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Abstract A ring R is said to be quasi-central semicommutative (simply, a QCS ring) if ab = 0

implies aRb ⊆ Q(R) for a, b ∈ R, where Q(R) is the quasi-center of R. It is proved that if R is

a QCS ring, then the set of nilpotent elements of R coincides with its Wedderburn radical, and

that the upper triangular matrix ring R = Tn(S) for any n ≥ 2 is a QCS ring if and only if n = 2

and S is a duo ring, while T k

2k+2(R) is a QCS ring when R is a reduced duo ring.
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1. Introduction

Throughout this paper a ring means an associative ring with identity unless otherwise stated.

Let R be a ring, n ≥ 2 an integer, and σ an endomorphism of R. We use N(R), E(R), Z(R),

W (R), N∗(R), N∗(R), and J(R) to denote the set of nilpotent elements, the set of idempotents,

the center, the Wedderburn radical, the prime radical, the upper nil radical and the Jacobson

radical of R, respectively. The symbol Mn(R) (Tn(R)) denotes the ring of n×n matrices (upper

triangular matrices) over R, Sn(R) the subring of Tn(R) in which each matrix has the identical

principally diagonal elements, Eij the n×n matrix units, and In the n×n identity matrix. The

notation R[[x;σ]] (R[x, σ]) stands for the left skew power series (polynomial) ring over R, and

Zn for the ring Z of integers modulo n.

According to Walt [1], an element a of a ring R is said to be left quasi-commutative if for

every r ∈ R there exists r′ ∈ R such that ra = ar′. A right quasi-commutative element is defined

analogously and a is quasi-commutative if it is left and right quasi-commutative. The set of left

quasi-commutative elements, denoted by Ql(R), is called the left quasi-center of R. The right

quasi-center Qr(R) of R is defined similarly, and Q(R) = Ql(R)
⋂

Qr(R) is the quasi-center of

R. On the other hand, Feller [2] called a ring R duo if every one-sided ideal of R is an ideal.

More precisely, Courter [3] called R left (right) duo if every left (right) ideal of R is an ideal.

This is equivalent to saying that aR ⊆ Ra (Ra ⊆ aR) for every a ∈ R (see [3]). Accordingly, a

ring R is a left (right) duo ring if and only if R = Qr(R) (Ql(R)), that is, every element of R is

a right (left)-commutative element.
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Let R be a ring and a, b, c ∈ R. A ring R is said to be reduced, abelian, 2-primal if N(R) = 0,

E(R) ⊆ Z(R) and N∗(R) = N(R), respectively. A ring R is symmetric [4] if abc = 0 implies

acb = 0 (eq., bac = 0) and reversible [5] if ab = 0 implies ba = 0. Due to Bell [6], a ring

R is said to satisfy the Insertion-of-Factors-Property (simply, an IFP ring) if ab = 0 implies

aRb = 0. IFP rings had been studied by other authors under several different names such as

SI-rings, ZI-rings, and semicommutative rings [7–9]. In the present paper we choose the term

of a semicommutative ring, so as to cohere to the related references. It is known from [10] that

reduced ⇒ symmetric ⇒ reversible ⇒ semicommutative, and no reversal holds. For decades,

semicommutative rings and various related rings have been studied by numerous authors. A

ring R is called central reduced [11], central symmetric [12], central reversible [13], and central

semicommutative [14] if N(R) ⊆ Z(R), abc = 0 implies bac ∈ Z(R), ab = 0 implies ba ∈ Z(R),

and ab = 0 implies aRb ⊆ Z(R), respectively. It can be concluded [15] that central reduced ⇒

central symmetric ⇒ central reversible and central semicommutative, and central reversible or

central semicommutative ⇒ abelian and 2-primal. In another direction, a ring R is said to be

symmetric-over-center [16] if abc ∈ Z(R) implies acb ∈ Z(R). Such a ring is a central symmetric

ring by [16, Proposition 2.1] and so is a central semicommutative ring.

In this paper a ring R is said to be quasi-central semicommutative (simply, a QCS ring) if

ab = 0 implies aRb ⊆ Q(R) for a, b ∈ R. Properties of QCS rings and the relationships between

such rings and related rings are studied, among others, it is proved that if R is a QCS ring, then

RaR is a nilpotent ideal of R for any a ∈ N(R), so N(R) = W (R) and J(R[x]) = W (R[x]) =

N(R)[x]. These generalize some main results on symmetric-over-center rings [17, Theorem 2.2]

and improve the existing conclusions on central semicommutative rings. Moreover it is shown

that R = Tn(S) is a QCS ring if and only if n = 2 and S is a duo ring, and that R = T k
2k+2(S)

is a QCS ring whenever S is a reduced duo ring.

2. Left (right) quasi-central semicommutative rings

We start this section with the following definition.

Definition 2.1 A ring R is said to be left (right) quasi-central semicommutative (simply, an

LQCS (RQCS) ring) if ab = 0 implies aRb ⊆ Ql(R) (Qr(R)) for a, b ∈ R, and a ring is quasi-

central semicommutative (simply, a QCS ring) if it is an LQCS ring and an RQCS ring.

A central semicommutative ring is a QCS ring, but not conversely as we prove soon.

Lemma 2.2 ([18, Lemma 2.3]) Let S be a ring and R = T2(S).

(1) For any 0 6= a ∈ S, aE22 /∈ Ql(R) and aE11 /∈ Qr(R).

(2) S is a left (right) duo ring if and only if SE12 ⊆ Qr(R) (Ql(R)).

Lemma 2.3 Let R be a ring and I an ideal of R. If R/I is a semicommutative ring and

I ⊆ Ql(R) (Qr(R)), then R is an LQCS (RQCS) ring.

Proof Write R = R/I. If a, b ∈ R with ab = 0, then āb̄ = 0̄ in R. This implies ār̄b̄ = 0̄ for all



Quasi-central semicommutative rings 419

r ∈ R by the semicommutativity of R. It follows that aRb ⊆ I ⊆ Ql(R) by hypothesis. 2

In the sequel, we use the notation RA = {rA|r ∈ R} for any A ∈ Mn(R).

Theorem 2.4 Let S be a ring and R = T2(S). Then R is an LQCS (RQCS) ring if and only if

S is a right (left) duo ring.

Proof Assume that R is an LQCS ring. From E11E22 = 0, we have E11sE12E22 = sE12 ∈ Ql(R)

for any s ∈ S. This means SE12 ⊆ Ql(R), so S is a right duo ring by Lemma 2.2.

Conversely, suppose that S is a right duo ring. Clearly, I = SE12 is an ideal of R such that

I ⊆ Ql(R) by Lemma 2.2. Since the direct product of two right duo rings is a right duo ring and

any right duo ring is a semicommutative ring [10, p. 494], R/I ∼= S × S is a semicommutative

ring. Thus R is an LQCS ring with help of Lemma 2.3. 2

A ring R is said to be left (right) quasi-central reduced [18] if N(R) ⊆ Ql(R) (Qr(R)) and R

is quasi-central reduced if it is both left and right quasi-central reduced.

Proposition 2.5 Any left (right) quasi-central reduced ringR is an LQCS (RQCS) ring, however

the converse is not true in general.

Proof Applying [18, Proposition 2.8], we have W (R) = N(R). This means that R/W (R) is a

reduced ring, so it is a semicommutative ring. Meanwhile W (R) = N(R) ⊆ Ql(R) by hypothesis.

It follows that R is an LQCS ring in the light of Lemma 2.3.

Conversely, it is known from [18, Proposition 2.4] that R = T2(S) is a left quasi-central

reduced ring if and only if S is a reduced right duo ring. This implies that R = T2(Z4) is not a

left quasi-central reduced ring, but it is a QCS ring by Theorem 2.4. 2

Remark 2.6 (1) As just mentioned, R = T2(Z4) is a QCS ring. But R is not abelian, so it is

not central semicommutative by [14, Lemma 2.6].

(2) Definition 2.1 is not left-right symmetric. According to [18, Example 2.6], there exists a

right duo domain S which is not a left duo ring. This means that R = T2(S) is an LQCS ring

but not an RQCS ring by Theorem 2.4. Moreover S contains a subring S1 being not a right duo

ring, so the subring R1 = T2(S1) of R is not an LQCS ring. 2

Proposition 2.7 (1) The class of LQCS (RQCS) rings is closed under the ring product.

(2) If R is an LQCS (RQCS) ring, then eRe is an LQCS (RQCS) ring for any e ∈ E(R).

Proof (1) It is a direct verification.

(2) Let a, b ∈ eRe with ab = 0. There exist s, t ∈ R such that a = ese, b = ete. This

means a = eae, b = ebe and eaeebe = 0. Similarly, any r ∈ eRe can be written as r = ere.

From eaeebe = 0, we have eaerebe ∈ Ql(R) for all r ∈ eRe by the virtue of R. Thus for

any u = eue ∈ eRe, there exists v ∈ R such that ueaerebe = eaerebev. This implies that

eueeaerebe = eaerebeve, and so eaerebe ∈ Ql(eRe). 2

The next lemma is crucial for us to obtain the main result of this section.
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Lemma 2.8 Let R be an LQCS (RQCS) ring and a ∈ N(R). If n is the minimal positive integer

such that an = 0, then ar1ar2 · · · arpa = 0 for any r1, r2, . . . , rp ∈ R, where p = n2 − 2n+ 2.

Proof It is trivial when n = 1, since in this case a = 0 and p = 1. Thus we may assume that

n ≥ 2. For any positive integer i < n, we construct a generating function Φ(n, i) as follows

Φ(n, i) =arp−in+iarp−in+i+1 · · ·arp−(i−1)n+i−1arp−(i−1)n+i · · · arp−2n+2arp−2n+3 · · ·

arp−narp−n+1a
n−irp−i+1 · · ·arp−1arpa.

For example,

Φ(n, 1) = arp−n+1a
n−1rpa, Φ(n, 2) = arp−2n+2arp−2n+3 · · · arp−n+1a

n−2rp−1arpa

and

Φ(n, n− 1) = ar1ar2 · · · arp−1arpa.

This leads us to prove the validity of the next claim.

Claim. Φ(n, i) = 0 for any positive integer i < n.

Firstly, an−1a = 0 implies an−1rpa ∈ Ql(R) by the left quasi-central semicommutativity

of R. There exists r′p−n+1 ∈ R such that rp−n+1a
n−1rpa = an−1rpar

′

p−n+1. It follows that

Φ(n, 1) = arp−n+1a
n−1rpa = anrpar

′

p−n+1 = 0. This proves the validity of Claim for n = 2.

In the case n > 2, then atΦ(n, 1) = a1+trp−n+1a
n−2arpa = 0 for any integer t ≥ 0. This gives

a1+trp−n+1a
n−2rp−1arpa ∈ Ql(R) by the virtue of R. Applying this relation repeatedly, then

Φ(n, 2) = arp−2n+2arp−2n+3 · · · arp−n(arp−n+1a
n−2rp−1arpa)

= arp−2n+2arp−2n+3 · · · arp−n−1(a
2rp−n+1a

n−2rp−1arpa)r
′

p−n

= arp−2n+2arp−2n+3 · · · arp−n−2(a
3rp−n+1a

n−2rp−1arpa)r
′

p−n−1r
′

p−n

for some r′p−n, r
′

p−n−1 ∈ R. Note that in the expression of Φ(n, 2) the occurrence of a on the

left of an−2 is exactly n. Continuing this process, there exist r′p−2n+2, . . . , r
′

p−n ∈ R such that

Φ(n, 2) = (anrp−n+1a
n−2rp−1arpa)r

′

p−2n+2 · · · r
′

p−n−1r
′

p−n = 0.

Thus Claim is valid for n = 3 by the previous argument. Assume that n > 3, and we already

have Φ(n, i) = 0 for all i < n− 1. To end the proof, it suffices to show Φ(n, i+ 1) = 0. Denote

ξ(1 + t) =a1+trp−in+iarp−in+i+1 · · · arp−(i−1)n+i−1 · · · arp−2n+1arp−2n+2 · · ·

arp−n+1a
n−i−1rp−iarp−i+1 · · · arp−1arpa.

From hypothesis Φ(n, i) = 0, we have atΦ(n, i) = 0 for any integer t ≥ 0. To be more specific,

a1+trp−in+iarp−in+i+1 · · ·arp−(i−1)n+i−1arp−(i−1)n+i · · · arp−2n+2arp−2n+3 · · ·

arp−narp−n+1(a
n−i−1a)rp−i+1 · · ·arp−1arpa = 0.

Inserting rp−i between an−i−1 and a, then ξ(1 + t) ∈ Ql(R) holds. It follows that

Φ(n, i+ 1) =arp−(i+1)n+i+1 · · · arp−in+i−1(arp−in+i · · · arp−2n+2 · · ·

arp−narp−n+1a
n−i−1rp−iarp−i+1 · · · arp−1arpa)
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=arp−(i+1)n+i+1 · · · arp−in+i−1ξ(1) = arp−(i+1)n+i+1 · · · arp−in+i−2aξ(1)r
′

p−in+i−1

=arp−(i+1)n+i+1 · · · arp−in+i−2ξ(2)r
′

p−in+i−1

for some r′p−in+i−1 ∈ R. Continuing this process, there exist r′
p−(i+1)n+i+1, . . . , r

′

p−in+i−1 ∈ R

such that Φ(n, i+ 1) = aξ(n− 1)r′
p−(i+1)n+i+1 · · · r

′

p−in+i−1 = 0, since ξ(n− 1) = ξ(1 + n− 2).

By induction, we have Φ(n, i) = 0 for any positive integer i < n. In particular, Φ(n, n− 1) =

ar1ar2 · · · arp−1arpa = 0. This completes the proof of Lemma 2.8. 2

Theorem 2.9 The following statements are true for an LQCS (RQCS) ring R.

(1) For a ∈ R, if there exists a positive integer n such that an = 0, then r0ar1 · · · arp+1 = 0

for any r0, r1, . . . , rp+1 ∈ R, where p = n2 − 2n+ 2;

(2) RaR is a nilpotent ideal of R for any a ∈ N(R);

(3) W (R) = N∗(R) = N∗(R) = N(R);

(4) J(R[x]) = W (R[x]) = N∗(R[x]) = N∗(R[x]) = W (R)[x] = N(R)[x] = N(R[x]). In

particular, R[x]/J(R[x]) is a reduced ring.

Proof (1) It is a direct consequence of Lemma 2.8.

(2) There exists a positive integer n such that an = 0 for any a ∈ N(R). We show that

(RaR)p+1 = 0, where p = n2 − 2n + 2. If a1, a2, . . . , ap+1 ∈ RaR, then ai can be written as

ai = ri1asi1+ri2asi2+· · ·+rimi
asimi

for some rik, sik ∈ R, i = 1, 2, . . . , p+1, and k = 1, 2, . . . ,mi.

It turns out that a1a2 · · · ap+1 = 0 by Lemma 2.8, and so (RaR)p+1 = 0.

(3) On the one hand, W (R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R) is well known. On the other hand,

N(R) ⊆ W (R) with help of (2). Consequently, W (R) = N∗(R) = N∗(R) = N(R).

(4) It is known that J(R[x]) = I[x] for some nil ideal I of R and that N∗(R[x]) = N∗(R)[x]

from [19, Theorems 1 and 3]. This means J(R[x]) ⊆ N(R)[x] = W (R)[x] by (3). Combining

this with W (R)[x] ⊆ N∗(R[x]) = N∗(R[x]) ⊆ J(R[x]), we obtain J(R[x]) = W (R)[x]. With

help of [16, Lemma 2.3], we have W (R[x]) = W (R)[x]. It turns out that J(R[x]) = W (R[x]) =

N∗(R[x]) = N∗(R[x]) = W (R)[x] = N(R)[x]. Moreover R is a 2-primal ring by (3), so is R[x]

duo to [20, Proposition 2.6]. This implies J(R[x]) = N(R[x]), proving the equalities of (4).

Finally from R[x]/J(R[x]) = R[x]/N(R[x]), we conclude that R[x]/J(R[x]) is a reduced ring. 2

Corollary 2.10 The conclusions of Theorem 2.9 are true for left (right) quasi-central reduced

rings, central semicommutative rings, and symmetric-over-center rings.

Proof It is known from [16, Proposition 2.1] that a symmetric-over-center ring is central

symmetric in the sense of [12]. So the conclusions hold by Proposition 2.5 and Theorem 2.9. 2

Corollary 2.11 For any ring R, Mn(R) is neither an LQCS ring nor an RQCS ring.

Proof Assume on the contrary, then E1n, En1 ∈ N(Mn(R)) implies E1n+En1 ∈ N(R). However

(E1n + En1)
2 = E11 + Enn is a nonzero idempotent, this contradicts Theorem 2.9. 2

Corollary 2.12 A ring R is an LQCS (RQCS) ring if and only if ab = 0 implies aRb ⊆
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Ql(R)
⋂

W (R) (Qr(R)
⋂

W (R)) for a, b ∈ R.

Proof It suffices to show ab = 0 implies aRb ⊆ W (R). From ab = 0, we have ba ∈ N(R) = W (R)

by Theorem 2.9. Hence bar ∈ W (R) for any r ∈ R, and so arb ∈ N(R) = W (R). 2

Corollary 2.13 A semiprime LQCS (RQCS) ring is a reduced ring, and a prime LQCS (RQCS)

ring is a domain.

Proof The validity is clearly from Corollary 2.12 and Theorem 2.9. 2

Definition 2.14 A ring R is said to be left (right) quasi-central symmetric if abc = 0 implies

bac ∈ Ql(R) (Qr(R)) for a, b, c ∈ R, and R is quasi-central symmetric if it is left and right

quasi-central symmetric.

Definition 2.15 A ring R is said to be left (right) quasi-central reversible if ab = 0 implies

ba ∈ Ql(R) (Qr(R)) for a, b ∈ R, and R is quasi-central reversible if it is left and right quasi-

central reversible.

Clearly, a left (right) quasi-central symmetric ring is left (right) quasi-central reversible.

Lemma 2.16 Let R be a ring and I an ideal. If R/I is symmetric (reversible) ring such that

I ⊆ Ql(R) (Qr(R)), then R is a left (right) quasi-central symmetric (reversible) ring.

Proof It is similar to the proof of Lemma 2.3. 2

Proposition 2.17 If R is a left (right) quasi-central reduced ring, then R is a left (right) quasi-

central symmetric ring.

Proof Since R is a left quasi-central reduced ring, we have N(R) = W (R) ⊆ Ql(R) with help

of [18, Proposition 2.8]. Thus R = R/W (R) is a reduced ring, so is a symmetric ring. If a, b, c ∈ R

satisfy abc = 0, then āb̄c̄ = 0̄ in R. This implies b̄āc̄ = 0̄ by the symmetry of R. It turns out

that bac ∈ N(R) ⊆ Ql(R), and so we are done. 2

Proposition 2.18 Any left (right) quasi-central symmetric ring R is an LQCS (RQCS) ring.

Proof Let a, b ∈ R with ab = 0. Then we have rab = 0 for all r ∈ R. This implies arb ⊆ Ql(R)

by the left quasi-central symmetry of R. It can be concluded that aRb ⊆ Ql(R). 2

Theorem 2.19 The following conclusions are true for a ring S and R = T2(S).

(1) R is left (right) quasi-central symmetric if and only if S is symmetric right (left) duo.

(2) R is left (right) quasi-central reversible if and only if S is reversible right (left) duo.

Proof (1) Assume that R is a left quasi-central symmetric ring and a, b, c ∈ S with abc = 0.

Let A = aE22, B = bE22, C = cE22 ∈ R. Then we have ABC = abcE22 = 0. It yields that

BAC = bacE22 ∈ Ql(R) by the virtue of R. This implies bac = 0 by Lemma 2.2 (1). In view

of Lemma 2.2 (2), we need to show SE12 ⊆ Ql(R). For any a ∈ S, then aE12E11E22 = 0 gives

E11aE12E22 = aE12 ∈ Ql(R) by the left quasi-central symmetry of R and so we are done.
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(2) It is very similar to the proof of (1). 2

Remark 2.20 The condition one-sided duo property and that of reversibility do not imply each

other. For any field F , the ring T = F 〈x, y〉/(x3, y3, yx, xy−x2, xy−y2) is duo but not reversible

by [10, Example 3.9 and Remark 1]. Conversely, if R is a domain which is neither a right nor a

left Ore ring, then R is reversible ring and not one-sided duo ring with help of [10, Example 3.2].

Moreover R = T2(Z) is a quasi-central reversible ring by Theorem 2.19, but R is not a central

reversible ring by [13, Lemma 2.13], since it is not abelian.

Remark 2.21 It is known from Theorem 2.19 and [18, Proposition 2.4] that R = T2(Z4) is

a quasi-central symmetric ring which is neither left nor right quasi-central reduced. Let Q8 be

the quaternion group of order 8, S = Z2Q8 the group algebra, and R = T2(S). It is proved

in [10, Example 3.8] that S is a reversible duo ring but not a symmetric ring. Thus R = T2(S) is

a quasi-central reversible ring which is neither a left nor a right quasi-central symmetric ring by

Theorem 2.19. Moreover if T is the ring in Remark 2.20, then R = T2(T ) is a QCS ring which

is not one-sided quasi-central reversible with help of Theorems 2.4 and 2.19.

Example 2.22 ([21, Example 2.1]) There exists a central (hence a quasi-central) reversible ring

which is neither an LQCS ring nor an RQCS ring.

Proof Let A = F [a, b, c] be the free algebra of polynomials with zero constant terms in non-

commuting identerminates a, b, c over Z2. Then A is a ring without identity. Let I be an ideal

of Z2 + A, generated by ab, ba2, b2a, bca, bac + cba, r1r2r3r4r5, where r1, r2, r3, r4, r5 ∈ A and

let R = (Z2 + A)/I. We call each product of the indeterminates a, b, c a monomial and say

that α is a monomial of degree n if it is a product of exactly n number of indetermintes. Let

Hn be the set of all linear combinations of monomials of degree n over Z2. Note that Hn is

finite for any n and that the ideal I of R is homogeneous, i.e., if
∑s

i=1 αi ∈ I with αi ∈ Hi

then each αi ∈ I. It is proved in [21, Example 2.1] that R is a central reversible ring (so is

a quasi-central reversible ring) which is not a central semicommutative ring. Firstly we show

that R is not an LQCS ring. By the definition of I, it yields that ab ∈ I and acb /∈ I. We

claim that Racb * acbR. It suffices to show aacb + acbα /∈ I for any α ∈ A (eq., α ∈ Z2 + A).

We may rite α = α1 + α2 + α3 + α4 + h, where αi ∈ Hi and h ∈ I, since A5 ⊆ I. It follows

that aacb + acbα = aacb + acbα1 + h′ for some h′ ∈ I. Thus aacb + acbα /∈ I if and only

if aacb + acbα1 /∈ I. Note that α1 = k1a + k2b + k3c for some ki ∈ Z2. From ab ∈ I and

bac + cba ∈ I, we have acba ∈ I. It follows that acbα1 = acb(k2b + k3c) + h′′ for some h′′ ∈ I.

Therefore aacb+ acbα /∈ I if and only if aacb+ acb(k2b+ k3c) /∈ I for any k2, k3 ∈ Z2.

Case 1. If k2 = 0, k3 = 0, then aacb+ acb(k2b+ k3c) = aacb.

Case 2. If k2 = 1, k3 = 0, then aacb+ acb(k2b+ k3c) = aacb+ acbb.

Case 3. If k2 = 0, k3 = 1, then aacb+ acb(k2b+ k3c) = aacb+ acbc.

Case 4. If k2 = 1, k3 = 1, then aacb+ acb(k2b+ k3c) = aacb+ acbb+ acbc.

Obviously, we have aacb /∈ I, aacb+ acbb /∈ I, aacb+ acbc /∈ I, and aacb+ acbb+ acbc /∈ I by

the definition of I. This means aacb+ acbα /∈ I for any α ∈ Z2 +A from the previous argument.
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Thus R is not an LQCS ring. Similarly, it can be proved that R is not an RQCS ring by taking

into account acbb+ βacb /∈ I for any β ∈ Z2 +A. 2

Remark 2.23 Similar to the proof of Remark 2.6, it can be proved that neither Definition

2.14 nor Definition 2.15 is left-right symmetric, and that the subring of a one-sided quasi-central

symmetric (reversible) ring need not be the same ring. Also note that if R[x] is a one-sided duo

ring, then R is a commutative ring by [22, Lemma 9]. Thus the polynomial ring over a left (right)

quasi-central reduced ring need not be neither a left (right) quasi-central reversible ring nor an

LQCS (RQCS) ring. Let H be the real Hamilton quaternions ring and R = T2(H). Then R is

a quasi-central reduced ring by [18, Proposition 2.4]. Observing that R ∼= T2(H[x]) and H[x] is

not a one-sided duo ring, R[x] satisfies our requirement.

A ring R is said to be left (right) quasi-central Armendariz [18] if f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x] satisfy f(x)g(x) = 0, then aibj ∈ Ql(R) (Qr(R)) for all i and j.

Remark 2.24 The class of left (right) quasi-central Armendariz rings and that of LQCS (RQCS)

rings are independent of each other. It is known from [23, Example 3.2] that the commutative

ring S = S2(Z8) is not Armendariz. This means that R = T2(S) is a QCS ring which is neither

a left nor a right quasi-central Armendariz ring by [18, Theorem 2.13]. On the other hand,

R = F 〈a, b|a2 = 0〉 is an Armendariz ring and so is a quasi-central Armendariz ring for any field

F . However R is neither an LQCS nor an RQCS ring, since R is not a 2-primal ring with help

of [24, Example 4.8].

3. Examples of left (right) quasi-central semicommutative rings

Let R be a ring, k and n positive integers such that k < n. We write V =
∑n−1

i=1 Ei,i+1,

Vn(R) = RIn + RV + · · · + RV n−1 and T k
n (R) = Vk(R) +

∑k+1
i=1

∑n
j=k+i REij . In particular,

V2(R) is the trivial extension T (R,R) of R. Moreover we write the set of all n× 1 matrices over

R by Rn = {(a1, a2, . . . , an)
T|ai ∈ R}.

Proposition 3.1 Let S be a ring and n a positive integer. Then R1 = Tn(S) for n ≥ 3 and

R2 = Sn(R) for n ≥ 5 is neither an LQCS ring nor an RQCS ring.

Proof (1) For any n ≥ 3, clearly E13 = E12E23 ∈ R1E23, and E13 /∈ E23R1. This means

R1E23 * E23R1 and so E23 /∈ Ql(R1). From E22E33 = 0 and E22E23E33 = E23 /∈ Ql(R1), we

conclude that R1 is not an LQCS ring. Similarly, since E13 ∈ E12R1 and E13 /∈ R1E12, we have

E12 /∈ Qr(R1). Combining E11E22 = 0 with E11E12E22 = E12 /∈ Qr(R1), we can conclude that

R1 is not an RQCS ring.

(2) Consider R2 = Sn(S) for n ≥ 5. Since E15 = E12E25 ∈ R2E25 and E15 /∈ E25R2, we get

E25 /∈ Ql(R2). Thus E23E45 = 0 and E23E34E45 = E25 /∈ Ql(R2) imply that R2 is not an LQCS

ring. Similarly, as E15 ∈ E14R2 and E15 /∈ R2E14, we have E14 /∈ Qr(R2). From E12E34 = 0

and E12E23E34 = E14 /∈ Qr(R2), we conclude that R2 is not an RQCS ring. 2

Theorem 2.4 and [14, Corollary 2.14] imply that T2(Z) and S4(Z) are QCS rings.
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Corollary 3.2 Let S be a ring and n ≥ 2 an integer. Then R = Tn(S) is an LQCS (RQCS)

ring if and only if n = 2 and S is a right (left) duo ring.

Proof It is a direct consequence of Proposition 3.1 and Theorem 2.4. 2

Lemma 3.3 Let S be a ring and R = Vn(S) for n ≥ 2. If S is a left (right) quasi-central reduced

ring, then AB = 0 implies ARB ⊆ Vn(W (S)) for any A,B ∈ R.

Proof Write S = S/W (S) and R = Vn(S). The canonical ring homomorphism from S onto S

induces a ring surjective homomorphism from R onto R. Since S is a left quasi-central reduced

ring, W (S) = N(S) by [18, Proposition 2.8] and so S is a reduced ring. This implies that R is

a semicommutative ring with help of [25, Theorem 2.5 and Lemma 1.4]. Now AB = 0 implies A

B = 0̄ in R. It follows that A C B = 0̄ for all C ∈ R by the semicommutativity of R. Accordingly

we have ARB ⊆ Vn(W (S)). 2

Corollary 3.4 Let S be a left (right) quasi-central reduced ring and R = T (S, S). If for any

r, s ∈ S and a, b ∈ W (S), there exist u, v ∈ S such that ra = au, rb + sa = bu + av (ar = ua,

br + as = ub+ va), then R is an LQCS (RQCS) ring.

Proof Let A,B ∈ R with AB = 0. There exist a, b ∈ W (S) such that ACB = aI2 + bE12 for

all C ∈ R with help of Lemma 3.3. For any M = rI2 + sE12 ∈ R, then we have MACB =

raI2+(rb+sa)E12. By hypothesis, there exist u, v ∈ S such that ra = au, rb+sa = bu+av. Let

M1 = uI2 + vE12. A simple computation gives MACB = ACBM1. This shows ACB ∈ Ql(R),

and so R is an LQCS ring. 2

Of course, a central reduced ring S satisfies the conditions stated in Corollary 3.4.

Theorem 3.5 Let S be a reduced left (right) duo ring and R = T2(S). Then W = T (R,R)

is an LQCS (RQCS) ring if and only if for any r, s, a, b ∈ S there exist u, v ∈ S such that

ra = au, rb+ sa = bu+ av (ar = ua, br + as = ub+ va).

Proof Clearly, R = T2(S) is a left (right) quasi-central reduced ring by [18, Proposition 2.4].

Assume that the element-wise condition stated in Theorem 3.5 holds. For A ,B ∈ W with

A B = 0 and C ∈ W , then A CB ∈ T (W (R),W (R)), so there exist A,B ∈ W (R) such that

A C B =

(

A B

0 A

)

with help of Lemma 3.3. Observing that S is a reduced ring, there exist a, b ∈ S such that

A CB =

(

aE12 bE12

0 aE12

)

.

For any D ∈ W , there exist D1 = rE11 + r1E12 + r2E22, D2 = sE11 + s1E12 + s2E22 ∈ R with

D =

(

D1 D2

0 D1

)

,
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where r, s, , r1, r2, s1, s2 ∈ S. Through a simple computation, it yields the following equality

DA CB =

(

raE12 (rb + sa)E12

0 raE12

)

.

Take D ′ =
(

uE22 vE22

0 uE22

)

. It is easily checked that DA C B = A C BD ′, showing the validity of

A CB ∈ Ql(W ).

For the converse, suppose that W is an LQCS ring and r, s, a, b ∈ S. Let us consider

A =

(

E11 0

0 E11

)

, B =

(

E22 0

0 E22

)

, C =

(

aE12 bE12

0 aE12

)

∈ W.

Clearly, we have A B = 0. This implies A CB =
(

aE12 bE12

0 aE12

)

∈ Ql(W ) by hypothesis. So

for D =
(

rE11 sE11

0 rE11

)

∈ W , there exists D ′ =
(D′

1
D′

2

0 D′

1

)

∈ W such that DA CB = A CBD ′.

We may write D′

1 = r′1E11 + s′1E12 + uE22 and D′

2 = r′2E11 + s′2E12 + vE22 ∈ R for some

r′1, r
′

2, s
′

1, s
′

2, u, v ∈ S. It follows that ra = au, rb + sa = bu+ av by comparing the elements on

two sides of DA C B = A CBD ′. This completes the proof of Theorem 3.5. 2

Corollary 3.6 Let R be a ring. If Vn(R) is an LQCS (RQCS) ring for some integer n ≥ 3, then

V2(R) is an LQCS (RQCS) ring.

Proof Let S = RIn + RV n−1. We have V2(R) = RI2 + RV ∼= S by a direct verification.

Now it suffices to show that S is an LQCS ring. If A,B ∈ S satisfy AB = 0, then ACB =

a0I + an−1V
n−1 ∈ Ql(Vn(R)) for all C ∈ S. Thus for any D = r0In + rn−1V

n−1 ∈ S, there

exists D′ = r′0In + r′1V + · · · + r′n−1V
n−1 ∈ Vn(R) such that DACB = ACBD′. This gives

r0a0 = a0r
′

0, r0an−1 + rn−1a0 = a0r
′

n−1 + an−1r
′

0. Let D′′ = r′0In + r′n−1V
n−1 ∈ S. Then we

have DACB = ACBD′′ by a simple computation. This implies ACB ∈ Ql(S). 2

It is known from [25, Proposition 1.6] and [21, Theorem 2.3] that if S is a (central) reduced

ring, then R = T (S, S) is a (central) semicommutative ring. One may naturally ask whether

R = T (S, S) is a QCS ring whenever S is a quasi-central reduced ring.

Example 3.7 There exists a quasi-central reduced ring S such that R = T (S, S) is neither an

LQCS ring nor an RQCS ring.

Proof Let K be any field, F = K(t) the field of rational functions in a variable t over K, σ

an automorphism of F satisfying σ(f(t)) = f(t−1) for any f(t) ∈ F . Thus we have σ(t−1) = t,

σ−1(t) = t−1, and σ−1(t−1) = t. Let S = F [[x;σ]] be the left skew power series ring over

F . It follows from [18, Example 2.6] that S is a left duo ring. Applying the fact that σ is a

surjective endomorphism, it is easily checked that S is also a right duo ring. Thus R = T2(S)

is a quasi-central reduced ring by [18, Proposition 2.4]. We claim that W = T (R,R) is not an

LQCS ring. On the contrary, for r = t, s = 1, a = x2, b = x ∈ S, there exist u, v ∈ S such that

ra = au, rb+ sa = bu+ av by Theorem 3.5. This means tx2 = x2u, tx+ a = bu+ av. Clearly, u

can be written as u = l0 + l1x+ · · ·+ lpx
p for some l0, l1, . . . , lp ∈ F . Comparing the coefficients

on two sides of tx2 = x2u, we must have u = l0 ∈ F . Thus tx2 = x2u gives σ2(u) = t. It yields
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that u = σ−2(t) = σ−1(t−1) = t. Meanwhile from tx+ a = bu+ av, we have tx+ x2 = xt+ x2v.

This implies that tx + x2 = σ(t)x + x2v = t−1x + x2v. It turns out that t = t−1. This is a

contradiction. Therefore, W is not an LQCS ring by Theorem 3.5. Similarly, retaking r = t,

s = 1, a = x2, b = x ∈ S, it can be proved that W is not an RQCS ring with help of Theorem

3.5. 2

A ring R is strongly (von Neumann) regular if for any a ∈ R, there exists b ∈ R such that

a = aba and ab = ba. It is known that such a ring is reduced and duo [10, 26].

Theorem 3.8 Let S be a ring and R = T2(S). If S is a strongly regular ring or a commutative

reduced ring, then U = Vn(R) is a QCS ring.

Proof It is known from [18, Propositions 2.4 and 2.8] that R is a quasi-central reduced ring

such that W (R) = N(R). If A ,A ∈ U with A B = 0, then we have A C B ∈ Vn(W (R))

by Lemma 3.3. Since S is a reduced ring, W (R) = N(R) = Sε12, where εij is the matrix

unit of R. It turns out that A C B ∈ Vn(Sε12). There exist a0, a1, . . . , an−1 ∈ S such that

A CB = a0ε12I + a1ε12V + · · ·+ an−1ε12V
n−1. Similarly, for any D ∈ U , it can be written as

U = (s0ε11+ t0ε22+ r0ε12)I+(s1ε11+ t1ε22+ r1ε12)V + · · ·+(sn−1ε11+ tn−1ε22+ rn−1ε12)V
n−1

for some s0, t0, r0, . . . , sn−1, tn−1, rn−1 ∈ S. It follows that DA C B = (r0a0)ε12I + (r0a1 +

r1a0)ε12V + · · · + (r0an−1 + r1an−2 + · · · + rn−1a0)ε12V
n−1 by the virtue of matrix units. In

the case S being a commutative reduced ring, then D ′ = r0ε22I + r1ε22V + · · ·+ rn−1ε22V
n−1

satisfies DA C B = A CBD ′ by a direct computation. This proves that A C B ∈ Ql(U), and so

U is an LQCS ring. Similarly, it can be proved that U is an RQCS ring in this case. In another

case, we need to apply [27, Lemma 1.7] which states that if S is a strongly regular ring and

r0, a0, r1, a1, . . . , an−1, rn−1 ∈ S, then the following system of linear equations

r0a0 = a0x0

r0a1 + r1a0 = a1x0 + a0x1

...

r0an−1 + r1an−2 + · · ·+ rn−1a0 = an−1x0 + an−2x1 · · ·+ a0xn−1

is solvable in S. Let x0 = s0, x1 = s1, . . . , xn−1 = sn−1 be a solution and D ′ = s0ε22I+s1ε22V +

· · ·+ sn−1ε22V
n−1. There is no difficulty to check that DA CB = A CBD ′. Therefore, U is an

LQCS ring. Analogously, it can be proved that U is an RQCS ring. 2

In what follows, a 1× 1 matrix over a ring R is denoted by (b) for some b ∈ R.

Lemma 3.9 (1) Let R be a right duo ring. For any b ∈ R and β = (c1, c2, . . . , cn)
T ∈ Rn,

there exists β′ ∈ Rn such that β(b) = bInβ
′.

(2) Let R be a reduced ring, b1 ∈ R and α1 = (d1, d2, . . . , dn)
T ∈ Rn. If α1(b1)

2 = 0, then

we have α1(b1) = 0.
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Proof (1) By hypothesis, Rb ⊆ bR holds. So for each ci there exists c′i ∈ R such that cib = bc′i.

Let β′ = (c′1, c
′

2, . . . , c
′

n)
T. We have β(b) = (c1b, c2b, . . . , cnb)

T = (bc′1, bc
′

2, . . . , bc
′

n)
T = bInβ

′.

(2) From α1(b1)
2 = 0, we have dib1b1 = 0 for each i. This implies dib1dib1 = 0 by the

semicommutativity of R. This means dib1 = 0 by the reduceness of R, entailing α1(b1) = 0. 2

Noticing that any reduced ring R is reversible, ab = 0 if and only if ba = 0 for a, b ∈ R.

In the sequel we will use this fact freely without mention. For any A ∈ T k
n (R), we write A =

(aij) ∈ Tn(R) such that a11 = a22 = · · · = ann = a1, a12 = a23 = · · · = an−1,n = a2, . . . and

a1k = a2,k+1 = · · · = an−k+1,n = ak. Moreover, for matrices A = (ail)m×s, B = (blj)s×n over R,

we write [AB]i,j = 0 to mean that ailblj = 0 for l = 1, 2, . . . , s.

Theorem 3.10 Let R be a ring and k a positive integer. If R is a reduced right (left) duo ring,

then T k
2k+2(R) is an LQCS (RQCS) ring.

Proof Assume that A,B ∈ T k
2k+2(R) with AB = 0. We need to show ACB ∈ Ql(T

k
2k+2(R))

for any C ∈ T k
2k+2(R). Represent A =

(

A1 α1

0 a1

)

and B =
(

B1 β1

0 b1

)

as partitioned matrices, where

A1, B1 ∈ T k
2k+1(R), α1, β1 ∈ R2k+1 and a1, b1 ∈ R. We may identify a1, b1 with (a1), (b1) for

simplification. Now AB = 0 gives A1B1 = 0, a1b1 = 0 and A1β1 + α1b1 = 0.

The last equality implies A1β1b1 + α1b
2
1 = 0. Since R is a right duo ring, there exists β′

1 ∈

R2k+1 such that β1b1 = b1I2k+1β
′

1 by Lemma 3.9 (1). Meanwhile A1B1 = 0 implies [A1B1]i,j = 0

by [28, Lemma 1]. In particular, we have A1b1I2k+1 = 0 and hence A1β1b1 = A1b1I2k+1β
′

1 = 0

by Lemma 3.9 (1). From A1β1b1 + α1b
2
1 = 0, it yields that α1b

2
1 = 0. This implies that α1b1 = 0

by Lemma 3.9 (2). So A1β1 + α1b1 = 0 gives A1β1 = 0. Write A1 as a row partitioned matrix,

A1 =















α2k+1

α2k

...

α1















.

It is easy to see αi = (0, . . . , 0, a1, . . . , ai) for i = 1, 2, . . . , k and there is no difficulty to check

αk+i = (0, . . . , 0, a1, a2, . . . , ak, ak+2−i,2k+2−i, . . . , ak+2−i,2k+1) where the occurrence of 0 is k +

1 − i. Moreover β1 = (b1,2k+2, b2,2k+2, . . . , bk+2,2k+2, bk, bk−1, . . . , b3, b2)
T which lies in the last

column of the matrix B. Remember that we have assumed AB = 0 and so A1B1 = 0.

Claim. A1β1 = 0 implies [αmβ1]i,j = 0 for all m = 1, 2, . . . , 2k.

Case 1. In the case 1 ≤ m ≤ k − 1, all αmβ1 = 0 if and only if the following equalities

a1b2 = 0

a1b3 + a2b2 = 0

a1b4 + a2b3 + a3b2 = 0

...

a1bk + a2bk−1 + · · ·+ ak−2b3 + ak−1b2 = 0
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hold. On the other hand, it is easily checked that A1B1 = 0 implies the following equalities

a1b1 = 0

a1b2 + a2b1 = 0

a1b3 + a2b2 + a3b1 = 0

...

a1bk + a2bk−1 + · · ·+ ak−2b3 + ak−1b2 + akb1 = 0.

As previously mentioned, A1B1 = 0 implies [A1B1]i,j = 0 by [28, Lemma 1]. In particular,

αmβ1 = 0 implies [αmβ1]i,j = 0 for 1 ≤ m ≤ k − 1, proving the validity of Claim in Case 1.

Case 2. In the case k ≤ m ≤ 2k − 1, we proceed from m = k. Assume αkβ1 = 0, i.e.,

a1bk+2,2k+2 + a2bk + · · ·+ ak−1b3 + akb2 = 0. (3.1)

Applying the conclusion of Case 1, we have bka1 = bk−1a1 = · · · = b4a1 = b3a1 = b2a1 = 0.

Multiplying a1bk+2,2k+2 on the right sides of (3.1) yields (a1bk+2,2k+2)
2 = 0. This implies

a1bk+2,2k+2 = 0 by the reduceness of R. Thus (3.1) can be simplified to the following equality

a2bk + a3bk−1 + · · ·+ ak−1b3 + akb2 = 0. (3.2)

Similarly, multiplying a2bk on the right sides of (3.2), we can obtain a2bk = 0. Continuing this

process, finally we get a3bk−1 = · · · = ak−1b3 = akb2 = 0. Now it can be concluded that

a1bk+2,2k+2 = a2bk = · · · = ak−1b3 = akb2 = 0.

It follows from the previous argument that αmβ1 = 0 implies [αmβ1]i,j = 0 for 1 ≤ m ≤ k.

In the case m = k + 1, then αk+1β1 = 0 is equivalent to the following equality

a1bk+1,2k+2 + a2bk+2,2k+2 + a3bk + · · ·+ ak−1b4 + akb3 + ak+1,2k+1b2 = 0. (3.3)

Multiplying a1bk+1,2k+2 on the right sides of (3.3), we have (a1bk+1,2k+2)
2 = 0 with help of

[αmβ1]i,j = 0 for 1 ≤ m ≤ k, and hence a1bk+1,2k+2 = 0 by the virtue of R. This implies that

a2bk+2,2k+2 + a3bk + · · ·+ ak−1b4 + akb3 + ak+1,2k+1b2 = 0. (3.4)

Similarly, multiplying a2bk+2,2k+2 on the right sides of (3.4) yields (a2bk+2,2k+2)
2 = 0, and so

a2bk+2,2k+2 = 0 by the reduceness of R. Thus (3.4) can be simplified into the next equality

a3bk + a4bk−1 + · · ·+ ak−1b4 + akb3 + ak+1,2k+1b2 = 0. (3.5)

Applying the same technique to (3.5), we can get a3bk = 0. Continuing this process, finally we

have [αk+1β1]i,j = 0. It follows that αmβ1 = 0 implies [αmβ1]i,j = 0 when m = 1, 2, . . . , k + 1.

Inductively, assume that Claim is valid in the case m = k+ i for i < k− 1. We prove its validity

for m = k + i + 1. Noticing that αk+i = (0, . . . , 0, a1, a2, . . . , ak, ak+2−i,2k+2−i, . . . , ak+2−i,2k+1)

in which the occurrence of 0 is k + 1 − i, there are k + i nonzero components in αk+i formally.
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By inductive hypothesis, we have [αmβ1]i,j = 0 for all 1 ≤ m ≤ k + i. In particular, αk+iβ1 = 0

implies [αk+iβ1]l,j = 0, equivalently, each term on the right side of the following equality

a1bk+2−i,2k+2 + a2bk+3−i,2k+2 + · · ·+ ai+1bk+2,2k+2 + ai+2bk + · · ·+ akbi+2+

ak+2−i,2k+2−ibi+1 + ak+2−i,2k+3−ibi + · · ·+ ak+2−i,2k+1b2 = 0 (3.6)

is zero. Substituting i for i+ 1 in the equality (3.6), we obtain the expression αk+i+1β1 = 0,

a1bk+1−i,2k+2 + a2bk+2−i,2k+2 + · · ·+ ai+2bk+2,2k+2 + ai+3bk + · · ·+ akbi+3+

ak+1−i,2k+1−ibi+2 + ak+1−i,2k+2−ibi+1 + · · ·+ ak+1−i,2k+1b2 = 0. (3.7)

Multiplying a1bk+1−i,2k+2 on the right sides of (3.7), we have (a1bk+1−i,2k+2)
2 = 0 by the

conclusion [αmβ1]i,j = 0 for all 1 ≤ m ≤ k + i, and so a1bk+1−i,2k+2 = 0. Thus (3.7) becomes

a2bk+2−i,2k+2 + a3bk+3−i,2k+2 + · · ·+ ai+2bk+2,2k+2 + ai+3bk + · · ·+ akbi+3+

ak+1−i,2k+1−ibi+2 + ak+1−i,2k+2−ibi+1 + · · ·+ ak+1−i,2k+1b2 = 0. (3.8)

Similarly, multiplying a2bk+2−i,2k+2 on the right sides of (3.8), we may get a2bk+2−i,2k+2 = 0.

Continuing this process, there is no doubt that we can get [αk+i+1β1]s,t = 0 in the final.

Case 3. In the case m = 2k, we proceed by using the conclusions of Cases 1 and 2.

In this case α2k−1β1 = a1b3,2k+2+a2b4,2k+2+· · ·+akbk+2,2k+2+a3,k+2bk+· · ·+a3,2k+1b2 = 0,

α2kβ1 = a1b2,2k+2 + a2b3,2k+2 + · · ·+ akbk+1,2k+2 + a2,k+2bk+2,2k+2 + a2,k+3bk + · · ·+ a2,2k+1b2.

Note that [αmβ1]i,j = 0 for all m ≤ 2k− 1 by the conclusions of the previous Cases. Multiplying

a1b2,2k+2 on the right sides of α2kβ1 = 0, we have (a1b2,2k2)
2 = 0, and so a1b2,2k2 = 0. Thus

a2b3,2k+2 + a3b4,2k+2 · · ·+ akbk+1,2k+2 + a2,k+2bk+2,2k+2+

a2,k+3bk + · · ·+ a2,2k+1b2 = 0 (3.9)

from α2kβ1 = 0. Similarly, multiplying a2b3,2k+2 on the right sides of (3.9), it follows that

a2b3,2k+2 = 0. Continuing this process, finally [α2kβ1]i,j = 0, proving the validity of Claim.

Claim implies that there exists r ∈ R such that A1β1 = (r, 0, . . . , 0)T.

Now we prove that AB = 0 implies ACB ∈ Ql(T
k
2k+2(R)) for any C ∈ T k

2k+2(R). Write

C =
(

C1 γ1

0 c1

)

, where C1 ∈ T k
2k+1(R), γ1,∈ R2k+1 and c1 ∈ R. Then it is easily checked

ACB =

(

A1C1B1 A1C1β1 +A1γ1b1 + α1c1b1

0 a1c1b1

)

.

We have showed that AB = 0 implies A1B1 = 0, a1b1 = 0, and α1b = 0. Since R is a reduced

ring, T k
2k+1(R) is a semicommutative ring by [28, Theorem 1]. It follows that A1C1B1 = 0 and

a1c1b1 = 0. From the right duo property of R, we have Rb1 ⊆ b1R. This gives c1b1 = b1c
′

1 for

some c′1 ∈ R. Thus α1b1 = 0 implies α1c1b1 = 0 by taking into account the components of α1.

Meanwhile there exists γ′ ∈ R2k+1 such that γb1 = b1I2k+1γ
′ with help of Lemma 3.9 (1) and

A1B1 = 0 implies A1b1I2k+1 = 0 by [28, Lemma 1]. This gives A1γ1b1 = A1b1I2k+1γ
′ = 0. By
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the multiplication of block matrix, it is easy to obtain the following expression of

A1C1β1 =















α2k+1C1β1

α2kC1β1

...

α1C1β1















.

We wish to prove α2kC1β1 = α2k−1C1β1 = · · · = α1C1β1 = 0. Firstly, we show α2kC1β1 = 0.

Write C1 as a row partitioned matrix. There exist 1× (2k + 1) matrices ξ2k+1, . . . , ξ1 such that

C1 =















ξ2k+1

ξ2k
...

ξ1















and so C1β1 =















ξ2k+1β1

ξ2kβ1

...

ξ1β1















,

where ξi = (0, . . . , 0, c1, . . . , ci), ξk+i = (0, . . . , 0, c1, c2, . . . , ck, ck+2−i,2k+2−i, . . . , ck+2−i,2k+1) for

i = 1, 2, . . . , k and the occurrence of 0 in the component of ξk+i is k + 1− i. It yields that

α2kC1β1 = a1ξ2kβ1 + a2ξ2k−1β1 + · · ·+ akξk+1β1 + a2,k+2ξk+2β1 + · · ·+ a2,2k+1ξ1β1.

Now we show that each term of α2kC1β1 is zero. By a simple computation, we have

ξ2kβ1 = c1b2,2k+2+c2b3,2k+2+· · ·+ckbk+1,2k+2+c2,k+2bk+2,2k+2+c2,k+3bk+· · ·+c2,2kb3+c2,2k+1b2.

On the other hand, with help of the conclusions of Claim, it yields the following equalities

a1b2,2k+2 = a1b3,2k+2 = · · · = a1bk+1,2k+2 = a1bk+2,2k+2 = a1bk = · · · = a1b2 = 0.

We conclude that a1c1b2,2k+2 = a1c2b3,2k+2 = · · · = a1ckbk+1,2k+2 = · · · = a1c2,2k+1b2 = 0, since

R is a semicommutative ring. This implies that the first term of α2kC1β1 is zero, i.e., a1ξ2kβ1 = 0

from the previous argument. Similarly, it can be proved that

a2ξ2k−1β1 = · · · = akξk+1β1 = · · · = a2,2k+1ξ1β1 = 0

and so α2kC1β1 = 0. Continuing this process, we have α2k−1C1β1 = · · · = α1C1β1 = 0. We

conclude A1C1β1 = (a, 0, . . . , 0)T for some a ∈ R, i.e., ACB = aE1,2k+2. It is easily checked

ACB ∈ Ql(T
k
2k+2(R)) by the right duo property of R. This completes the proof of Theorem

3.10. 2
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