Journal of Mathematical Research with Applications
Jul., 2023, Vol. 43, No. 4, pp.417-432
DOI:10.3770/j.issn:2095-2651.2023.04.005
Http://jmre.dlut.edu.cn

Quasi-Central Semicommutative Rings

Yingying WANG, Xiaoyan QIAO, Weixing CHEN*
School of Mathematics and Information Science, Shandong Institute of Business and Technology,
Shandong 264005, P. R. China

Abstract A ring R is said to be quasi-central semicommutative (simply, a QCS ring) if ab =0
implies aRb C Q(R) for a,b € R, where Q(R) is the quasi-center of R. It is proved that if R is
a QCS ring, then the set of nilpotent elements of R coincides with its Wedderburn radical, and
that the upper triangular matrix ring R = T,,(S) for any n > 2 is a QCS ring if and only if n = 2
and S is a duo ring, while T§k+2(R) is a QCS ring when R is a reduced duo ring.
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1. Introduction

Throughout this paper a ring means an associative ring with identity unless otherwise stated.
Let R be a ring, n > 2 an integer, and o an endomorphism of R. We use N(R), E(R), Z(R),
W(R), N.(R), N*(R), and J(R) to denote the set of nilpotent elements, the set of idempotents,
the center, the Wedderburn radical, the prime radical, the upper nil radical and the Jacobson
radical of R, respectively. The symbol M, (R) (T,,(R)) denotes the ring of n x n matrices (upper
triangular matrices) over R, S, (R) the subring of T}, (R) in which each matrix has the identical
principally diagonal elements, E;; the n X n matrix units, and I,, the n x n identity matrix. The
notation R[[z;0]] (R[z,o]) stands for the left skew power series (polynomial) ring over R, and
Z., for the ring Z of integers modulo n.

According to Walt [1], an element a of a ring R is said to be left quasi-commutative if for
every r € R there exists ' € R such that ra = ar’. A right quasi-commutative element is defined
analogously and a is quasi-commutative if it is left and right quasi-commutative. The set of left
quasi-commutative elements, denoted by @Q;(R), is called the left quasi-center of R. The right
quasi-center Q,(R) of R is defined similarly, and Q(R) = Q;(R) () Q.(R) is the quasi-center of
R. On the other hand, Feller [2] called a ring R duo if every one-sided ideal of R is an ideal.
More precisely, Courter [3] called R left (right) duo if every left (right) ideal of R is an ideal.
This is equivalent to saying that aR C Ra (Ra C aR) for every a € R (see [3]). Accordingly, a
ring R is a left (right) duo ring if and only if R = Q,(R) (Q;(R)), that is, every element of R is

a right (left)-commutative element.
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Let R be a ring and a,b,c € R. A ring R is said to be reduced, abelian, 2-primal if N(R) = 0,
E(R) C Z(R) and N.(R) = N(R), respectively. A ring R is symmetric [4] if abc = 0 implies
acb = 0 (eq., bac = 0) and reversible [5] if ab = 0 implies ba = 0. Due to Bell [6], a ring
R is said to satisfy the Insertion-of-Factors-Property (simply, an IFP ring) if ab = 0 implies
aRb = 0. IFP rings had been studied by other authors under several different names such as
SI-rings, ZI-rings, and semicommutative rings [7-9]. In the present paper we choose the term
of a semicommutative ring, so as to cohere to the related references. It is known from [10] that
reduced = symmetric = reversible = semicommutative, and no reversal holds. For decades,
semicommutative rings and various related rings have been studied by numerous authors. A
ring R is called central reduced [11], central symmetric [12], central reversible [13], and central
semicommutative [14] if N(R) C Z(R), abc = 0 implies bac € Z(R), ab = 0 implies ba € Z(R),
and ab = 0 implies aRb C Z(R), respectively. It can be concluded [15] that central reduced =
central symmetric = central reversible and central semicommutative, and central reversible or
central semicommutative = abelian and 2-primal. In another direction, a ring R is said to be
symmetric-over-center [16] if abc € Z(R) implies achb € Z(R). Such a ring is a central symmetric
ring by [16, Proposition 2.1] and so is a central semicommutative ring.

In this paper a ring R is said to be quasi-central semicommutative (simply, a QCS ring) if
ab = 0 implies aRb C Q(R) for a,b € R. Properties of QCS rings and the relationships between
such rings and related rings are studied, among others, it is proved that if R is a QCS ring, then
RaR is a nilpotent ideal of R for any a € N(R), so N(R) = W(R) and J(R[z]) = W(R[z]) =
N(R)[x]. These generalize some main results on symmetric-over-center rings [17, Theorem 2.2]
and improve the existing conclusions on central semicommutative rings. Moreover it is shown
that R = T,,(5) is a QCS ring if and only if n = 2 and S is a duo ring, and that R = TQkkJrQ (S)

is a QCS ring whenever S is a reduced duo ring.

2. Left (right) quasi-central semicommutative rings

We start this section with the following definition.

Definition 2.1 A ring R is said to be left (right) quasi-central semicommutative (simply, an
LQCS (RQCS) ring) if ab = 0 implies aRb C Q;(R) (Q.(R)) for a,b € R, and a ring is quasi-
central semicommutative (simply, a QCS ring) if it is an LQCS ring and an RQCS ring.

A central semicommutative ring is a QCS ring, but not conversely as we prove soon.

Lemma 2.2 ([18, Lemma 2.3]) Let S be a ring and R = T5(S).
(1) Forany0#acS, als ¢ Q(R) and aE11 ¢ Q-(R).
(2) S is a left (right) duo ring if and only if SE12 C Q,(R) (Qi(R)).

Lemma 2.3 Let R be a ring and I an ideal of R. If R/I is a semicommutative ring and
I CQi(R) (Q+(R)), then R is an LQCS (RQCS) ring.

Proof Write R = R/I. If a,b € R with ab = 0, then @b = 0 in R. This implies arb = 0 for all
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r € R by the semicommutativity of R. It follows that aRb C I C @Q;(R) by hypothesis. O
In the sequel, we use the notation RA = {rAlr € R} for any A € M, (R).

Theorem 2.4 Let S be a ring and R = T5(S). Then R is an LQCS (RQCS) ring if and only if
S is a right (left) duo ring.

Proof Assume that R is an LQCS ring. From E11 F2 = 0, we have Ej15F12F22 = sE12 € Qi(R)
for any s € S. This means SFE12 C Q;(R), so S is a right duo ring by Lemma 2.2.

Conversely, suppose that S is a right duo ring. Clearly, I = SEj5 is an ideal of R such that
I C Qi(R) by Lemma 2.2. Since the direct product of two right duo rings is a right duo ring and
any right duo ring is a semicommutative ring [10, p.494], R/I = S x S is a semicommutative
ring. Thus R is an LQCS ring with help of Lemma 2.3. O

A ring R is said to be left (right) quasi-central reduced [18] if N(R) C Q;(R) (@-(R)) and R

is quasi-central reduced if it is both left and right quasi-central reduced.

Proposition 2.5 Any left (right) quasi-central reduced ring R is an LQCS (RQCS) ring, however

the converse is not true in general.

Proof Applying [18, Proposition 2.8], we have W(R) = N(R). This means that R/W(R) is a
reduced ring, so it is a semicommutative ring. Meanwhile W(R) = N(R) C Q;(R) by hypothesis.
It follows that R is an LQCS ring in the light of Lemma 2.3.

Conversely, it is known from [18, Proposition 2.4] that R = T5(S) is a left quasi-central
reduced ring if and only if S is a reduced right duo ring. This implies that R = T5(Z4) is not a
left quasi-central reduced ring, but it is a QCS ring by Theorem 2.4. O

Remark 2.6 (1) As just mentioned, R = T»(Z4) is a QCS ring. But R is not abelian, so it is
not central semicommutative by [14, Lemma 2.6].

(2) Definition 2.1 is not left-right symmetric. According to [18, Example 2.6], there exists a
right duo domain S which is not a left duo ring. This means that R = T5(.5) is an LQCS ring
but not an RQCS ring by Theorem 2.4. Moreover S contains a subring S7 being not a right duo
ring, so the subring Ry = T5(S71) of R is not an LQCS ring. O

Proposition 2.7 (1) The class of LQCS (RQCS) rings is closed under the ring product.
(2) If R is an LQCS (RQCS) ring, then eRe is an LQCS (RQCS) ring for any e € E(R).

Proof (1) It is a direct verification.

(2) Let a,b € eRe with ab = 0. There exist s,t € R such that a = ese,b = ete. This
means a = eae, b = ebe and eaeebe = 0. Similarly, any r € eRe can be written as r = ere.
From eaeebe = 0, we have eaerebe € Q;(R) for all r € eRe by the virtue of R. Thus for
any u = eue € eRe, there exists v € R such that ueaerebe = eaerebev. This implies that
eueeaerebe = eaerebeve, and so eaerebe € Q;(eRe). O

The next lemma is crucial for us to obtain the main result of this section.
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Lemma 2.8 Let R be an LQCS (RQCS) ring and a € N(R). If n is the minimal positive integer

such that a™ = 0, then ariary ---arpa =0 for any ri,72,...,7, € R, where p = n? —2n + 2.

Proof It is trivial when n = 1, since in this case @ = 0 and p = 1. Thus we may assume that

n > 2. For any positive integer i < n, we construct a generating function ®(n,i) as follows

‘I)(na i) =aTp—in+iATp—in+i+1 """ Alp—(i—1)n+i—1ATp—(i—1)n+i " ATp—2n+2ATp—2n+3 * "~

n—i
AT p—nATp—nt1Q" Tp_ix1 - - QTp—1aTpa.
For example,
n—1 n—2
D(n,1) = arp_pt1a" " Tpa, B(n,2) = arp_on42arp_2n43 - ATp_pt10" Tp_1aTpa

and

®(n,n—1) =arary---arp_1arpa.

This leads us to prove the validity of the next claim.

Claim. ®(n,4) = 0 for any positive integer i < n.

Firstly, a"~'a = 0 implies a" 'r,a € Q;(R) by the left quasi-central semicommutativity
of R. There exists r, , ., € R such that Tpntp1a™ ! -1
1

rpa = a"trpar, .. It follows that

/
p—n+

In the case n > 2, then a'®(n,1) = a'T'r,_, 14" 2ary,a = 0 for any integer ¢ > 0. This gives

®(n,1) = arp_py1a™ 'rpa = a"rpar 1 = 0. This proves the validity of Claim for n = 2.

a' T, pi1a"?rp_jarpa € Qi(R) by the virtue of R. Applying this relation repeatedly, then

n—2
D(n,2) = arp_on4+20Tp—2n+3 - - arp—pn(arp_pt1a" " “rp_1arp0)
— 2 n—2 /
= arp—2n+20Tp—2n+3 * ** ATp—pn-1(a"Tp_py10" " “Tp_1arpa)r,
/

— 3 n—2 /
= arp—2n+20Tp—2n+3 * * ATp—pn—2(a°Tp_pi10" " “Tp_1aTpa)T, 1T,

for some r;,_,,, 7, ,,_; € R. Note that in the expression of ®(n,2) the occurrence of a on the
left of a"~2 is exactly n. Continuing this process, there exist 7’;72n+2, e ,T;,n € R such that

_ n n—2 / / / o
®(n,2) = (a"rp—ny10" “Tp_1aTpa)T, 90 Ty 1Tp—p = 0.

Thus Claim is valid for n = 3 by the previous argument. Assume that n > 3, and we already
have ®(n,i) =0 for all i < n — 1. To end the proof, it suffices to show ®(n,i + 1) = 0. Denote

1+t
§(1+1t)=a * Tp—int+iQTp—intitl """ ATp—(i—)n+i—1 " ATp—2n4+10Tp—2n42 """

n—i—1
arp—n4+1a Tp—iQlp—it1 - ATp—1ATpA.

From hypothesis ®(n,i) = 0, we have a!®(n,i) = 0 for any integer ¢ > 0. To be more specific,
1+t
a " Tp—inti@Tp—in+i+l " ATp—(i—1)n+i—1ATp—(i—1)n+i " ATp—2n4+20Tp—2n43 " **

n—i—1

arp—narp—ni1(a a)rp—it1 - arp_i1arpa = 0.

Inserting 7,—; between a”~*~! and a, then (1 +t) € Q;(R) holds. It follows that

Q(n,i+1) =ar,_(it1)yntit1  p—inti—1(aTp_inyi- - aTp_2ni2 -

n—i—1
arp—nATp—ni+1Q Tp—iQTlp—it1 " ~a7’p,1a7"pa)
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/
=arp_ (it Dntit1 " p—inti—1§(1) = arp_(iy1yngir1 Tp—inti—2a8(1)1 4 g
/
=aTp—(i+1)nti+1 " Wp—inti—28(2)Tp_inyi1

for some r),_;,., ; € R. Continuing this process, there exist r
such that ®(n,i+ 1) = a(n —

—(i+1)ntit1 " Tp—intio1 € R
)T;)f(iJrl)nHH = 0, since {(n—1) =&(1+n—2).
By induction, we have ®(n, ) = 0 for any positive integer ¢ < n. In particular, ®(n,n—1) =

! Tp—m-m‘

ariars - - - arp—iarpa = 0. This completes the proof of Lemma 2.8. O

Theorem 2.9 The following statements are true for an LQCS (RQCS) ring R.

(1) For a € R, if there exists a positive integer n such that a™ = 0, then roary - - - arpy1 =0
for any ro,71,...,7p41 € R, where p = n? —2n+2;

(2) RaR is a nilpotent ideal of R for any a € N(R);

(3) W(R) = N.(R) = N*(R) = N(R);

(4) J(R[z]) = W(R[z]) = Nu(R[z]) = N*(R[z]) = W(R)[z] = N(R)[z] = N(R[z]). In
particular, R[z]/J(R[z]) is a reduced ring.

Proof (1) It is a direct consequence of Lemma 2.8.

(2) There exists a positive integer n such that ™ = 0 for any a € N(R). We show that
(RaR)P*1 = 0, where p = n? — 2n + 2. If aj,as,...,ap41 € RaR, then a; can be written as
a; = 1i108i1+72a8i2++ - -+Tim; ASim, for some rip, s; € R, 0 =1,2,...,p+1,and k =1,2,...,m,.
It turns out that ajaz - - - apy1 = 0 by Lemma 2.8, and so (RaR)p‘Irl =0.

(3) On the one hand, W(R) C N.(R) C N*(R) C N(R) is well known. On the other hand,
N(R) € W(R) with help of (2). Consequently, W(R) = N.(R) = N*(R) = N(R).

(4) Tt is known that J(R[x]) = I[z] for some nil ideal I of R and that N, (R[z]) = N.(R)[z]
from [19, Theorems 1 and 3]. This means J(R[z]) C N(R)[z] = W(R)[z] by (3). Combining
this with W(R)[z] C N.(R[z]) = N.(R[z]) C J(Rx]), we obtain J(R[x]) = W(R)[z]. With

help of [16, Lemma 2.3], we have W (R[z]) = W(R)[z]. It turns out that J(R[z]) = W(R[z]) =
N.(R[z]) = N*(R[z]) = W(R)[z] = N(R)[x]. Moreover R is a 2-primal ring by (3), so is R[x]
duo to [20, Proposition 2.6]. This implies J(R[z]) = N(R[z]), proving the equalities of (4).
Finally from R[x]/J(R[z]) = R[z]/N(R[z]), we conclude that R[z]/J(R[z]) is a reduced ring. O

Corollary 2.10 The conclusions of Theorem 2.9 are true for left (right) quasi-central reduced

rings, central semicommutative rings, and symmetric-over-center rings.

Proof It is known from [16, Proposition 2.1] that a symmetric-over-center ring is central

symmetric in the sense of [12]. So the conclusions hold by Proposition 2.5 and Theorem 2.9. O
Corollary 2.11 For any ring R, M, (R) is neither an LQCS ring nor an RQCS ring.

Proof Assume on the contrary, then Ey,,, E,1 € N(M,(R)) implies E1,+E,1 € N(R). However
(E1n + En1)? = E11 + E,p is a nonzero idempotent, this contradicts Theorem 2.9. O

Corollary 2.12 A ring R is an LQCS (RQCS) ring if and only if ab = 0 implies aRb C
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QUE)NW(R) (Qr(R)NW(R)) for a,b € R.

Proof Tt suffices to show ab = 0 implies aRb C W(R). From ab = 0, we have ba € N(R) = W(R)
by Theorem 2.9. Hence bar € W (R) for any r € R, and so arb € N(R) = W(R). O

Corollary 2.13 A semiprime LQCS (RQCS) ring is a reduced ring, and a prime LQCS (RQCS)

ring is a domain.
Proof The validity is clearly from Corollary 2.12 and Theorem 2.9. O

Definition 2.14 A ring R is said to be left (right) quasi-central symmetric if abc = 0 implies
bac € Qi(R) (Q,(R)) for a,b,c € R, and R is quasi-central symmetric if it is left and right

quasi-central symmetric.

Definition 2.15 A ring R is said to be left (right) quasi-central reversible if ab = 0 implies
ba € Qi(R) (Q,(R)) for a,b € R, and R is quasi-central reversible if it is left and right quasi-
central reversible.

Clearly, a left (right) quasi-central symmetric ring is left (right) quasi-central reversible.

Lemma 2.16 Let R be a ring and I an ideal. If R/I is symmetric (reversible) ring such that
I CQi(R) (Qr(R)), then R is a left (right) quasi-central symmetric (reversible) ring.

Proof It is similar to the proof of Lemma 2.3. O

Proposition 2.17 If R is a left (right) quasi-central reduced ring, then R is a left (right) quasi-

central symmetric ring.

Proof Since R is a left quasi-central reduced ring, we have N(R) = W(R) C Q;(R) with help
of [18, Proposition 2.8]. Thus R = R/W (R) is a reduced ring, so is a symmetric ring. If a,b,c € R
satisfy abc = 0, then abé = 0 in R. This implies bac = 0 by the symmetry of R. It turns out
that bac € N(R) C Q;(R), and so we are done. O

Proposition 2.18 Any left (right) quasi-central symmetric ring R is an LQCS (RQCS) ring.

Proof Let a,b € R with ab = 0. Then we have rab = 0 for all » € R. This implies arb C Q;(R)
by the left quasi-central symmetry of R. It can be concluded that aRb C Q;(R). O

Theorem 2.19 The following conclusions are true for a ring S and R = T5(S).
(1) R is left (right) quasi-central symmetric if and only if S is symmetric right (left) duo.
(2) R is left (right) quasi-central reversible if and only if S is reversible right (left) duo.

Proof (1) Assume that R is a left quasi-central symmetric ring and a,b, ¢ € S with abc = 0.
Let A = aFss, B = bEs, C = cEy € R. Then we have ABC = abcEy; = 0. It yields that
BAC = bacEs2 € Q;(R) by the virtue of R. This implies bac = 0 by Lemma 2.2 (1). In view
of Lemma 2.2 (2), we need to show SE13 C Q;(R). For any a € S, then aE12E11F23 = 0 gives
Er1aE19F2 = aF1o € Qi(R) by the left quasi-central symmetry of R and so we are done.
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(2) It is very similar to the proof of (1). O

Remark 2.20 The condition one-sided duo property and that of reversibility do not imply each
other. For any field F, the ring T' = F(z,y)/(x®,y3, yx, vy — 2%, vy —y?) is duo but not reversible
by [10, Example 3.9 and Remark 1]. Conversely, if R is a domain which is neither a right nor a
left Ore ring, then R is reversible ring and not one-sided duo ring with help of [10, Example 3.2].
Moreover R = T5(Z) is a quasi-central reversible ring by Theorem 2.19, but R is not a central

reversible ring by [13, Lemma 2.13], since it is not abelian.

Remark 2.21 Tt is known from Theorem 2.19 and [18, Proposition 2.4] that R = T»(Z4) is
a quasi-central symmetric ring which is neither left nor right quasi-central reduced. Let Qg be
the quaternion group of order 8, S = ZyQs the group algebra, and R = T5(S). It is proved
in [10, Example 3.8] that S is a reversible duo ring but not a symmetric ring. Thus R = T5(5) is
a quasi-central reversible ring which is neither a left nor a right quasi-central symmetric ring by
Theorem 2.19. Moreover if T' is the ring in Remark 2.20, then R = T»(T) is a QCS ring which

is not one-sided quasi-central reversible with help of Theorems 2.4 and 2.19.

Example 2.22 (|21, Example 2.1]) There exists a central (hence a quasi-central) reversible ring
which is neither an LQCS ring nor an RQCS ring.

Proof Let A = Fla,b,c| be the free algebra of polynomials with zero constant terms in non-
commuting identerminates a, b, c over Zs. Then A is a ring without identity. Let I be an ideal
of Zy + A, generated by ab,ba?,b%a, bea, bac + cba, rirar3ryrs, where r1,72,73,74,75 € A and
let R = (Zo + A)/I. We call each product of the indeterminates a,b,c¢ a monomial and say
that « is a monomial of degree n if it is a product of exactly n number of indetermintes. Let
H,, be the set of all linear combinations of monomials of degree n over Z,. Note that H, is
finite for any n and that the ideal I of R is homogeneous, i.e., if > ;_, o; € I with o; € H;
then each «; € I. It is proved in [21, Example 2.1] that R is a central reversible ring (so is
a quasi-central reversible ring) which is not a central semicommutative ring. Firstly we show
that R is not an LQCS ring. By the definition of I, it yields that ab € I and achb ¢ I. We
claim that Racb ¢ acbR. It suffices to show aach + acba ¢ I for any o € A (eq., a € Zy + A).
We may rite & = a1 + o + a3 + og + h, where oy € H; and h € I, since A% C I. It follows
that aacbh + acbae = aacb + acbay + h' for some h' € I. Thus aachb 4+ acba ¢ I if and only
if aachb + acbay ¢ I. Note that a; = kya + kab + kze for some k; € Zy. From ab € T and
bac + cba € I, we have acba € I. It follows that acbay = acb(kab + ksc) + h'” for some h” € I.
Therefore aach + acba ¢ I if and only if aach + acb(kab + ksc) ¢ I for any ko, ks € Zo.

Case 1. If ks =0, k3 = 0, then aacb + acb(k2b + ksc) = aach.

Case 2. If ky = 1, k3 = 0, then aach + acb(k2b + k3c) = aacb + acbb.

Case 3. If ko =0, k3 = 1, then aacb + acb(kob + ksc) = aach + acbe.

Case 4. If ko =1, ks = 1, then aacb + acb(kob + ksc) = aach + acbb + acbe.

Obviously, we have aacb ¢ I, aach + acbb ¢ I, aach+ acbe ¢ I, and aach + acbb + acbe ¢ I by

the definition of I. This means aach+ acba ¢ I for any « € Zo + A from the previous argument.
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Thus R is not an LQCS ring. Similarly, it can be proved that R is not an RQCS ring by taking
into account acbb + Sach ¢ I for any B € Zy + A. O

Remark 2.23 Similar to the proof of Remark 2.6, it can be proved that neither Definition
2.14 nor Definition 2.15 is left-right symmetric, and that the subring of a one-sided quasi-central
symmetric (reversible) ring need not be the same ring. Also note that if R[x] is a one-sided duo
ring, then R is a commutative ring by [22, Lemma 9]. Thus the polynomial ring over a left (right)
quasi-central reduced ring need not be neither a left (right) quasi-central reversible ring nor an
LQCS (RQCS) ring. Let H be the real Hamilton quaternions ring and R = To(H). Then R is
a quasi-central reduced ring by [18, Proposition 2.4]. Observing that R = T(H[z]) and H]x] is
not a one-sided duo ring, R[x] satisfies our requirement.

A ring R is said to be left (right) quasi-central Armendariz [18] if f(z) = >\, a;z’, g(z) =
Z?:o bjz! € R[z] satisfy f(z)g(z) =0, then a;b; € Q;(R) (Q-(R)) for all i and j.

Remark 2.24 The class of left (right) quasi-central Armendariz rings and that of LQCS (RQCS)
rings are independent of each other. It is known from [23, Example 3.2] that the commutative
ring S = S3(Zs) is not Armendariz. This means that R = T5(.9) is a QCS ring which is neither
a left nor a right quasi-central Armendariz ring by [18, Theorem 2.13]. On the other hand,
R = F(a,bla® = 0) is an Armendariz ring and so is a quasi-central Armendariz ring for any field
F. However R is neither an LQCS nor an RQCS ring, since R is not a 2-primal ring with help
of [24, Example 4.8].

3. Examples of left (right) quasi-central semicommutative rings

Let R be a ring, k and n positive integers such that k£ < n. We write V = Z?;ll Eiiv1,
Vo(R) = RI, + RV + -+ + RV" ! and T¥(R) = Vi (R) + Zf:ll > i—kii REij. In particular,
V52(R) is the trivial extension T(R, R) of R. Moreover we write the set of all n x 1 matrices over

R by R" = {(a1,az,...,a,) ]a; € R}.

Proposition 3.1 Let S be a ring and n a positive integer. Then Ry = T,(S) for n > 3 and
Ry = S, (R) for n > 5 is neither an LQCS ring nor an RQCS ring.

Proof (1) For any n > 3, clearly F15 = E12E23 € Ri1FEs3, and Ei3 ¢ EosRy. This means
R1E»3 ¢ Es3Ry and so Eoz ¢ Qi(R1). From EyEs3 = 0 and EsyFEa3E33 = Eoz ¢ Qi(Ry), we
conclude that Ry is not an LQCS ring. Similarly, since Ei3 € E12R; and Ey3 ¢ Ry E12, we have
E12 ¢ Q-(Ry). Combining Eq1Fs = 0 with Fy1 FE19F2 = E12 ¢ Q,.(R1), we can conclude that
Ry is not an RQCS ring.

(2) Consider Ry = S,,(S) for n > 5. Since E15 = E12Fa5 € RoFEas and Es ¢ Eos Ra, we get
Ess ¢ Q1(R2). Thus EasEys = 0 and FEazEsgEys = Eas ¢ Qi(R2) imply that Rs is not an LQCS
ring. Similarly, as F15 € E14Re and E15 ¢ RoEh4, we have F14 ¢ Q,(R2). From E12F34 = 0
and E12Es3F54 = E14 ¢ Q. (R2), we conclude that Rs is not an RQCS ring. O

Theorem 2.4 and [14, Corollary 2.14] imply that T5(Z) and S4(Z) are QCS rings.
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Corollary 3.2 Let S be a ring and n > 2 an integer. Then R = T,(S) is an LQCS (RQCS)
ring if and only if n = 2 and S is a right (left) duo ring.

Proof It is a direct consequence of Proposition 3.1 and Theorem 2.4. O

Lemma 3.3 Let S be aring and R = V,,(S) forn > 2. If S is a left (right) quasi-central reduced
ring, then AB = 0 implies ARB C V,,(W(S)) for any A, B € R.

Proof Write S = S/W(S) and R = V,,(S). The canonical ring homomorphism from S onto S
induces a ring surjective homomorphism from R onto R. Since S is a left quasi-central reduced
ring, W(S) = N(S) by [18, Proposition 2.8] and so S is a reduced ring. This implies that R is
a semicommutative ring with help of [25, Theorem 2.5 and Lemma 1.4]. Now AB = 0 implies A
B =0in R. It follows that A C' B = 0 for all C' € R by the semicommutativity of R. Accordingly
we have ARB C V,,(W(S)). O

Corollary 3.4 Let S be a left (right) quasi-central reduced ring and R = T(S,S). If for any
r,s € S and a,b € W(S5), there exist u,v € S such that ra = au, rb + sa = bu + av (ar = ua,
br + as = ub+ va), then R is an LQCS (RQCS) ring.

Proof Let A,B € R with AB = 0. There exist a,b € W(S) such that ACB = aly + bE;2 for
all C' € R with help of Lemma 3.3. For any M = rly + sF12 € R, then we have M ACB =
rals + (rb+ sa) E12. By hypothesis, there exist u,v € S such that ra = au, rb+ sa = bu+av. Let
My = uls + vEj2. A simple computation gives M ACB = ACBM,. This shows ACB € Q;(R),
and so R is an LQCS ring. O

Of course, a central reduced ring S satisfies the conditions stated in Corollary 3.4.

Theorem 3.5 Let S be a reduced left (right) duo ring and R = T»(S). Then W = T(R, R)
is an LQCS (RQCS) ring if and only if for any r,s,a,b € S there exist u,v € S such that
ra = au,rb+ sa = bu + av (ar = ua,br + as = ub + va).

Proof Clearly, R = T»(S) is a left (right) quasi-central reduced ring by [18, Proposition 2.4].

Assume that the element-wise condition stated in Theorem 3.5 holds. For &/, % € W with
A B =0and € € W, then 4B € T(W(R), W(R)), so there exist A, B € W(R) such that

M%%z(A B)
0 A

with help of Lemma 3.3. Observing that S is a reduced ring, there exist a,b € S such that

alliz bEp2 )

ACR =
0 aE12

For any 2 € W, there exist D1 = rE11 + r1E12 + roFEas, Dy = sEq11 + s1FE15 + soF22 € R with

Dy D
@:< ) 2>,
0 D
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where 7, s,,71,72, 51,52 € S. Through a simple computation, it yields the following equality

raFis  (rb+ sa)Eia )

DACH =
0 TaElg

Take 2’ = (”%22 Zgzz ) It is easily checked that .4 C€ % = FCABY', showing the validity of

ACRH € QW).
For the converse, suppose that W is an LQCS ring and 7, s,a,b € S. Let us consider

E 0 E 0 E bE
o — 11 ’ B — 22 ’ @ — ali12 12 cw.
0 E11 0 E22 0 aElQ

Clearly, we have &% = 0. This implies /€% = (a%” bE12) € Q(W) by hypothesis. So

aF2
for 9 = (7'%“ jgﬂ) € W, there exists 2’ = (%1 g?) € W such that A CB = JCBD .
1
We may write D] = r{E11 + s)E12 + uF2e and Dj = rhE11 + shE12 + vEy € R for some
ri,1h, 81, 85, u,v € S. Tt follows that ra = au, rb + sa = bu + av by comparing the elements on

two sides of 2 C A = 7€ AB2'. This completes the proof of Theorem 3.5. O

Corollary 3.6 Let R be a ring. If V,,(R) is an LQCS (RQCS) ring for some integer n > 3, then
V2(R) is an LQCS (RQCS) ring.

Proof Let S = RI, + RV""!. We have Vo(R) = RI; + RV = S by a direct verification.
Now it suffices to show that S is an LQCS ring. If A,B € S satisfy AB = 0, then ACB =
aol + a,_1V™" 1 € Q(V.(R)) for all C € S. Thus for any D = rol,, + 7, 1V" ! € S, there
exists D' = (I, + |V + -+ 1, V" ! € V,(R) such that DACB = ACBD’. This gives
T0ao = AQTh, T0Gn—1 + Tn_1a0 = agrhy_1 + an_174. Let D" = r{I, + ! V" 1 € S. Then we
have DACB = ACBD" by a simple computation. This implies ACB € Q,;(S). O

It is known from [25, Proposition 1.6] and [21, Theorem 2.3] that if S is a (central) reduced
ring, then R = T'(S,5) is a (central) semicommutative ring. One may naturally ask whether

R =1T(S,S) is a QCS ring whenever S is a quasi-central reduced ring.

Example 3.7 There exists a quasi-central reduced ring S such that R = T'(S, S) is neither an
LQCS ring nor an RQCS ring.

Proof Let K be any field, F' = K(t) the field of rational functions in a variable ¢ over K, o
an automorphism of F' satisfying o(f(t)) = f(t~!) for any f(t) € F. Thus we have o(t 1) = t,
o7 l(t) = t71 and o71(t7!) = t. Let S = F|[[z;0]] be the left skew power series ring over
F. Tt follows from [18, Example 2.6] that S is a left duo ring. Applying the fact that o is a
surjective endomorphism, it is easily checked that S is also a right duo ring. Thus R = T5(S)
is a quasi-central reduced ring by [18, Proposition 2.4]. We claim that W = T'(R, R) is not an
LQCS ring. On the contrary, for r =t, s =1, a = 22,b = 2 € S, there exist u,v € S such that
ra = au,rb + sa = bu + av by Theorem 3.5. This means tz? = zu, tx +a = bu + av. Clearly, u
can be written as u = lo + L1z + - - - + [, 2P for some Iy, l1,...,l, € F. Comparing the coefficients

2

on two sides of tx? = z%u, we must have u = Iy € F. Thus tz? = 2?u gives 02(u) = t. It yields
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that u = 07 2(t) = 0~ 1(¢t~1) = t. Meanwhile from tx + a = bu + av, we have tz + 22 = xt + 22v.
This implies that tx + 22 = o(t)r + 2%v = t 'z + 2%v. It turns out that t = ¢t~!. This is a
contradiction. Therefore, W is not an LQCS ring by Theorem 3.5. Similarly, retaking » = ¢,
s=1,a=2%b=x €S, it can be proved that W is not an RQCS ring with help of Theorem
3.5. 0

A ring R is strongly (von Neumann) regular if for any a € R, there exists b € R such that

a = aba and ab = ba. It is known that such a ring is reduced and duo [10, 26].

Theorem 3.8 Let S be a ring and R = T5(S). If S is a strongly regular ring or a commutative
reduced ring, then U = V,,(R) is a QCS ring.

Proof It is known from [18, Propositions 2.4 and 2.8] that R is a quasi-central reduced ring
such that W(R) = N(R). If &,/ € U with &/% = 0, then we have #/4% € V,(W(R))
by Lemma 3.3. Since S is a reduced ring, W(R) = N(R) = Sei2, where ¢;; is the matrix
unit of R. It turns out that @ 4% € V,,(Se12). There exist ag,a1,...,an,—1 € S such that
ACR = aperal + are12V + -+ + ap_1€12V"™ L. Similarly, for any 2 € U, it can be written as

U = (soe11 +toaz +1oc12)] + (51611 +t1€22 +11€12)V + -+ -+ (Sp—1611 +tn—1822 +Tn_1612) V" !

for some sq,t0, 70y Sn—1,tn-1,"n—1 € S. It follows that A EC B = (roap)e12l + (roa; +
r1a0)e12V + -+ + (ro@n—1 + T1an_2 + -+ + rn_1a0)e12V"* ! by the virtue of matrix units. In
the case S being a commutative reduced ring, then 2’ = roeaal + 1199V + -+ + 11620V !
satisfies A C B = A€ A" by a direct computation. This proves that /€A € Q;(U), and so
U is an LQCS ring. Similarly, it can be proved that U is an RQCS ring in this case. In another
case, we need to apply [27, Lemma 1.7] which states that if S is a strongly regular ring and

70,00,T1,01,...,0n_1,Tn_1 € 5, then the following system of linear equations

ToGo = GoZo

roa1 + riag = a1xo + apr1

T00p—1+710p—2 +  ++ + Tp—100 = Gp—1T0 + Ap—2%1 - + ATp—1

is solvable in S. Let xg = sg, 21 = $1,...,Tp_1 = Sp—1 be a solution and 2’ = sgegal + 51622V +
o 8,_1622V L. There is no difficulty to check that .o/ € % = #/€BP'. Therefore, U is an
LQCS ring. Analogously, it can be proved that U is an RQCS ring. O

In what follows, a 1 x 1 matrix over a ring R is denoted by (b) for some b € R.

Lemma 3.9 (1) Let R be a right duo ring. For any b € R and 8 = (c1,¢a,...,¢,)T € R™,
there exists 3/ € R™ such that §(b) = bl,, /3.
(2) Let R be a reduced ring, by € R and oy = (d1,ds,...,d,)T € R*. If a;(b1)? = 0, then

we have aq(by) = 0.
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Proof (1) By hypothesis, Rb C bR holds. So for each ¢; there exists ¢, € R such that ¢;b = bc}.
Let 8/ = (c},ch,...,c)T. We have B(b) = (c1b, cab, ..., c,b)T = (bcy, beh, ... bc)T = bl 3.

(2) From ai(b;)? = 0, we have d;b1b; = 0 for each 4. This implies d;bid;b; = 0 by the
semicommutativity of R. This means d;b; = 0 by the reduceness of R, entailing a3 (b)) =0. O

Noticing that any reduced ring R is reversible, ab = 0 if and only if ba = 0 for a,b € R.
In the sequel we will use this fact freely without mention. For any A € T¥(R), we write A =
(ai;) € T,,(R) such that a1 = ag2 = -+ = Qpp = A1, G12 = A23 = -+ = Ap_1,, = G2,... and
A1k = A2 k41 = -+ = Gn—k+t1,n = k. Moreover, for matrices A = (ai)mxs, B = (bij)sxn Over R,

we write [AB]; ; = 0 to mean that a;b;; =0forl=1,2,...,s.

Theorem 3.10 Let R be a ring and k a positive integer. If R is a reduced right (left) duo ring,
then T, ,(R) is an LQCS (RQCS) ring.

Proof Assume that A, B € T4, ,(R) with AB = 0. We need to show ACB € Q(T%,(R))
for any C' € T2kk+2(R). Represent A = (AO1 ‘511) and B = (%1 fll) as partitioned matrices, where
Ay, By € TQkkH(R), a1, 1 € R¥**L and ay,b; € R. We may identify a;,by with (ay), (by) for
simplification. Now AB = 0 gives A1B; =0, a1b; = 0 and A158; + a1b; = 0.

The last equality implies A;31b; + a1b? = 0. Since R is a right duo ring, there exists 3] €
R**1 such that B1by = by Iag418] by Lemma 3.9 (1). Meanwhile A; B; = 0 implies [A1 B1];; = 0
by [28, Lemma 1]. In particular, we have A1b1lo;11 = 0 and hence Ay 5161 = A1b1la;118] =0
by Lemma 3.9 (1). From A;31b; + a1b? = 0, it yields that a;b? = 0. This implies that a3b; = 0
by Lemma 3.9 (2). So A181 + a1by = 0 gives A;5; = 0. Write A; as a row partitioned matrix,

Q2k+41

Q2
Al =

g

It is easy to see o; = (0,...,0,a1,...,a;) for i = 1,2,... k and there is no difficulty to check
agpyi = (0,...,0,a1,a2,...,a4%, Qt2—i 2k+2—4; - - - » Akt2—i2k+1) Where the occurrence of 0 is k +
1 —i. Moreover 31 = (b1 2k+2,b2,9k+2, -+ s bk+22k+2, Oy Dk—1, - - -, b3, b2) T which lies in the last
column of the matrix B. Remember that we have assumed AB =0 and so A1 B; = 0.

Claim. A;$1 = 0 implies [apf1];,; =0 forallm=1,2,...,2k.

Case 1. In the case 1 <m < k — 1, all a,;; 81 = 0 if and only if the following equalities

a1b2 =0
ai1bs + asby =0

a1bg + asbs + azbs =0

arby + agby—1 + -+ ag—2b3 +ap_1b2 =0
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hold. On the other hand, it is easily checked that A; B; = 0 implies the following equalities
a1b1 =0

ai1bs +asby =0

a1bs + azbs + asby =0

arby + asbr_1 + -+ + ap—2bs + ax_1ba + apby = 0.

As previously mentioned, A1B; = 0 implies [A1B1];; = 0 by [28, Lemma 1]. In particular,
B = 0 implies [, B1]i,; =0 for 1 < m < k — 1, proving the validity of Claim in Case 1.

Case 2. In the case k < m < 2k — 1, we proceed from m = k. Assume aif3; = 0, i.e.,
a1bg2,2k42 + asby + -+ + ap—1bs + arbe = 0. (3.1)

Applying the conclusion of Case 1, we have bya; = bgy_1a1 = -+ = bga; = bza; = baa; = 0.
Multiplying a1bgi22k+2 on the right sides of (3.1) yields (a1bki22k+2)? = 0. This implies
a1bi12,2r+2 = 0 by the reduceness of R. Thus (3.1) can be simplified to the following equality

agby + asbg—1 + -+ + ag—1bs + apby = 0. (3-2)

Similarly, multiplying asby on the right sides of (3.2), we can obtain asby = 0. Continuing this

process, finally we get azby_1 = -+ = ax_1b3 = axbs = 0. Now it can be concluded that
a1bp2,2k42 = aoby = - = ap—1b3 = agby = 0.
It follows from the previous argument that o, 81 = 0 implies [, 51];; =0 for 1 <m < k.
In the case m = k + 1, then o101 = 0 is equivalent to the following equality
a1bp11 2642 + a2bpyo 2p+2 + asby + - -+ + ar—1bs + agbs + ary1,26+102 = 0. (3.3)
Multiplying a1bg41,2k+2 on the right sides of (3.3), we have (a1bgi1,2k+2)* = 0 with help of
[amBili; =0 for 1 <m <k, and hence a1biy1 2512 = 0 by the virtue of R. This implies that
a2bry22k42 + azby + - - -+ ap—1bs + apbs + ap41,26+102 = 0. (3.4)
Similarly, multiplying asbgi2 2k+2 on the right sides of (3.4) yields (a2bx422k+2)* = 0, and so
asbit2,2r+2 = 0 by the reduceness of R. Thus (3.4) can be simplified into the next equality
azbr + asbp—1 + - - - + ap—1bs + arbsz + ag41 2p4+1b2 = 0. (3.5)

Applying the same technique to (3.5), we can get agby = 0. Continuing this process, finally we
have [ag4151]i,; = 0. It follows that ., 81 = 0 implies [o,f1]i,; = 0 when m = 1,2,...,k + 1.
Inductively, assume that Claim is valid in the case m = k +1i for i < kK — 1. We prove its validity
for m = k + i+ 1. Noticing that agt+; = (0,...,0,a1,a2, ..., 0k, Qkt2—i 2k+2—is - - - s Ak+2—i,2k+1)

in which the occurrence of 0 is k 4+ 1 — ¢, there are k + ¢ nonzero components in a; formally.
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By inductive hypothesis, we have [o,81];; = 0 for all 1 <m < k + 4. In particular, agyi61 =0
implies [ax+if1]i,; = 0, equivalently, each term on the right side of the following equality

a1bg12—i2k+2 + a2bpi3—i2kt2 + -+ Qip10pt2,2k+2 + Qig2by + -+ arbiyo+

Aky2—i2k+2—iDit1 + Qhy2—i2643—ibi + - + apyo_i 264102 =0 (3.6)
is zero. Substituting ¢ for ¢ + 1 in the equality (3.6), we obtain the expression ay4181 = 0,

a1bg11—i2k+2 + a2bpr2—i2k42 + - - -+ Gip2bpio.2kt2 + aip3br + -+ arbiya+

ht1—i,2k+1—ibit2 + Qhg1—i2k+2—ibig1 + -+ + Qpr1—i26+102 = 0. (3.7)

Multiplying a1by41-i2k+2 on the right sides of (3.7), we have (a1bgi1—i2r42)® = 0 by the
conclusion [y, f1]i,; =0 for all 1 <m <k + i, and S0 a1bx41—i2k+2 = 0. Thus (3.7) becomes

a2bg12—i2k+2 + a3bpis—iokt2 + - 4 Gip2bpio2k+2 + aip3by + -+ arbiyz+

Ak1—i2k+1—ibit2 + Qpr1—i2kr2—ibip1 + -+ akp1-i 264102 = 0. (3.8)

Similarly, multiplying asbg+2—i 2k+2 on the right sides of (3.8), we may get agbyio—;ox+2 = 0.

Continuing this process, there is no doubt that we can get [ogp+i+1/51]s+ = 0 in the final.

Case 3. In the case m = 2k, we proceed by using the conclusions of Cases 1 and 2.

In this case aop—1/51 = a1b3 2k+2+a2bs ok 12+ -+ arbri2 2842+ a3 ky2br+- - +az 211102 = 0,
aokB1 = a1beopto + agbs opto + - -+ apbrii 2642 + a2 k42bki2 2842 + a2 k3bk + - - + ag2p+102.
Note that [am,/51]i,; = 0 for all m < 2k —1 by the conclusions of the previous Cases. Multiplying

a1be 242 on the right sides of a1 = 0, we have (a1ba 2k2)? = 0, and 5o aibe ok2 = 0. Thus

a2b3 ok42 + asbaopy2 - -+ arpbry1 2642 + a2 k42bk42 20642+

a2 k+3bk + -+ + a22k4102 = 0 (3.9)

from agxfB1 = 0. Similarly, multiplying agbs or+2 on the right sides of (3.9), it follows that
azbs 2p+2 = 0. Continuing this process, finally [a2x(1]i,; = 0, proving the validity of Claim.

Claim implies that there exists r € R such that 4,31 = (r,0,...,0)T.

Now we prove that AB = 0 implies ACB € Qi(T%;_,(R)) for any C' € T4 ,(R). Write
C= (CO1 1), where Cy € T (R), 71, € R**! and ¢; € R. Then it is easily checked

ACB — AC1B; AC{B1 + Al’}/lbl + a1e1by .
0 a101b1

We have showed that AB = 0 implies A1 By = 0, a1by = 0, and a1b = 0. Since R is a reduced
ring, TQkk_H(R) is a semicommutative ring by [28, Theorem 1]. It follows that A;C71B; = 0 and
aic1by = 0. From the right duo property of R, we have Rb; C by R. This gives ¢c1b1 = bic] for
some ¢| € R. Thus a1b; = 0 implies a1¢1b1 = 0 by taking into account the components of «;.
Meanwhile there exists v/ € R2**! such that vb; = by o1 with help of Lemma 3.9 (1) and
A1B; = 0 implies A1b1Iog+1 = 0 by [28, Lemma 1]. This gives A1y1b1 = A1b1log+17y' = 0. By
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the multiplication of block matrix, it is easy to obtain the following expression of

azk+1C1 5
az,C1 1
A1C1By =
a1C1 81
We wish to prove ao,C181 = agp—1C181 = - - - = a1C1 31 = 0. Firstly, we show a,C15; = 0.
Write C; as a row partitioned matrix. There exist 1 x (2k + 1) matrices {ax41, . .., &1 such that
§ak+1 Sok+151
§2k Sk
C) = ] and so C1 51 = ] ,
& §1b1
where §; = (0,...,0,¢1,...,¢i); §pyi = (0,...,0,¢1,C2, - -+, Chy Chy2—i 2k 42—is - - - Chy2—i,2k+1) fOr

i=1,2,...,k and the occurrence of 0 in the component of £, is kK + 1 — 4. It yields that

aorC1 81 = a1§okB1 + a2éop—151 + - - + apbr181 + ag ky2lkr261 + -+ agok4181 51

Now we show that each term of s, C1 31 is zero. By a simple computation, we have

SorB1 = c1b2 opyo+cab3 opqot- - ACrbrgt 2p+2+C2 ko 2brr2 2ky2 4o k4308 + - -FC2 21 034C2 28112

On the other hand, with help of the conclusions of Claim, it yields the following equalities

a1b2 ok42 = a1b3 ok42 = - = a1bpy1,26+2 = A1bpy2 2842 = a1by = - = a1by = 0.

We conclude that aicibs opt+2 = a1c203 2542 = -+ - = a1¢kbry1,2642 = -+ = a1¢2,2p+1b2 = 0, since
R is a semicommutative ring. This implies that the first term of ao,C1 51 is zero, i.e., a1 51 = 0

from the previous argument. Similarly, it can be proved that

a2éor—151 = - = aplpy181 = - - = a2 21415181 =0

and so ag,C15; = 0. Continuing this process, we have asgr_1C161 = -+ = a1C161 = 0. We
conclude A;C1 81 = (a,0,.. .,O)T for some a € R, i.e., ACB = aFE s542. It is easily checked
ACB € Qi(T},,,(R)) by the right duo property of R. This completes the proof of Theorem
3.10. O
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