The Injective Chromatic Index of a Claw-Free Subcubic Graph is at Most 6

Xiaoyuan DONG ${ }^{1,2}$, Yuquan LIN ${ }^{2}$, Wensong LIN ${ }^{2, *}$
1. Department of Primary Education, Nantong Normal College, Jiangsu 226000, P. R. China;
2. School of Mathematics, Southeast University, Jiangsu 210096, P. R. China

Abstract

A coloring of edges of a graph G is injective if for any two distinct edges e_{1} and e_{2}, the coloring of e_{1} and e_{2} are distinct if they are at distance 2 in G or in a common 3 -cycle. The injective chromatic index of G is the minimum number of colors needed for an injective edge coloring of G. It was conjectured that the injective chromatic index of any subcubic graph is at most 6 . In this paper, we partially confirm this conjecture by showing that the injective chromatic index of any claw-free subcubic graph is less than or equal to 6 . The bound 6 is tight and our proof implies a linear-time algorithm for finding an injective edge coloring using at most 6 colors for such graphs.

Keywords injective edge coloring; injective chromatic index; claw-free; subcubic graph
MR(2020) Subject Classification 05C15

1. Introduction

In this paper, we only consider finite simple graphs. Let $G=(V(G), E(G))$ be a graph. For a vertex v of G, denote by $N(v)$ the set of vertices that are adjacent to v. For a subset S of $V(G)$, we denote by $G[S]$ the subgraph of G that is induced by S. Denote by $\Delta(G)$ the maximum degree of G. A subcubic graph is a graph with maximum degree at most 3 . We denote by $K_{1,3}$ the complete bipartite graph with one part having 1 vertex and the other 3 vertices. A graph G is called claw-free if no induced subgraph of G is isomorphic to $K_{1,3}$. The study on the properties of claw-free graphs was initiated by Beineke in his study of the properties of line graphs [1]. However, from the late 1970s more scholars paid attention to the matching properties as well as the Hamiltonian properties of claw-free graphs [2-4]. In this paper, we focus on the injective chromatic index of claw-free subcubic graphs.

Let e_{1} and e_{2} be any two edges of G. The distance between e_{1} and $e_{2}, d\left(e_{1}, e_{2}\right)$, is defined as the distance between the corresponding two vertices in the line graph of G. It is clear that if e_{1} and e_{2} are at distance 1 , then they share at least one end-vertex, and if e_{1} and e_{2} are at distance 2 , then they share no end-vertex and there exists another edge e^{\prime} such that e^{\prime} is at distance 1 from e_{1} and e_{2}, respectively. Given a positive integer k, an injective k-edge coloring of G is a

[^0]mapping f from $E(G)$ to $\{1,2, \ldots, k\}$ such that, $f(e) \neq f\left(e^{\prime}\right)$ for any two distinct edges e and e^{\prime} of G if $d\left(e, e^{\prime}\right)=2$ or they are in a common 3-cycle. The injective chromatic index, denoted by $\chi_{i n j}^{\prime}(G)$, is the minimum integer k such that G has an injective k-edge coloring.

The injective edge coloring is a kind of edge version of the injective coloring. Given a positive integer k, an injective k-edge coloring of G is a mapping f from $V(G)$ to $\{1,2, \ldots, k\}$ such that any two vertices at distance two apart or any two vertices on a common 3-cycle receive different colors. The injective chromatic number, denoted by $\chi_{i n j}(G)$, is the minimum integer k such that G has a k-injective coloring. The injective coloring of graphs was originated from the complexity theory on random access machines, which was proposed by Hahn et al. [5]. It was also applied to the theory of error correcting codes and the designing of computer networks [6]. In [5], the authors proved that for any graph $G, \Delta(G) \leq \chi_{i n j}(G) \leq \Delta(G)(\Delta(G)-1)+1$, and both bounds are sharp.

In 2015, Cardoso et al. [7] introduced the concept of injective edge coloring of graphs. They proved that it is NP-hard to compute the injective chromatic index of a graph G and determined the injective chromatic indices of paths, cycles, complete bipartite graphs, the Peterson graph. Ferdjallah, Kerdjoudj and Raspaud [8] proved that $\chi_{\text {inj }}^{\prime}(G) \leq 2(\Delta(G)-1)^{2}$ for any graph G with $\Delta(G) \geq 3$ and pointed out that $\chi_{i n j}^{\prime}(G) \leq 30$ for any planar graph G while $\chi_{i n j}^{\prime}(G) \leq 9$ for any outerplanar graph G. In particular, they [8] conjectured that $\chi_{i n j}^{\prime}(G) \leq 6$ for any subcubic graph G and confirmed it for subcubic bipartite graph. The conjecture was also proved to be true for subcubic planar graphs [9]. And, in general, the same paper [9] proved that $\chi_{\text {inj }}^{\prime}(G) \leq 7$ for any subcubic graph G. For other results concerning the injective chromatic index of graphs, please refer to [10-12].

In this paper, we partially confirm the above conjecture for claw-free subcubic graphs. Our main result is the following theorem.

Theorem 1.1 Let G be a claw-free subcubic. Then $\chi_{i n j}^{\prime}(G) \leq 6$.
Actually, there are some claw-free subcubic graphs whose injective chromatic indices are 6 . For example, the complete graph on 4 vertices K_{4} has injective chromatic index 6 . Another example is the triangular prism (also called 3 -prism). On the one hand, the injective chromatic index of the 3 -prism is at least 6 since there are two disjoint 3 -cycles in the 3 -prism, and any two edges from different 3 -cycles are at distance 2 . On the other hand, we can easily obtain an injective 6-edge-coloring of the 3 -prism. Please see Figure 1 for injective 6 -edge-colorings of the 3-prism and K_{4}.

Figure 1 The 3-prism and K_{4}

In Section 2, we present a greedy algorithm that can produce a partial injective 6-edgecoloring of a claw-free subcubic graph with only a few edges left uncolored. In Section 3, in several different cases, we first apply this algorithm to produce a partial injective 6 -edge-coloring of the graph, and then extend it to an injective 6 -edge-coloring of the whole graph.

2. Preliminaries

In order to construct a partial injective 6-edge-coloring of a claw-free subcubic graph, we first apply the same method in [13] to order the edges of G, and then use the greedy algorithm to color the edges of G in this order. There will be only a few particular edges left uncolored.

Figure 2 The eight situations of an edge $e=x x^{\prime}$ with $d_{S}\left(x^{\prime}\right)=d_{S}(x)$
Suppose S is a subset of $V(G)$. For a vertex $v \in V(G)$, the distance from v to S, denoted by $d_{S}(v)$, is defined as $\min _{w \in S}\{d(v, w)\}$. Suppose the maximum distance from a vertex of $V(G)$ to S is K. For $i=0,1, \ldots, K$, let $D_{i}=\left\{v \in V(G) \mid d_{S}(v)=i\right\}$. We define a mapping d_{S} from $E(G)$ to $\{0,1, \ldots, K\}$ as: $d_{S}(e)=\min \left\{i \mid e \cap D_{i} \neq \emptyset, 0 \leq i \leq K\right\}$ for any edge $e \in E(G)$. Note that if $d_{S}(e)>0$ then there exists an edge e^{\prime} sharing one end-vertex with e such that $d_{S}\left(e^{\prime}\right)=d_{S}(e)-1$. Let $R=\left(e_{k_{1}}, e_{k_{2}}, \ldots, e_{k_{m}}\right)$ be an ordering of the edges of G. If, for any two integers i and j in $\{1,2, \ldots, m\}, i<j$ implies $d_{S}\left(e_{k_{i}}\right) \geq d_{S}\left(e_{k_{j}}\right)$, then we say that the edge ordering R of G is compatible with the mapping d_{S}.

Let G be a claw-free subcubic graph. Suppose we already have a partial injective 6 -edgecoloring ϕ of G. Let b be a color in $\{1,2, \ldots, 6\}$ and e an uncolored edge. If $\phi\left(e^{\prime}\right) \neq b$ for any colored edge e^{\prime} that is distance two apart from e or lies on a common 3-cycle with e, we say that the color b is available for e. We use $A(e)$ to denote the set of colors available for e. And denote by $F(e)$ the set of colors unavailable for e. It is obvious that $F(e)=\{1,2, \ldots, 6\} \backslash A(e)$.

Lemma 2.1 Let G be a claw-free subcubic graph. Let S be any subset of $V(G)$. The greedy algorithm coloring the edges of G in an ordering R compatible with the mapping d_{S} will produce a partial injective 6 -edge-coloring of G where only edges e with $d_{S}(e)=0$ are left uncolored.

Proof Let $e=x x^{\prime}$ be an edge with $d_{S}(e)>0$. Without loss of generality, let $e^{\prime}=x y$ be a neighbor of e with $d_{S}\left(e^{\prime}\right)<d_{S}(e)$. Then, at the stage of the greedy algorithm when e is to be colored, no edges incident with y have yet been colored.

If $d(x)=2$ or x has another neighbor z with $d_{S}(z)<d_{S}(x)$ then it is easy to see that $|F(e)| \leq 3$ and we are done. Thus we assume $d(x)=3$ and y is the only neighbor of x with $d_{S}(y)<d_{S}(x)$. Let another neighbor of x be v_{0}. There will be two cases:

Case 1. $d_{S}(x)=d_{S}\left(x^{\prime}\right) \geq 1$. In this case, x^{\prime} has a neighbor y^{\prime} with $d_{S}\left(y^{\prime}\right)=d_{S}(y)$ (It is possible that $y=y^{\prime}$). Notice that G is claw-free and $\Delta(G)=3$, the possible situations of this case are described in Figure 2. It is now straightforward to check that $|F(e)| \leq 4$. And so e can be colored properly.

Figure 3 The four situations of an edge $e=x x^{\prime}$ with $d_{S}\left(x^{\prime}\right)=d_{S}(x)+1$
Case 2. $d_{S}\left(x^{\prime}\right)=d_{S}(x)+1 \geq 2$. Then $d_{S}\left(v_{0}\right)=d_{S}(x)$ or $d_{S}\left(v_{0}\right)=d_{S}(x)+1$. And all possible situations of this case are described in Figure 3. It is easy to check that in all these situations $|F(e)| \leq 5$ and so the edge e can be colored properly.

3. The proof of Theorem 1.1

The proof of Theorem 1.1 consists of a series of lemmas. In this section, we only focus on connected claw-free subcubic graphs.

Lemma 3.1 If G has a vertex of degree 1 , then $\chi_{i n j}^{\prime}(G) \leq 6$.
Proof Let v_{0} be a vertex of degree 1 and let e_{0} be the edge incident with v_{0}. Put $S=\left\{v_{0}\right\}$. Then, by Lemma 2.1, all edges except e_{0} can be colored properly. Since there are at most three edges that are distance two apart from e_{0}, it can also be colored properly.

Lemma 3.2 If G has a vertex of degree 2, then $\chi_{i n j}^{\prime}(G) \leq 6$.
Proof Let v_{0} be a vertex of degree 2, and v_{1} and v_{2} the two neighbors of v_{0}. Let $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$. Put $S=\left\{v_{0}\right\}$. By Lemma 2.1, G has a partial injective 6 -edge-coloring with only e_{1}
and e_{2} left uncolored. If $v_{1} v_{2} \in E(G)$, then it is clear that $\left|F\left(e_{1}\right)\right| \leq 4$ and $\left|F\left(e_{2}\right)\right| \leq 4$, implying that e_{1} and e_{2} can also be colored properly. If $v_{1} v_{2} \notin E(G)$, then it is straightforward to check that $\left|F\left(e_{1}\right)\right| \leq 5$ and $\left|F\left(e_{2}\right)\right| \leq 5$. Since $d\left(e_{1}, e_{2}\right)=1$, they can also be colored properly.

From now on, we assume that G is a connected claw-free cubic graph.
Lemma 3.3 Let G be a connected claw-free cubic graph. If G has a cut vertex, then $\chi_{i n j}^{\prime}(G) \leq 6$.
Proof Let v_{0} be a cut vertex of G. And let u_{0}, v_{1} and v_{2} be the three neighbors of v_{0}. Since G is claw-free and v_{0} is a cut vertex, $G\left[\left\{u_{0}, v_{1}, v_{2}\right\}\right]$ contains exactly one edge. Without loss of generality, assume $v_{1} v_{2} \in E(G)$. Please see Figure 4 for the names of vertices and edges of G.

Figure 4 A claw-free cubic graph with a cut vertex
Let G_{1} and G_{2} be the two components of $G-v_{0}$. Since both G_{1} and G_{2} have a vertex of degree less than 3, by Lemmas 3.1 and 3.2, the union of G_{1} and G_{2} has a injective 6-edge-coloring, denoted by φ, which is also a partial injective 6-edge-coloring of G.

Notice that h_{1}, h_{2}, h_{3} receive three different colors and f_{2}, f_{3} receive two different colors. W.l.o.g., we may assume that $\varphi\left(f_{1}\right) \neq \varphi\left(f_{2}\right)$. We can permute the colors among the edges of G_{1} so that $\left\{\varphi\left(f_{1}\right), \varphi\left(f_{2}\right), \varphi\left(f_{3}\right)\right\} \subseteq\left\{\varphi\left(h_{1}\right), \varphi\left(h_{2}\right), \varphi\left(h_{3}\right)\right\}, \varphi\left(h_{1}\right)=\varphi\left(f_{1}\right)$ and $\varphi\left(h_{2}\right)=\varphi\left(f_{2}\right)$. Now it is straightforward to check that $\left|A\left(e_{1}\right)\right| \geq 1,\left|A\left(e_{2}\right)\right| \geq 2$, and $\left|A\left(e_{0}\right)\right| \geq 1$. So the remaining three edges e_{1}, e_{2}, e_{0} in this order can be greedily colored without introducing new colors.

As G is a claw-free cubic graph, each vertex must be contained in a 3 -cycle. Choose a 3 -cycle $C=v_{0} v_{1} v_{2} v_{0}$. Let u_{0}, u_{1}, u_{2} be the third neighbors of v_{0}, v_{1}, v_{2}, respectively. Let $e_{1}=v_{0} v_{1}$, $e_{2}=v_{1} v_{2}, e_{3}=v_{0} v_{2}, e_{4}=v_{0} u_{0}, e_{5}=v_{1} u_{1}, e_{6}=v_{2} u_{2}$. We shall frequently use these names of vertices and edges in the following lemma.

Lemma 3.4 If G is a 2-connected claw-free cubic graph, then $\chi_{\text {inj }}^{\prime}(G) \leq 6$.
Proof Set $S=V(C)$. Let φ be the partial injective 6-edge-coloring of G produced by the greedy algorithm described in Lemma 2.1. Then the only uncolored edges are $e_{1}, e_{2}, \ldots, e_{6}$.

Note that if $u_{0}=u_{1}=u_{2}$ then G is isomorphic to K_{4} and we can easily get an injective edge coloring of G using exactly 6 colors. Thus we assume that $\left|\left\{u_{0}, u_{1}, u_{2}\right\}\right| \geq 2$. If $\left|\left\{u_{0}, u_{1}, u_{2}\right\}\right|=2$, w.l.o.g., we assume $u_{0}=u_{1} \neq u_{2}$. Please see Figure 5 for the names of vertices and edges of G. Since $\left|A\left(e_{3}\right)\right| \geq 3$ and $\left|A\left(e_{4}\right)\right| \geq 4, A\left(e_{3}\right) \cap A\left(e_{4}\right) \neq \emptyset$. Let $b \in A\left(e_{3}\right) \cap A\left(e_{4}\right)$. Notice that
$d\left(e_{3}, e_{4}\right)=1$, we can color e_{3} and e_{4} with the same color b. At the moment after e_{3} and e_{4} have been colored, we have $\left|A\left(e_{2}\right)\right|,\left|A\left(e_{6}\right)\right| \geq 2,\left|A\left(e_{5}\right)\right| \geq 3$ and $\left|A\left(e_{1}\right)\right| \geq 4$. By greedily coloring the uncolored edges in the order $e_{2}, e_{6}, e_{5}, e_{1}$, we extend the partial injective edge coloring φ to an injective 6 -edge-coloring of G.

Figure 5 The case when $\left|\left\{u_{0}, u_{1}, u_{2}\right\}\right|=2$
We now suppose that $\left|\left\{u_{0}, u_{1}, u_{2}\right\}\right|=3$. If the induced subgraph $G\left[\left\{u_{0}, u_{1}, u_{2}\right\}\right]$ contains three edges, then G is isomorphic to the 3 -prism and we can obtain an injective edge coloring of G using 6 colors. If the induced subgraph $G\left[\left\{u_{0}, u_{1}, u_{2}\right\}\right]$ contains two edges. Without loss of generality, let $u_{0} u_{1} \in E(G)$ and $u_{1} u_{2} \in E(G)$. Then u_{1} and its three neighbors induce a $K_{1,3}$ in G. Thus this case will not happen.

We first deal with the case that $G\left[\left\{u_{0}, u_{1}, u_{2}\right\}\right]$ contains exactly one edge. Without loss of generality, let $u_{0} u_{1} \in E(G)$. As G is a claw-free cubic graph, u_{0} and u_{1} must have a common neighbor, say w_{0} (see Figure 6). In this case, it is easy to check that $\left|A\left(e_{i}\right)\right| \geq 2$ for $i=2,3$, $\left|A\left(e_{1}\right)\right| \geq 3,\left|A\left(e_{6}\right)\right| \geq 3$ and $\left|A\left(e_{j}\right)\right| \geq 4$ for $j=4,5$. By greedily coloring the remaining edges in the order $e_{2}, e_{3}, e_{1}, e_{6}, e_{4}, e_{5}$, one extends the partial injective edge coloring φ to an injective 6 -edge-coloring of G.

Figure 6 The case when $\left|\left\{u_{0}, u_{1}, u_{2}\right\}\right|=3$ and $e\left(G\left[\left\{u_{0}, u_{1}, u_{2}\right\}\right]\right)=1$
We next deal with the case that $G\left[\left\{u_{0}, u_{1}, u_{2}\right\}\right]$ is empty. Let $N\left(u_{i}\right)=\left\{v_{i}, w_{i}, w_{i}^{\prime}\right\}$ for $i=$ $0,1,2$. Since G is a claw-free cubic graph, $w_{i} w_{i}^{\prime} \in E(G)$ for $i=0,1,2$. And if $N\left(u_{0}\right) \cap N\left(u_{1}\right) \neq \emptyset$ then v_{2} is a cut vertex of G, which contradicts the assumption that G is 2 -connected. Thus we assume that $N\left(u_{0}\right) \cap N\left(u_{1}\right)=\emptyset$. By symmetry, we can also assume that $N\left(u_{0}\right) \cap N\left(u_{2}\right)=$ $N\left(u_{1}\right) \cap N\left(u_{2}\right)=\emptyset$. Please see Figure 7 for the structure of G. In this case, we have $\left|A\left(e_{i}\right)\right| \geq 2$ for $i=1,2,3$ and $\left|A\left(e_{j}\right)\right| \geq 3$ for $j=4,5,6$.

Suppose there are two integers i and j in $\{1,2,3\}$ such that $\left|A\left(e_{i}\right) \cup A\left(e_{j}\right)\right|=2$. Without

Figure 7 One drawing of G with three vertices of degree 3 in S
loss of generality, assume that $\left|A\left(e_{1}\right) \cup A\left(e_{2}\right)\right|=2$. Then $A\left(e_{1}\right)=A\left(e_{2}\right),\left|A\left(e_{1}\right)\right|=\left|A\left(e_{2}\right)\right|=2$ and $\left|A\left(e_{3}\right)\right|=4$. As $\left|A\left(e_{4}\right)\right| \geq 3$, there is a color $b \in A\left(e_{4}\right) \backslash A\left(e_{2}\right)$. After coloring the edge e_{4} with the color b, it is clear that that $\left|A\left(e_{i}\right)\right|=2$ for $i=1,2$ and $\left|A\left(e_{j}\right)\right| \geq 2$ for $j=5,6$. Notice that $d\left(e_{2}, e_{5}\right)=1, d\left(e_{2}, e_{6}\right)=1$ and $b \notin A\left(e_{2}\right)$, by greedily coloring the remaining five edges $e_{5}, e_{6}, e_{1}, e_{2}, e_{3}$ in this order, we can extend the partial injective edge coloring φ to an injective 6-edge-coloring of G. Hence, we assume that $\left|A\left(e_{i}\right) \cup A\left(e_{j}\right)\right| \geq 3$ for any two integers $i, j \in\{1,2,3\}$. We next prove a claim which is essential to the remaining proofs.

Claim A. If there is some $i \in\{1,2,3\}$ and $j \in\{4,5,6\}$ such that e_{i} and e_{j} are adjacent and $A\left(e_{i}\right) \cap A\left(e_{j}\right) \neq \emptyset$, then the partial injective edge coloring φ can be extended to an injective 6 -edge-coloring of G.

Proof Without loss of generality, assume $A\left(e_{3}\right) \cap A\left(e_{6}\right) \neq \emptyset$. Let $b \in A\left(e_{3}\right) \cap A\left(e_{6}\right)$. After coloring the two edges e_{3} and e_{6} with the same color b, it is clear that that $\left|A\left(e_{i}\right)\right| \geq 1$ for $i=1,2$, $\left|A\left(e_{j}\right)\right| \geq 2$ for $j=4,5$. Moreover, we have $\left|A\left(e_{1}\right) \cup A\left(e_{2}\right)\right| \geq 2$ because $\left|A\left(e_{1}\right) \cup A\left(e_{2}\right)\right| \geq 3$ before we color the two edges e_{3} and e_{6}. Now, we can greedily color the remaining four edges $e_{1}, e_{2}, e_{4}, e_{5}$ in this order to obtain an injective 6-edge-coloring of G.

There are four cases to be considered.
Case 1. There is some integer i in $\{1,2,3\}$ such that $\left|A\left(e_{i}\right)\right|=2$. W.l.o.g., assume $\left|A\left(e_{1}\right)\right|=2$. Then $\left|\left\{\varphi\left(f_{1}\right), \varphi\left(f_{2}\right), \varphi\left(f_{3}\right), \varphi\left(f_{4}\right)\right\}\right|=4$ and so $F\left(e_{2}\right) \cap F\left(e_{3}\right)=\left\{\varphi\left(f_{5}\right), \varphi\left(f_{6}\right)\right\}$. Since $A\left(e_{2}\right) \cup$ $A\left(e_{3}\right)=\overline{F\left(e_{2}\right) \cap F\left(e_{3}\right)}$, we have $\left|A\left(e_{2}\right) \cup A\left(e_{3}\right)\right|=4$. As $\left|A\left(e_{6}\right)\right| \geq 3$, either $A\left(e_{6}\right) \cap A\left(e_{2}\right) \neq \emptyset$ or $A\left(e_{6}\right) \cap A\left(e_{3}\right) \neq \emptyset$. By Claim A, we are done.

Case 2. $\left|A\left(e_{i}\right)\right| \geq 3$ for $i \in\{1,2,3\}$ and there is some integer i in $\{1,2,3\}$ such that $\left|A\left(e_{i}\right)\right|=4$. Without loss of generality, assume $\left|A\left(e_{1}\right)\right|=4$. As $\left|A\left(e_{4}\right)\right| \geq 3$, it is clear that $A\left(e_{1}\right) \cap A\left(e_{4}\right) \neq \emptyset$. And we are done by Claim A.

Case 3. $\left|A\left(e_{i}\right)\right|=3$ for $i \in\{1,2,3\}$ and there are two integers i and j in $\{1,2,3\}$ such that $A\left(e_{i}\right)=A\left(e_{j}\right)$. In this case, it is obvious that $\left|F\left(e_{1}\right)\right|=\left|F\left(e_{2}\right)\right|=\left|F\left(e_{3}\right)\right|=3$. Without loss of generality, we assume $A\left(e_{1}\right)=A\left(e_{2}\right)$. Then $F\left(e_{1}\right)=F\left(e_{2}\right)$. Since $F\left(e_{3}\right) \subseteq F\left(e_{1}\right) \cup F\left(e_{2}\right)$, $F\left(e_{3}\right) \subseteq F\left(e_{1}\right)$. It follows that $F\left(e_{1}\right)=F\left(e_{2}\right)=F\left(e_{3}\right)$ and so $A\left(e_{1}\right)=A\left(e_{2}\right)=A\left(e_{3}\right)$. According to Claim A, we may assume that $A\left(e_{i}\right) \cap A\left(e_{j}\right)=\emptyset$ for any $i \in\{1,2,3\}$ and $j \in\{4,5,6\}$. And it is easy to see that the partial injective edge coloring φ can be extended to an injective 6 -edgecoloring of G.

Case 4. $\left|A\left(e_{i}\right)\right|=3$ for $i \in\{1,2,3\}$ and $A\left(e_{i}\right) \neq A\left(e_{j}\right)$ for any two integers i and j in $\{1,2,3\}$. In this case, it is clear that $\left|A\left(e_{2}\right) \cup A\left(e_{3}\right)\right| \geq 4$, which implies that either $A\left(e_{6}\right) \cap A\left(e_{2}\right) \neq \emptyset$ or $A\left(e_{6}\right) \cap A\left(e_{3}\right) \neq \emptyset$. By Claim A, we can extend the partial injective edge coloring φ to an injective 6-edge-coloring of G.

Theorem 1.1 is proved by the above lemmas. Our proof implies a linear-time algorithm for finding an injective edge coloring using at most 6 colors for any claw-free subcubic graph. Recall that there are graphs with their injective chromatic indices attaining the upper bound 6 . We end our paper by asking the following question.

Question Are there infinitely many claw-free subcubic graphs with injective chromatic indices equal to 6 ? Could we characterize all claw-free subcubic graphs whose injective chromatic indices attain the upper bound 6 ?

Acknowledgements We thank the referees for their time and comments.

References

[1] L. W. BEINEKE. Characterizations of derived graphs. J. Combinatorial Theory, 1970, 9: 129-135.
[2] R. J. GOULD. Updating the Hamiltonian problem-a survey. J. Graph Theory, 1991, 15(2): 121-157.
[3] A. KABELA, T. KAISER. 10-tough chordal graphs are Hamiltonian. J. Combin. Theory Ser. B, 2017, 122: 417-427.
[4] Xiaofan YANG, D. J. EVANS, H. LAI, et al. Generalized honeycomb torus is Hamiltonian. Inform. Process. Lett., 2004, 92(1): 31-37.
[5] G. HAHN, J. KRATOCHV́IL, D. SOTTEAU, et al. On the injective chromatic number of graphs. Discrete Math., 2002, 256(1-2): 179-192.
[6] A. A. BERTOSSI, M. A. BONUCCELLI. Code assignment for hidden terminal interference avoidance in multihop packet radio networks. IEEE/ACM Trans. Networking, 1995, 3: 441-449.
[7] D. M. CARDOSO, J. O. CERDEIRA, C. DOMINIC, et al. Injective edge coloring of graphs. Filomat, 2019, 33(19): 6411-6423.
[8] B. FERDJALLAH, S. KERDJOUDJ, A. RASPAUD. Injective edge-coloring of subcubic graphs. Discrete Math. Algorithms Appl., 2022, 14(8): Paper No. 2250040, 22 pp.
[9] A. V. KOSTOCHKA, A. RASPAUD, Jingwei XU. Injective edge coloring of graphs with given maximum degree. European J. Combin., 2021, 96: Paper No. 103355, 12 pp.
[10] M. AXENOVICH, P. DÖRR, J. ROLLIN, et al. Induced and weak induced arboricities. Discrete Math., 2019, 342(2): 511-519.
[11] Yuehua BU, Chentao QI. Injective edge coloring of sparse graphs. Discrete Math. Algorithms Appl., 2018, 10(2): 1850022, 16 pp .
[12] Jun YUE, Shiliang ZHANG, Xia ZHANG. Note on the perfect EIC-graphs. Appl. Math. Comput., 2016, 289: 481-485.
[13] Jianzhuan WU, Wensong LIN. The strong chromatic index of a class of graphs. Discrete Math., 2008, 308(24): 6254-6261.

[^0]: Received June 16, 2022; Accepted October 5, 2022
 Supported by the National Natural Science Foundation of China (Grant No. 11771080).

 * Corresponding author

 E-mail address: wslin@seu.edu.cn (Wensong LIN)

