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Abstract A coloring of edges of a graph G is injective if for any two distinct edges e1 and

e2, the coloring of e1 and e2 are distinct if they are at distance 2 in G or in a common 3-cycle.

The injective chromatic index of G is the minimum number of colors needed for an injective

edge coloring of G. It was conjectured that the injective chromatic index of any subcubic graph

is at most 6. In this paper, we partially confirm this conjecture by showing that the injective

chromatic index of any claw-free subcubic graph is less than or equal to 6. The bound 6 is tight

and our proof implies a linear-time algorithm for finding an injective edge coloring using at most

6 colors for such graphs.
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1. Introduction

In this paper, we only consider finite simple graphs. Let G = (V (G), E(G)) be a graph.

For a vertex v of G, denote by N(v) the set of vertices that are adjacent to v. For a subset

S of V (G), we denote by G[S] the subgraph of G that is induced by S. Denote by ∆(G) the

maximum degree of G. A subcubic graph is a graph with maximum degree at most 3. We denote

by K1,3 the complete bipartite graph with one part having 1 vertex and the other 3 vertices. A

graph G is called claw-free if no induced subgraph of G is isomorphic to K1,3. The study on

the properties of claw-free graphs was initiated by Beineke in his study of the properties of line

graphs [1]. However, from the late 1970s more scholars paid attention to the matching properties

as well as the Hamiltonian properties of claw-free graphs [2–4]. In this paper, we focus on the

injective chromatic index of claw-free subcubic graphs.

Let e1 and e2 be any two edges of G. The distance between e1 and e2, d(e1, e2), is defined as

the distance between the corresponding two vertices in the line graph of G. It is clear that if e1

and e2 are at distance 1, then they share at least one end-vertex, and if e1 and e2 are at distance

2, then they share no end-vertex and there exists another edge e′ such that e′ is at distance 1

from e1 and e2, respectively. Given a positive integer k, an injective k-edge coloring of G is a
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mapping f from E(G) to {1, 2, . . . , k} such that, f(e) 6= f(e′) for any two distinct edges e and

e′ of G if d(e, e′) = 2 or they are in a common 3-cycle. The injective chromatic index, denoted

by χ′inj(G), is the minimum integer k such that G has an injective k-edge coloring.

The injective edge coloring is a kind of edge version of the injective coloring. Given a positive

integer k, an injective k-edge coloring of G is a mapping f from V (G) to {1, 2, . . . , k} such that

any two vertices at distance two apart or any two vertices on a common 3-cycle receive different

colors. The injective chromatic number, denoted by χinj(G), is the minimum integer k such that

G has a k-injective coloring. The injective coloring of graphs was originated from the complexity

theory on random access machines, which was proposed by Hahn et al. [5]. It was also applied

to the theory of error correcting codes and the designing of computer networks [6]. In [5], the

authors proved that for any graph G, ∆(G) ≤ χinj(G) ≤ ∆(G)(∆(G)− 1) + 1, and both bounds

are sharp.

In 2015, Cardoso et al. [7] introduced the concept of injective edge coloring of graphs. They

proved that it is NP-hard to compute the injective chromatic index of a graph G and determined

the injective chromatic indices of paths, cycles, complete bipartite graphs, the Peterson graph.

Ferdjallah, Kerdjoudj and Raspaud [8] proved that χ′inj(G) ≤ 2(∆(G) − 1)2 for any graph G

with ∆(G) ≥ 3 and pointed out that χ′inj(G) ≤ 30 for any planar graph G while χ′inj(G) ≤ 9 for

any outerplanar graph G. In particular, they [8] conjectured that χ′inj(G) ≤ 6 for any subcubic

graph G and confirmed it for subcubic bipartite graph. The conjecture was also proved to be

true for subcubic planar graphs [9]. And, in general, the same paper [9] proved that χ′inj(G) ≤ 7

for any subcubic graph G. For other results concerning the injective chromatic index of graphs,

please refer to [10–12].

In this paper, we partially confirm the above conjecture for claw-free subcubic graphs. Our

main result is the following theorem.

Theorem 1.1 Let G be a claw-free subcubic. Then χ′inj(G) ≤ 6.

Actually, there are some claw-free subcubic graphs whose injective chromatic indices are 6.

For example, the complete graph on 4 vertices K4 has injective chromatic index 6. Another

example is the triangular prism (also called 3-prism). On the one hand, the injective chromatic

index of the 3-prism is at least 6 since there are two disjoint 3-cycles in the 3-prism, and any

two edges from different 3-cycles are at distance 2. On the other hand, we can easily obtain an

injective 6-edge-coloring of the 3-prism. Please see Figure 1 for injective 6-edge-colorings of the

3-prism and K4.

Figure 1 The 3-prism and K4
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In Section 2, we present a greedy algorithm that can produce a partial injective 6-edge-

coloring of a claw-free subcubic graph with only a few edges left uncolored. In Section 3, in

several different cases, we first apply this algorithm to produce a partial injective 6-edge-coloring

of the graph, and then extend it to an injective 6-edge-coloring of the whole graph.

2. Preliminaries

In order to construct a partial injective 6-edge-coloring of a claw-free subcubic graph, we first

apply the same method in [13] to order the edges of G, and then use the greedy algorithm to

color the edges of G in this order. There will be only a few particular edges left uncolored.

Figure 2 The eight situations of an edge e = xx′ with dS(x′) = dS(x)

Suppose S is a subset of V (G). For a vertex v ∈ V (G), the distance from v to S, denoted by

dS(v), is defined as minw∈S{d(v, w)}. Suppose the maximum distance from a vertex of V (G) to

S is K. For i = 0, 1, . . . ,K, let Di = {v ∈ V (G)|dS(v) = i}. We define a mapping dS from E(G)

to {0, 1, . . . ,K} as: dS(e) = min{i|e ∩Di 6= ∅, 0 ≤ i ≤ K} for any edge e ∈ E(G). Note that if

dS(e) > 0 then there exists an edge e′ sharing one end-vertex with e such that dS(e′) = dS(e)−1.

Let R = (ek1
, ek2

, . . . , ekm
) be an ordering of the edges of G. If, for any two integers i and j

in {1, 2, . . . ,m}, i < j implies dS(eki
) ≥ dS(ekj

), then we say that the edge ordering R of G is

compatible with the mapping dS .

Let G be a claw-free subcubic graph. Suppose we already have a partial injective 6-edge-

coloring φ of G. Let b be a color in {1, 2, . . . , 6} and e an uncolored edge. If φ(e′) 6= b for any

colored edge e′ that is distance two apart from e or lies on a common 3-cycle with e, we say that

the color b is available for e. We use A(e) to denote the set of colors available for e. And denote

by F (e) the set of colors unavailable for e. It is obvious that F (e) = {1, 2, . . . , 6} \A(e).
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Lemma 2.1 Let G be a claw-free subcubic graph. Let S be any subset of V (G). The greedy

algorithm coloring the edges of G in an ordering R compatible with the mapping dS will produce

a partial injective 6-edge-coloring of G where only edges e with dS(e) = 0 are left uncolored.

Proof Let e = xx′ be an edge with dS(e) > 0. Without loss of generality, let e′ = xy be a

neighbor of e with dS(e′) < dS(e). Then, at the stage of the greedy algorithm when e is to be

colored, no edges incident with y have yet been colored.

If d(x) = 2 or x has another neighbor z with dS(z) < dS(x) then it is easy to see that

|F (e)| ≤ 3 and we are done. Thus we assume d(x) = 3 and y is the only neighbor of x with

dS(y) < dS(x). Let another neighbor of x be v0. There will be two cases:

Case 1. dS(x) = dS(x′) ≥ 1. In this case, x′ has a neighbor y′ with dS(y′) = dS(y) (It is

possible that y = y′). Notice that G is claw-free and ∆(G) = 3, the possible situations of this

case are described in Figure 2. It is now straightforward to check that |F (e)| ≤ 4. And so e can

be colored properly.

Figure 3 The four situations of an edge e = xx′ with dS(x′) = dS(x) + 1

Case 2. dS(x′) = dS(x)+1 ≥ 2. Then dS(v0) = dS(x) or dS(v0) = dS(x)+1. And all possible

situations of this case are described in Figure 3. It is easy to check that in all these situations

|F (e)| ≤ 5 and so the edge e can be colored properly. 2

3. The proof of Theorem 1.1

The proof of Theorem 1.1 consists of a series of lemmas. In this section, we only focus on

connected claw-free subcubic graphs.

Lemma 3.1 If G has a vertex of degree 1, then χ′inj(G) ≤ 6.

Proof Let v0 be a vertex of degree 1 and let e0 be the edge incident with v0. Put S = {v0}.
Then, by Lemma 2.1, all edges except e0 can be colored properly. Since there are at most three

edges that are distance two apart from e0, it can also be colored properly. 2

Lemma 3.2 If G has a vertex of degree 2, then χ′inj(G) ≤ 6.

Proof Let v0 be a vertex of degree 2, and v1 and v2 the two neighbors of v0. Let e1 = v0v1 and

e2 = v0v2. Put S = {v0}. By Lemma 2.1, G has a partial injective 6-edge-coloring with only e1
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and e2 left uncolored. If v1v2 ∈ E(G), then it is clear that |F (e1)| ≤ 4 and |F (e2)| ≤ 4, implying

that e1 and e2 can also be colored properly. If v1v2 6∈ E(G), then it is straightforward to check

that |F (e1)| ≤ 5 and |F (e2)| ≤ 5. Since d(e1, e2) = 1, they can also be colored properly. 2

From now on, we assume that G is a connected claw-free cubic graph.

Lemma 3.3 LetG be a connected claw-free cubic graph. IfG has a cut vertex, then χ′inj(G) ≤ 6.

Proof Let v0 be a cut vertex of G. And let u0, v1 and v2 be the three neighbors of v0. Since

G is claw-free and v0 is a cut vertex, G[{u0, v1, v2}] contains exactly one edge. Without loss of

generality, assume v1v2 ∈ E(G). Please see Figure 4 for the names of vertices and edges of G.

Figure 4 A claw-free cubic graph with a cut vertex

Let G1 and G2 be the two components of G − v0. Since both G1 and G2 have a vertex of

degree less than 3, by Lemmas 3.1 and 3.2, the union of G1 and G2 has a injective 6-edge-coloring,

denoted by ϕ, which is also a partial injective 6-edge-coloring of G.

Notice that h1, h2, h3 receive three different colors and f2, f3 receive two different colors.

W.l.o.g., we may assume that ϕ(f1) 6= ϕ(f2). We can permute the colors among the edges of G1

so that {ϕ(f1), ϕ(f2), ϕ(f3)} ⊆ {ϕ(h1), ϕ(h2), ϕ(h3)}, ϕ(h1) = ϕ(f1) and ϕ(h2) = ϕ(f2). Now

it is straightforward to check that |A(e1)| ≥ 1, |A(e2)| ≥ 2, and |A(e0)| ≥ 1. So the remaining

three edges e1, e2, e0 in this order can be greedily colored without introducing new colors. 2

As G is a claw-free cubic graph, each vertex must be contained in a 3-cycle. Choose a 3-cycle

C = v0v1v2v0. Let u0, u1, u2 be the third neighbors of v0, v1, v2, respectively. Let e1 = v0v1,

e2 = v1v2, e3 = v0v2, e4 = v0u0, e5 = v1u1, e6 = v2u2. We shall frequently use these names of

vertices and edges in the following lemma.

Lemma 3.4 If G is a 2-connected claw-free cubic graph, then χ′inj(G) ≤ 6.

Proof Set S = V (C). Let ϕ be the partial injective 6-edge-coloring of G produced by the greedy

algorithm described in Lemma 2.1. Then the only uncolored edges are e1, e2, . . . , e6.

Note that if u0 = u1 = u2 then G is isomorphic to K4 and we can easily get an injective edge

coloring of G using exactly 6 colors. Thus we assume that |{u0, u1, u2}| ≥ 2. If |{u0, u1, u2}| = 2,

w.l.o.g., we assume u0 = u1 6= u2. Please see Figure 5 for the names of vertices and edges of

G. Since |A(e3)| ≥ 3 and |A(e4)| ≥ 4, A(e3) ∩ A(e4) 6= ∅. Let b ∈ A(e3) ∩ A(e4). Notice that
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d(e3, e4) = 1, we can color e3 and e4 with the same color b. At the moment after e3 and e4 have

been colored, we have |A(e2)|, |A(e6)| ≥ 2, |A(e5)| ≥ 3 and |A(e1)| ≥ 4. By greedily coloring the

uncolored edges in the order e2, e6, e5, e1, we extend the partial injective edge coloring ϕ to an

injective 6-edge-coloring of G.

Figure 5 The case when |{u0, u1, u2}| = 2

We now suppose that |{u0, u1, u2}| = 3. If the induced subgraph G[{u0, u1, u2}] contains

three edges, then G is isomorphic to the 3-prism and we can obtain an injective edge coloring

of G using 6 colors. If the induced subgraph G[{u0, u1, u2}] contains two edges. Without loss of

generality, let u0u1 ∈ E(G) and u1u2 ∈ E(G). Then u1 and its three neighbors induce a K1,3 in

G. Thus this case will not happen.

We first deal with the case that G[{u0, u1, u2}] contains exactly one edge. Without loss of

generality, let u0u1 ∈ E(G). As G is a claw-free cubic graph, u0 and u1 must have a common

neighbor, say w0 (see Figure 6). In this case, it is easy to check that |A(ei)| ≥ 2 for i = 2, 3,

|A(e1)| ≥ 3, |A(e6)| ≥ 3 and |A(ej)| ≥ 4 for j = 4, 5. By greedily coloring the remaining edges

in the order e2, e3, e1, e6, e4, e5, one extends the partial injective edge coloring ϕ to an injective

6-edge-coloring of G.

Figure 6 The case when |{u0, u1, u2}| = 3 and e(G[{u0, u1, u2}]) = 1

We next deal with the case that G[{u0, u1, u2}] is empty. Let N(ui) = {vi, wi, w
′
i} for i =

0, 1, 2. Since G is a claw-free cubic graph, wiw
′
i ∈ E(G) for i = 0, 1, 2. And if N(u0)∩N(u1) 6= ∅

then v2 is a cut vertex of G, which contradicts the assumption that G is 2-connected. Thus

we assume that N(u0) ∩ N(u1) = ∅. By symmetry, we can also assume that N(u0) ∩ N(u2) =

N(u1)∩N(u2) = ∅. Please see Figure 7 for the structure of G. In this case, we have |A(ei)| ≥ 2

for i = 1, 2, 3 and |A(ej)| ≥ 3 for j = 4, 5, 6.

Suppose there are two integers i and j in {1, 2, 3} such that |A(ei) ∪ A(ej)| = 2. Without
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Figure 7 One drawing of G with three vertices of degree 3 in S

loss of generality, assume that |A(e1) ∪ A(e2)| = 2. Then A(e1) = A(e2), |A(e1)| = |A(e2)| = 2

and |A(e3)| = 4. As |A(e4)| ≥ 3, there is a color b ∈ A(e4)\A(e2). After coloring the edge

e4 with the color b, it is clear that that |A(ei)| = 2 for i = 1, 2 and |A(ej)| ≥ 2 for j = 5, 6.

Notice that d(e2, e5) = 1, d(e2, e6) = 1 and b 6∈ A(e2), by greedily coloring the remaining five

edges e5, e6, e1, e2, e3 in this order, we can extend the partial injective edge coloring ϕ to an

injective 6-edge-coloring of G. Hence, we assume that |A(ei) ∪ A(ej)| ≥ 3 for any two integers

i, j ∈ {1, 2, 3}. We next prove a claim which is essential to the remaining proofs.

Claim A. If there is some i ∈ {1, 2, 3} and j ∈ {4, 5, 6} such that ei and ej are adjacent and

A(ei) ∩ A(ej) 6= ∅, then the partial injective edge coloring ϕ can be extended to an injective

6-edge-coloring of G.

Proof Without loss of generality, assume A(e3) ∩ A(e6) 6= ∅. Let b ∈ A(e3) ∩ A(e6). After

coloring the two edges e3 and e6 with the same color b, it is clear that that |A(ei)| ≥ 1 for i = 1, 2,

|A(ej)| ≥ 2 for j = 4, 5. Moreover, we have |A(e1) ∪ A(e2)| ≥ 2 because |A(e1) ∪ A(e2)| ≥ 3

before we color the two edges e3 and e6. Now, we can greedily color the remaining four edges

e1, e2, e4, e5 in this order to obtain an injective 6-edge-coloring of G.

There are four cases to be considered.

Case 1. There is some integer i in {1, 2, 3} such that |A(ei)| = 2. W.l.o.g., assume |A(e1)| = 2.

Then |{ϕ(f1), ϕ(f2), ϕ(f3), ϕ(f4)}| = 4 and so F (e2) ∩ F (e3) = {ϕ(f5), ϕ(f6)}. Since A(e2) ∪
A(e3) = F (e2) ∩ F (e3), we have |A(e2)∪A(e3)| = 4. As |A(e6)| ≥ 3, either A(e6)∩A(e2) 6= ∅ or

A(e6) ∩A(e3) 6= ∅. By Claim A, we are done.

Case 2. |A(ei)| ≥ 3 for i ∈ {1, 2, 3} and there is some integer i in {1, 2, 3} such that |A(ei)| = 4.

Without loss of generality, assume |A(e1)| = 4. As |A(e4)| ≥ 3, it is clear that A(e1)∩A(e4) 6= ∅.
And we are done by Claim A.

Case 3. |A(ei)| = 3 for i ∈ {1, 2, 3} and there are two integers i and j in {1, 2, 3} such that

A(ei) = A(ej). In this case, it is obvious that |F (e1)| = |F (e2)| = |F (e3)| = 3. Without loss

of generality, we assume A(e1) = A(e2). Then F (e1) = F (e2). Since F (e3) ⊆ F (e1) ∪ F (e2),

F (e3) ⊆ F (e1). It follows that F (e1) = F (e2) = F (e3) and so A(e1) = A(e2) = A(e3). According

to Claim A, we may assume that A(ei)∩A(ej) = ∅ for any i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. And it

is easy to see that the partial injective edge coloring ϕ can be extended to an injective 6-edge-

coloring of G.



416 Xiaoyuan DONG, Yuquan LIN and Wensong LIN

Case 4. |A(ei)| = 3 for i ∈ {1, 2, 3} and A(ei) 6= A(ej) for any two integers i and j in {1, 2, 3}.
In this case, it is clear that |A(e2) ∪ A(e3)| ≥ 4, which implies that either A(e6) ∩ A(e2) 6= ∅
or A(e6) ∩ A(e3) 6= ∅. By Claim A, we can extend the partial injective edge coloring ϕ to an

injective 6-edge-coloring of G. 2

Theorem 1.1 is proved by the above lemmas. Our proof implies a linear-time algorithm for

finding an injective edge coloring using at most 6 colors for any claw-free subcubic graph. Recall

that there are graphs with their injective chromatic indices attaining the upper bound 6. We

end our paper by asking the following question.

Question Are there infinitely many claw-free subcubic graphs with injective chromatic indices

equal to 6? Could we characterize all claw-free subcubic graphs whose injective chromatic indices

attain the upper bound 6?
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