i=1
pi. Denote Un,g = Un,g(0, . . . , 0

︸ ︷︷ ︸

g−1

, n− g) and Uk
n,g,i = Un,g(0, . . . , 0

︸ ︷︷ ︸

i−1

, k, 0, . . . , 0, n− g − k) for

1 ≤ k ≤ ⌈n−g
2

⌉ (see Figure 2). Obviously, Uk
n,g,i

∼= Uk
n,g,g−i.

Let Xn,g (see Figure 2) be a graph obtained from Un−1,g by attaching a leaf to one leaf of

Un−1,g.
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LetXn,g,k (see Figure 2) be a graph obtained from Un−k−1,g by attaching a leaf of a star

K1,k+1 (k ≥ 2) to the maximum vertex of Un−k−1,g.
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Remark 5.1 From Lemmas 3.1 and 3.3, in a T -order, the last graph is Uσ
n,g among all unicyclic

graphs of order n with girth g (g ≥ 5). By Lemma 2.4 (ii), in a T -order, Uσ
n,4 is the last graph of

all oriented unicyclic graphs of order n, where the cycle is C+

4 .

Lemma 5.2 Let H ∼= Un−k,g with the unique cycle Cg = v1v2 · · · vgv1. Denote G = HvmuK1,k,

G1 = Hvm−1uK1,k and G2 = Hvm+1uK1,k, where u is the center of K1,k, 2 ≤ m ≤ ⌊g/2⌋ − 1.

Then

(i) If m is even, then Gσ
1 ≺T Gσ and Gσ

1 ≺T Gσ
2 ;

(ii) If m is odd, then Gσ ≺T Gσ
1 and Gσ

2 ≺T Gσ
1 .

Proof Note that Ti(G
σ) = Ti(G

σ
l ) = 0 when i is odd and Tj(G

σ) = Tj(G
σ
l ) for j = 0, 2 and l =

1, 2. In what follows, we compare T2i(G
σ) and T2i(G

σ
l ) (l = 1, 2) for i ≥ 2. Similarly, we only need

to calculate the numbers of subgraphs included in Ti(G)
⋃

Pi(G)
⋃

Ci(G) (Ti(Gl)
⋃
Pi(Gl)

⋃
Ci(Gl),

l = 1, 2) for i ≥ 2.

By the definition of G and Gl (l = 1, 2) for i ≥ 2, we have

Pi(G) = Pi(Gl) = {Pj+1, j ≤ ⌊
i

2
⌋+ 1},
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Ci(G) = Ci(Gl) =







∅, if i < g,

{Cg}, if i = g,

{Un1,g, U
k1

n2,g,j
}, if i > g.

Ti(G) = Ti(Gl) = {Ta,b,t} ∪ {T ′
a,b,b′,t′ , which is obtained by attaching the center vertex of K1,b′

to the t′-th vertex of Ta,b,t, t 6= t′, a+ b′ ≤ min{⌊ g

2
⌋, ⌊ i−1

2
⌋+ 1}, a− b− 1 ≤ n− g − k, b′ ≤ k}.

By direct calculation, we get

φG(Pj+1) = φGl
(Pj+1) =







n, if j = 1,
(
n−g−k+2

2

)
+
(
k+2

b

)
+ g − 2, if j = 2,

2n− g, if 3 ≤ j ≤ m,

(5.1)

φG1
(Pm+2) = (n− g −m)(m+ 2) + 2m+ g (5.2)

and

φG(Pm+2) = φG2
(Pm+2) = 2n− g. (5.3)

For ∀ Ta,b,t ∈ Ti(G) (i ≤ m+ 1),

φG(Ta,b,t) = φGl
(Ta,b,t) = 2

(
n− g − k

a− b− 1

)

+ 2

(
k

a− b− 1

)

. (5.4)

For ∀ Ta,b,b′,t′ ∈ Ti(G) (i ≤ m+ 1),

φG(Ta,b,b′,t′) = φGl
(Ta,b,b′,t′) =

(
n− g − k

a− b− 1

)(
k

b′

)

. (5.5)

By Lemma 2.2, (5.1), (5.4) and (5.5), we have T2i(G
σ
l ) = T2i(G

σ) for i ≤ m and l = 1, 2.

By (5.2) and (5.3), we have φG1
(Pm+2) > φG(Pm+2) = φG2

(Pm+2). If m is even, since Pm+2

generates only negative closed walks of length 2(m + 1), then T2m+2(G
σ
1 ) < T2m+2(G

σ) =

T2m+2(G
σ
2 ). Hence G

σ
1 ≺T Gσ and Gσ

1 ≺T Gσ
2 . Thus (i) is true. Ifm is odd, since Pm+2 generates

only positive closed walks of length 2(m+1), then T2m+2(G
σ
2 ) = T2m+2(G

σ) < T2m+2(G
σ
1 ), hence

Gσ ≺T Gσ
1 and Gσ

2 ≺T Gσ
1 . Thus (ii) is true. We have our conclusion. 2

For an oriented unicyclic graph, we set ~G := Gσ.

Suppose ~G is an oriented unicyclic graph with the underlying graph G ∈ Un,g. Let Cg =

v1 · · · vg−1vg be the only cycle of G. Let T i
G be the component of G− E(Cg) containing vi (i =

1, 2, . . . , g). Obviously, T i
G is a tree. When |V (T i

G)| ≥ 2, we call T i
G nontrivial.

Theorem 5.3 In a T -order of oriented unicyclic graphs with the underlying graph in the set

Un,g, we have

(a) If g ≤ 5, then the last ⌊ g

2
⌋+ 1 oriented unicyclic graphs are as follows:

~Un,g, ~U
1
n,g,2,

~U1
n,g,1;

(b) If 6 ≤ g ≤ n− 1 and g ≡ 3 (mod 4), then the last 2⌊ g
4
⌋+ 2 oriented unicyclic graphs are

as follows:

~Un,g, ~U
1
n,g,2, ~U

1
n,g,4, . . . , ~U

1

n,g,2⌊ g

4
⌋,
~U1

n,g,2⌊ g

4
⌋+1,

~U1

n,g,2⌊ g

4
⌋−1, . . . ,

~U1
n,g,3, ~U

1
n,g,1;
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(c) If 6 ≤ g ≤ n− 1 and g 6≡ 3 (mod 4), then the last 2⌊ g

4
⌋+ 1 oriented unicyclic graphs are

as follows:

~Un,g, ~U
1
n,g,2, ~U

1
n,g,4, . . . , ~U

1

n,g,2⌊ g

4
⌋,
~U1

n,g,2⌊ g

4
⌋−1, . . . ,

~U1
n,g,3, ~U

1
n,g,1.

Proof Suppose ~G is an oriented unicyclic graph with the underlying graph G ∈ Un,g. First,

we suppose only one T i
G is nontrivial, i ∈ {1, . . . , g}. By Lemma 3.1, we can get an oriented

unicyclic graph ~G′ ∼= ~Xn,g,k for some k. By direct calculation, T4( ~Xn,g,k) < T4( ~Xn,g) and

T4( ~Xn,g) < T4(~U
1
n,g,i). Thus G ≺T

~Xn,g,k ≺T
~Xn,g ≺T

~U1
n,g,i.

Now suppose at least two T i
G are nontrivial, i ∈ {1, . . . , g}. By Lemma 3.1, we can get an

oriented unicyclic graph ~G′ ∼= ~Un,g(a1, . . . , ag), where
∑g

i=1
ai = n−g, and ~G ≺T

~G′. By Lemma

3.3, we can get an oriented unicyclic graph ~G′′ ∼= ~Uk
n,g,i (k ≥ 1) and then ~G′ ≺T

~G′′.

Claim 1. ~Uk+1

n,g,i ≺T
~Uk
n,g,j for k < n−g−1

2
and ∀ i, j ∈ {1, . . . , g}.

Note that Tl(~U
k+1

n,g,i) = Tl(~U
k
n,g,j) for l = 0, 1, 2, 3. By Lemma 2.4 (ii), we have

T4(~U
k+1

n,g,j)− T4(~U
k
n,g,i) = 4(n− g − 2k − 1) > 0.

Hence Claim 1 is true.

(a) Since 3 ≤ g ≤ 5, by Lemmas 2.4 (i) and (ii), Tl(~U
k
n,g,1) = Tl(~U

k
n,g,2) for l = 0, 1, . . . , 5.

By Lemma 2.4 (iii), we have

T6(~U
k
n,g,1)− T6(~U

k
n,g,2) = −6k(n− g − k) < 0.

Hence if g ≤ 5, then ~Uk
n,g,1 ≺T

~Uk
n,g,2. By Lemma 3.3, ~Uk

n,g,2 ≺T
~Un,g. By Claim 1, when g ≤ 5,

the last ⌊ g
2
⌋+ 1 oriented unicyclic graphs are as follows:

~Un,g, ~U
1
n,g,2, ~U

1
n,g,1.

Let H = Un−k,g, K1,k be a star with center vertex v. By Lemma 5.2, we have the following

claim.

Claim 2. For k ≤ n−g
2

, g ≥ 6 and 2 ≤ i ≤ ⌊ g
2
⌋, we have

(i) If i is odd, then ~Uk
n,g,i ≺T

~Uk
n,g,i−1 and ~Uk

n,g,i+1 ≺T
~Uk
n,g,i−1;

(ii) If i is even, then ~Uk
n,g,i−1 ≺T

~Uk
n,g,i and

~Uk
n,g,i−1 ≺T

~Uk
n,g,i+1.

(b) By Claim 2 (i), we have

~Uk
n,g,2 ≻T

~Uk
n,g,4 ≻T · · · ≻T

~Uk
n,g,2⌊ g

4
⌋.

By Claim 2 (ii), we have

~Uk
n,g,1 ≺T

~Uk
n,g,3 ≺T · · · ≺T

~Uk
n,g,2⌊ g

4
⌋−1.

By Claim 2 (ii), we have ~Uk
n,g,2⌊ g

4
⌋−1

≺T
~Uk
n,g,2⌊ g

4
⌋. By simple caculation, we have







Uk
n,g,2⌊ g

4
⌋+1

∼= Uk
n,g,2⌊ g

4
⌋−1

, if g ≡ 0 (mod 4),

Uk
n,g,2⌊ g

4
⌋+1

∼= Uk
n,g,2⌊ g

4
⌋−1

, if g ≡ 1 (mod 4),

Uk
n,g,2⌊ g

4
⌋+1

∼= Uk
n,g,2⌊ g

4
⌋, if g ≡ 2 (mod 4),

Uk
n,g,2⌊ g

4
⌋+1

6∼= Uk
n,g,i, if g ≡ 3 (mod 4).

(∗)
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By Claim 1, when k ≥ 2, we have ~Uk
n,g,i ≺T

~U1
n,g,2 (2 ≤ i < ⌊ g

2
⌋). By Lemma 3.3, ~U1

n,g,1 ≺T

~Un,g holds. If 6 ≤ g ≤ n − 1 and g ≡ 3 (mod 4), by (∗), then Uk
n,g,2⌊ g

4
⌋+1

6∼= Uk
n,g,i, where

i 6= 2⌊ g

4
⌋+ 1. By (i) and (ii), we have ~Uk

n,g,2⌊ g

4
⌋−1

≺T
~Uk
n,g,2⌊ g

4
⌋+1

≺T
~Uk
n,g,2⌊ g

4
⌋. Hence the last

2⌊ g
4
⌋+ 2 oriented unicyclic graphs are as follows:

~Un,g, ~U
1
n,g,2, ~U

1
n,g,4, . . . , ~U

1

n,g,2⌊ g

4
⌋,
~U1

n,g,2⌊ g

4
⌋+1,

~U1

n,g,2⌊ g

4
⌋−1, . . . ,

~U1
n,g,3, ~U

1
n,g,1.

(c) If 6 ≤ g ≤ n − 1 and g 6≡ 3 (mod 4), by (∗), then the last 2⌊ g
4
⌋ + 1 oriented unicyclic

graphs are as follows:

~Un,g, ~U
1
n,g,2,

~U1
n,g,4, . . . ,

~U1

n,g,2⌊ g

4
⌋,
~U1

n,g,2⌊ g

4
⌋−1

, . . . , ~U1
n,g,3,

~U1
n,g,1.

This completes the proof. 2
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